Home

  • Coloring Pages
  • Printable Books
  • Your Favorites

Number Worksheets

Number 0 worksheets.

Choose a number Zero  worksheet . Customize your number zero worksheet by changing the text and font. You can create your own math problems, practice writing the number 0 and the word zero.  Grab your crayons and print some 0 worksheets!

  • Number Matching
  • Number Words
  • Numbers 21-30

Cut and paste the letters Z-E-R-O Handwriting Sheet

  • Cut and paste the letters Z-E-R-O Handwriting Sheet

I see a number zero Handwriting Sheet

  • I see a number zero Handwriting Sheet

Number 0 Practice Handwriting Sheet

  • Number 0 Practice Handwriting Sheet

Number Zero Handwriting Sheet

  • Number Zero Handwriting Sheet

Practice writing the number 0 Handwriting Sheet

  • Practice writing the number 0 Handwriting Sheet

Write the word zero Handwriting Sheet

  • Write the word zero Handwriting Sheet

zero Handwriting Sheet

  • zero Handwriting Sheet

sheknows logo

  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • Knowledge Base
  • Math for kids

Number 0 Worksheets

Created on Aug 12, 2022

Updated on June 2, 2023

As kids begin scribbling, it should be pretty easy to introduce them to writing “0.” Zero is one of those numbers kids should be able to identify since it can represent “nothing” or tens. Keep reading to see how number 0 worksheets can help your little one achieve.

Number 0 Tracing Worksheets

Number 0 Tracing Worksheets

Printable Number 0 Worksheets

Printable Number 0 Worksheets

Number Zero Worksheets For Preschool

Number Zero Worksheets For Preschool

Number 0 Preschool Worksheets

Number 0 Preschool Worksheets

Number 0 Worksheets For Kindergarten

Number 0 Worksheets For Kindergarten

Worksheet For Number Zero

Worksheet For Number Zero

Why Do Tutors at Brighterly Use Number 0 Worksheets?

Brighterly is an online math learning platform with educators who are dogged in their quest for every child to understand math. They use a number 0 worksheet for preschool to introduce kids to the concept of “zero means nothing.” They also teach kids that adding zeros after single-digit numbers like 1, 2, and 3 can make these numbers more significant.

1:1 Math Lessons

Want to raise a genius? Start learning Math with Brighterly

The perks of using a number 0 worksheet.

Kids can use number 0 tracing worksheets to learn writing and fine-tune their wrists’ motor skills. No matter how you look at it, a number zero worksheet can go a long way toward introducing your kids to numbers. Number zero worksheets are beautiful and filled with many colors, so kids will always be interested in learning and getting more knowledge.

Number 0 Worksheets PDF

Number 0 Worksheet

Number Zero Worksheet

Number Zero Worksheets

Number 0 Worksheet For Preschool

Numbers Worksheets

Author Jo-ann Caballes

As a seasoned educator with a Bachelor’s in Secondary Education and over three years of experience, I specialize in making mathematics accessible to students of all backgrounds through Brighterly. My expertise extends beyond teaching; I blog about innovative educational strategies and have a keen interest in child psychology and curriculum development. My approach is shaped by a belief in practical, real-life application of math, making learning both impactful and enjoyable.

Trouble with Numbers?

Numbers for Kids

  • Does your child struggle to understand the concept of numbers?
  • Start lessons with an online tutor.

Kid’s grade

Is your child finding it difficult to master the concept of numbers? Try studying with an online tutor.

After-School Math Program

After-School Math Program

Related worksheets, 2 digit by 1 digit multiplication worksheets.

Multiplication can be complex for kids when it gets to two-digit numbers. Their young minds may get things mixed up and multiply from the right instead of the left. To give your child a better shot at understanding this math concept, get 2 digit by 1 digit multiplication worksheets. If you want to know more, […]

Measuring Inches Worksheets

As children get older, they must learn more precise and quantitative means of performing measurements in math. Thus, kids should perfectly know a standard unit of measurement to estimate and measure objects accurately. For this reason, children should be taught how to measure length using units like inches or centimeters. Parents and tutors are advised […]

Tens and Ones Worksheets

Mastering the fundamental concept of place value is an essential stepping stone in a child’s mathematical journey. The understanding of tens and ones sets the stage for more complex arithmetic operations and provides a robust foundation for future numerical challenges. The Brighterly initiative, with its commitment to top-tier educational resources, offers tens and ones worksheets […]

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

softschools.com

  • Kindergarten
  • Middle School
  • High School
  • Math Worksheets
  • Language Arts
  • Social Studies
  • Free Math Games
  • Multiplication
  • Handwriting
  • Online Calculators
  • 2020 Calendar

Number 0 Worksheets

More topics.

  • Difference Between

Educational Videos

  • Coloring Pages
  • Privacy policy
  • Terms of Use

© 2005-2020 Softschools.com

Home

Reading & Math for K-5

  • Kindergarten
  • Learning numbers
  • Comparing numbers
  • Place Value
  • Roman numerals
  • Subtraction
  • Multiplication
  • Order of operations
  • Drills & practice
  • Measurement
  • Factoring & prime factors
  • Proportions
  • Shape & geometry
  • Data & graphing
  • Word problems
  • Children's stories
  • Leveled Stories
  • Context clues
  • Cause & effect
  • Compare & contrast
  • Fact vs. fiction
  • Fact vs. opinion
  • Main idea & details
  • Story elements
  • Conclusions & inferences
  • Sounds & phonics
  • Words & vocabulary
  • Reading comprehension
  • Early writing
  • Numbers & counting
  • Simple math
  • Social skills
  • Other activities
  • Dolch sight words
  • Fry sight words
  • Multiple meaning words
  • Prefixes & suffixes
  • Vocabulary cards
  • Other parts of speech
  • Punctuation
  • Capitalization
  • Narrative writing
  • Opinion writing
  • Informative writing
  • Cursive alphabet
  • Cursive letters
  • Cursive letter joins
  • Cursive words
  • Cursive sentences
  • Cursive passages
  • Grammar & Writing

Breadcrumbs

Numbers & Counting to 10 Workbook

Download & Print Only $4.79

Learning Numbers

Numbers worksheets from one to 20.

These free worksheets help kids learn to recognize, read and write numbers from 1-20 .

homework & practice 1 7 identify the number 0

Sample Kindergarten Learning Numbers Worksheet

More numbers worksheets

Explore all of our learning numbers worksheets (recognizing and printing numbers), counting worksheets (counting objects, skip counting, counting backwards) and comparing numbers worksheets ("more than", "less than", ordering numbers).

What is K5?

K5 Learning offers free worksheets , flashcards  and inexpensive  workbooks  for kids in kindergarten to grade 5. Become a member  to access additional content and skip ads.

homework & practice 1 7 identify the number 0

Our members helped us give away millions of worksheets last year.

We provide free educational materials to parents and teachers in over 100 countries. If you can, please consider purchasing a membership ($24/year) to support our efforts.

Members skip ads and access exclusive features.

Learn about member benefits

This content is available to members only.

Join K5 to save time, skip ads and access more content. Learn More

  • Forgot Password?

10 worksheets to write and identify the number 0 Zero

Show preview image 1

Description

5 worksheets of writing the number Zero 0 and 5 worksheets of identifying Zero 0. Handwriting pages contain a dot starting point and arrows.

These are awesome to use both in the classroom and in a distance learning environment- the worksheets can be mailed home, available for the parents to pick up, emailed etc. This approach can be easily taught via video or in the classroom. I used this approach very successfully in the classroom for kids who did not catch on quickly to number identification or counting and other early numeral concepts. I constantly said the number we were writing as I walked around the room, the kids were called upon at random to tell me what number we were writing etc. The students used highlighters, markers or colored pencils (I love Prang colored pencils for their smooth writing). These were great to teach number name and numeral formation. I also had the students walk around and find the number around the room that we were writing (on the carpet, on the poster boards in the classroom, on books in the classroom etc.) or I placed books or other visual in front of the student(s) and asked the student(s) to find the number we were learning. We didn't have any allergies so the child was given an M&M each time the correct number was identified.

I have numbers 1 - 20, letters Aa - Zz and an awesome daily "morning worksheet" that was used to teach number identification and formation as well as letter identification, sound and formation.

Tags: Manuscript writing, Numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, writing numbers, learning numerals, how to write numbers, reading writing learners, memorizing numbers, learning to count, counting, pre-math skills, handwriting, online learning, distance learning, worksheets for home, Homework, Preschool worksheets, kindergarten worksheets.

Questions & Answers

Mrs penningtons preschool.

  • We're hiring
  • Help & FAQ
  • Privacy policy
  • Student privacy
  • Terms of service
  • Tell us what you think

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

1-7 The Distributive Property

The Distributive Property - worksheet with answers

Here is your free content for this lesson!

The Distributive Property - Word Docs & PowerPoint

1-7 Assignment - The Distributive Property 1-7 Bell Work - The Distributive Property 1-7 Exit Quiz - The Distributive Property 1-7 Guide Notes SE - The Distributive Property 1-7 Guide Notes TE - The Distributive Property 1-7 Lesson Plan - The Distributive Property 1-7 Online Activities - The Distributive Property 1-7 Slide Show - The Distributive Property

The Distributive Property - PDFs

Want access to our full algebra 1 curriculum .

Simply click the image below to GET ALL OF OUR LESSONS!

Algebra 1 Curriculum

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Tumblr (Opens in new window)

1.1 Real Numbers: Algebra Essentials

Learning objectives.

In this section, you will:

  • Classify a real number as a natural, whole, integer, rational, or irrational number.
  • Perform calculations using order of operations.
  • Use the following properties of real numbers: commutative, associative, distributive, inverse, and identity.
  • Evaluate algebraic expressions.
  • Simplify algebraic expressions.

It is often said that mathematics is the language of science. If this is true, then an essential part of the language of mathematics is numbers. The earliest use of numbers occurred 100 centuries ago in the Middle East to count, or enumerate items. Farmers, cattle herders, and traders used tokens, stones, or markers to signify a single quantity—a sheaf of grain, a head of livestock, or a fixed length of cloth, for example. Doing so made commerce possible, leading to improved communications and the spread of civilization.

Three to four thousand years ago, Egyptians introduced fractions. They first used them to show reciprocals. Later, they used them to represent the amount when a quantity was divided into equal parts.

But what if there were no cattle to trade or an entire crop of grain was lost in a flood? How could someone indicate the existence of nothing? From earliest times, people had thought of a “base state” while counting and used various symbols to represent this null condition. However, it was not until about the fifth century CE in India that zero was added to the number system and used as a numeral in calculations.

Clearly, there was also a need for numbers to represent loss or debt. In India, in the seventh century CE, negative numbers were used as solutions to mathematical equations and commercial debts. The opposites of the counting numbers expanded the number system even further.

Because of the evolution of the number system, we can now perform complex calculations using these and other categories of real numbers. In this section, we will explore sets of numbers, calculations with different kinds of numbers, and the use of numbers in expressions.

Classifying a Real Number

The numbers we use for counting, or enumerating items, are the natural numbers : 1, 2, 3, 4, 5, and so on. We describe them in set notation as { 1 , 2 , 3 , ... } { 1 , 2 , 3 , ... } where the ellipsis (…) indicates that the numbers continue to infinity. The natural numbers are, of course, also called the counting numbers . Any time we enumerate the members of a team, count the coins in a collection, or tally the trees in a grove, we are using the set of natural numbers. The set of whole numbers is the set of natural numbers plus zero: { 0 , 1 , 2 , 3 , ... } . { 0 , 1 , 2 , 3 , ... } .

The set of integers adds the opposites of the natural numbers to the set of whole numbers: { ... , −3 , −2 , −1 , 0 , 1 , 2 , 3 , ... } . { ... , −3 , −2 , −1 , 0 , 1 , 2 , 3 , ... } . It is useful to note that the set of integers is made up of three distinct subsets: negative integers, zero, and positive integers. In this sense, the positive integers are just the natural numbers. Another way to think about it is that the natural numbers are a subset of the integers.

The set of rational numbers is written as { m n | m and  n are integers and  n ≠ 0 } . { m n | m and  n are integers and  n ≠ 0 } . Notice from the definition that rational numbers are fractions (or quotients) containing integers in both the numerator and the denominator, and the denominator is never 0. We can also see that every natural number, whole number, and integer is a rational number with a denominator of 1.

Because they are fractions, any rational number can also be expressed as a terminating or repeating decimal. Any rational number can be represented as either:

  • ⓐ a terminating decimal: 15 8 = 1.875 , 15 8 = 1.875 , or
  • ⓑ a repeating decimal: 4 11 = 0.36363636 … = 0. 36 ¯ 4 11 = 0.36363636 … = 0. 36 ¯

We use a line drawn over the repeating block of numbers instead of writing the group multiple times.

Writing Integers as Rational Numbers

Write each of the following as a rational number.

Write a fraction with the integer in the numerator and 1 in the denominator.

  • ⓐ 7 = 7 1 7 = 7 1
  • ⓑ 0 = 0 1 0 = 0 1
  • ⓒ −8 = − 8 1 −8 = − 8 1

Identifying Rational Numbers

Write each of the following rational numbers as either a terminating or repeating decimal.

  • ⓐ − 5 7 − 5 7
  • ⓑ 15 5 15 5
  • ⓒ 13 25 13 25

Write each fraction as a decimal by dividing the numerator by the denominator.

  • ⓐ − 5 7 = −0. 714285 ——— , − 5 7 = −0. 714285 ——— , a repeating decimal
  • ⓑ 15 5 = 3 15 5 = 3 (or 3.0), a terminating decimal
  • ⓒ 13 25 = 0.52 , 13 25 = 0.52 , a terminating decimal
  • ⓐ 68 17 68 17
  • ⓑ 8 13 8 13
  • ⓒ − 17 20 − 17 20

Irrational Numbers

At some point in the ancient past, someone discovered that not all numbers are rational numbers. A builder, for instance, may have found that the diagonal of a square with unit sides was not 2 or even 3 2 , 3 2 , but was something else. Or a garment maker might have observed that the ratio of the circumference to the diameter of a roll of cloth was a little bit more than 3, but still not a rational number. Such numbers are said to be irrational because they cannot be written as fractions. These numbers make up the set of irrational numbers . Irrational numbers cannot be expressed as a fraction of two integers. It is impossible to describe this set of numbers by a single rule except to say that a number is irrational if it is not rational. So we write this as shown.

Differentiating Rational and Irrational Numbers

Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is a terminating or repeating decimal.

  • ⓑ 33 9 33 9
  • ⓓ 17 34 17 34
  • ⓔ 0.3033033303333 … 0.3033033303333 …
  • ⓐ 25 : 25 : This can be simplified as 25 = 5. 25 = 5. Therefore, 25 25 is rational.

So, 33 9 33 9 is rational and a repeating decimal.

  • ⓒ 11 : 11 11 : 11 is irrational because 11 is not a perfect square and 11 11 cannot be expressed as a fraction.

So, 17 34 17 34 is rational and a terminating decimal.

  • ⓔ 0.3033033303333 … 0.3033033303333 … is not a terminating decimal. Also note that there is no repeating pattern because the group of 3s increases each time. Therefore it is neither a terminating nor a repeating decimal and, hence, not a rational number. It is an irrational number.
  • ⓐ 7 77 7 77
  • ⓒ 4.27027002700027 … 4.27027002700027 …
  • ⓓ 91 13 91 13

Real Numbers

Given any number n , we know that n is either rational or irrational. It cannot be both. The sets of rational and irrational numbers together make up the set of real numbers . As we saw with integers, the real numbers can be divided into three subsets: negative real numbers, zero, and positive real numbers. Each subset includes fractions, decimals, and irrational numbers according to their algebraic sign (+ or –). Zero is considered neither positive nor negative.

The real numbers can be visualized on a horizontal number line with an arbitrary point chosen as 0, with negative numbers to the left of 0 and positive numbers to the right of 0. A fixed unit distance is then used to mark off each integer (or other basic value) on either side of 0. Any real number corresponds to a unique position on the number line.The converse is also true: Each location on the number line corresponds to exactly one real number. This is known as a one-to-one correspondence. We refer to this as the real number line as shown in Figure 1 .

Classifying Real Numbers

Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the left or the right of 0 on the number line?

  • ⓐ − 10 3 − 10 3
  • ⓒ − 289 − 289
  • ⓓ −6 π −6 π
  • ⓔ 0.615384615384 … 0.615384615384 …
  • ⓐ − 10 3 − 10 3 is negative and rational. It lies to the left of 0 on the number line.
  • ⓑ 5 5 is positive and irrational. It lies to the right of 0.
  • ⓒ − 289 = − 17 2 = −17 − 289 = − 17 2 = −17 is negative and rational. It lies to the left of 0.
  • ⓓ −6 π −6 π is negative and irrational. It lies to the left of 0.
  • ⓔ 0.615384615384 … 0.615384615384 … is a repeating decimal so it is rational and positive. It lies to the right of 0.
  • ⓑ −11.411411411 … −11.411411411 …
  • ⓒ 47 19 47 19
  • ⓓ − 5 2 − 5 2
  • ⓔ 6.210735 6.210735

Sets of Numbers as Subsets

Beginning with the natural numbers, we have expanded each set to form a larger set, meaning that there is a subset relationship between the sets of numbers we have encountered so far. These relationships become more obvious when seen as a diagram, such as Figure 2 .

Sets of Numbers

The set of natural numbers includes the numbers used for counting: { 1 , 2 , 3 , ... } . { 1 , 2 , 3 , ... } .

The set of whole numbers is the set of natural numbers plus zero: { 0 , 1 , 2 , 3 , ... } . { 0 , 1 , 2 , 3 , ... } .

The set of integers adds the negative natural numbers to the set of whole numbers: { ... , −3 , −2 , −1 , 0 , 1 , 2 , 3 , ... } . { ... , −3 , −2 , −1 , 0 , 1 , 2 , 3 , ... } .

The set of rational numbers includes fractions written as { m n | m and  n are integers and  n ≠ 0 } . { m n | m and  n are integers and  n ≠ 0 } .

The set of irrational numbers is the set of numbers that are not rational, are nonrepeating, and are nonterminating: { h | h is not a rational number } . { h | h is not a rational number } .

Differentiating the Sets of Numbers

Classify each number as being a natural number ( N ), whole number ( W ), integer ( I ), rational number ( Q ), and/or irrational number ( Q′ ).

  • ⓔ 3.2121121112 … 3.2121121112 …
  • ⓐ − 35 7 − 35 7
  • ⓔ 4.763763763 … 4.763763763 …

Performing Calculations Using the Order of Operations

When we multiply a number by itself, we square it or raise it to a power of 2. For example, 4 2 = 4 ⋅ 4 = 16. 4 2 = 4 ⋅ 4 = 16. We can raise any number to any power. In general, the exponential notation a n a n means that the number or variable a a is used as a factor n n times.

In this notation, a n a n is read as the n th power of a , a , or a a to the n n where a a is called the base and n n is called the exponent . A term in exponential notation may be part of a mathematical expression, which is a combination of numbers and operations. For example, 24 + 6 ⋅ 2 3 − 4 2 24 + 6 ⋅ 2 3 − 4 2 is a mathematical expression.

To evaluate a mathematical expression, we perform the various operations. However, we do not perform them in any random order. We use the order of operations . This is a sequence of rules for evaluating such expressions.

Recall that in mathematics we use parentheses ( ), brackets [ ], and braces { } to group numbers and expressions so that anything appearing within the symbols is treated as a unit. Additionally, fraction bars, radicals, and absolute value bars are treated as grouping symbols. When evaluating a mathematical expression, begin by simplifying expressions within grouping symbols.

The next step is to address any exponents or radicals. Afterward, perform multiplication and division from left to right and finally addition and subtraction from left to right.

Let’s take a look at the expression provided.

There are no grouping symbols, so we move on to exponents or radicals. The number 4 is raised to a power of 2, so simplify 4 2 4 2 as 16.

Next, perform multiplication or division, left to right.

Lastly, perform addition or subtraction, left to right.

Therefore, 24 + 6 ⋅ 2 3 − 4 2 = 12. 24 + 6 ⋅ 2 3 − 4 2 = 12.

For some complicated expressions, several passes through the order of operations will be needed. For instance, there may be a radical expression inside parentheses that must be simplified before the parentheses are evaluated. Following the order of operations ensures that anyone simplifying the same mathematical expression will get the same result.

Order of Operations

Operations in mathematical expressions must be evaluated in a systematic order, which can be simplified using the acronym PEMDAS :

P (arentheses) E (xponents) M (ultiplication) and D (ivision) A (ddition) and S (ubtraction)

Given a mathematical expression, simplify it using the order of operations.

  • Step 1. Simplify any expressions within grouping symbols.
  • Step 2. Simplify any expressions containing exponents or radicals.
  • Step 3. Perform any multiplication and division in order, from left to right.
  • Step 4. Perform any addition and subtraction in order, from left to right.

Using the Order of Operations

Use the order of operations to evaluate each of the following expressions.

  • ⓐ ( 3 ⋅ 2 ) 2 − 4 ( 6 + 2 ) ( 3 ⋅ 2 ) 2 − 4 ( 6 + 2 )
  • ⓑ 5 2 − 4 7 − 11 − 2 5 2 − 4 7 − 11 − 2
  • ⓒ 6 − | 5 − 8 | + 3 ( 4 − 1 ) 6 − | 5 − 8 | + 3 ( 4 − 1 )
  • ⓓ 14 − 3 ⋅ 2 2 ⋅ 5 − 3 2 14 − 3 ⋅ 2 2 ⋅ 5 − 3 2
  • ⓔ 7 ( 5 ⋅ 3 ) − 2 [ ( 6 − 3 ) − 4 2 ] + 1 7 ( 5 ⋅ 3 ) − 2 [ ( 6 − 3 ) − 4 2 ] + 1
  • ⓐ ( 3 ⋅ 2 ) 2 − 4 ( 6 + 2 ) = ( 6 ) 2 − 4 ( 8 ) Simplify parentheses. = 36 − 4 ( 8 ) Simplify exponent. = 36 − 32 Simplify multiplication. = 4 Simplify subtraction. ( 3 ⋅ 2 ) 2 − 4 ( 6 + 2 ) = ( 6 ) 2 − 4 ( 8 ) Simplify parentheses. = 36 − 4 ( 8 ) Simplify exponent. = 36 − 32 Simplify multiplication. = 4 Simplify subtraction.

Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

  • ⓒ 6 − | 5 − 8 | + 3 | 4 − 1 | = 6 − | −3 | + 3 ( 3 ) Simplify inside grouping symbols. = 6 - ( 3 ) + 3 ( 3 ) Simplify absolute value. = 6 - 3 + 9 Simplify multiplication. = 12 Simplify addition. 6 − | 5 − 8 | + 3 | 4 − 1 | = 6 − | −3 | + 3 ( 3 ) Simplify inside grouping symbols. = 6 - ( 3 ) + 3 ( 3 ) Simplify absolute value. = 6 - 3 + 9 Simplify multiplication. = 12 Simplify addition.

In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the last step.

  • ⓔ 7 ( 5 ⋅ 3 ) − 2 [ ( 6 − 3 ) − 4 2 ] + 1 = 7 ( 15 ) − 2 [ ( 3 ) − 4 2 ] + 1 Simplify inside parentheses. = 7 ( 15 ) − 2 ( 3 − 16 ) + 1 Simplify exponent. = 7 ( 15 ) − 2 ( −13 ) + 1 Subtract. = 105 + 26 + 1 Multiply. = 132 Add. 7 ( 5 ⋅ 3 ) − 2 [ ( 6 − 3 ) − 4 2 ] + 1 = 7 ( 15 ) − 2 [ ( 3 ) − 4 2 ] + 1 Simplify inside parentheses. = 7 ( 15 ) − 2 ( 3 − 16 ) + 1 Simplify exponent. = 7 ( 15 ) − 2 ( −13 ) + 1 Subtract. = 105 + 26 + 1 Multiply. = 132 Add.
  • ⓐ 5 2 − 4 2 + 7 ( 5 − 4 ) 2 5 2 − 4 2 + 7 ( 5 − 4 ) 2
  • ⓑ 1 + 7 ⋅ 5 − 8 ⋅ 4 9 − 6 1 + 7 ⋅ 5 − 8 ⋅ 4 9 − 6
  • ⓒ | 1.8 − 4.3 | + 0.4 15 + 10 | 1.8 − 4.3 | + 0.4 15 + 10
  • ⓓ 1 2 [ 5 ⋅ 3 2 − 7 2 ] + 1 3 ⋅ 9 2 1 2 [ 5 ⋅ 3 2 − 7 2 ] + 1 3 ⋅ 9 2
  • ⓔ [ ( 3 − 8 ) 2 − 4 ] − ( 3 − 8 ) [ ( 3 − 8 ) 2 − 4 ] − ( 3 − 8 )

Using Properties of Real Numbers

For some activities we perform, the order of certain operations does not matter, but the order of other operations does. For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative Properties

The commutative property of addition states that numbers may be added in any order without affecting the sum.

We can better see this relationship when using real numbers.

Similarly, the commutative property of multiplication states that numbers may be multiplied in any order without affecting the product.

Again, consider an example with real numbers.

It is important to note that neither subtraction nor division is commutative. For example, 17 − 5 17 − 5 is not the same as 5 − 17. 5 − 17. Similarly, 20 ÷ 5 ≠ 5 ÷ 20. 20 ÷ 5 ≠ 5 ÷ 20.

Associative Properties

The associative property of multiplication tells us that it does not matter how we group numbers when multiplying. We can move the grouping symbols to make the calculation easier, and the product remains the same.

Consider this example.

The associative property of addition tells us that numbers may be grouped differently without affecting the sum.

This property can be especially helpful when dealing with negative integers. Consider this example.

Are subtraction and division associative? Review these examples.

As we can see, neither subtraction nor division is associative.

Distributive Property

The distributive property states that the product of a factor times a sum is the sum of the factor times each term in the sum.

This property combines both addition and multiplication (and is the only property to do so). Let us consider an example.

Note that 4 is outside the grouping symbols, so we distribute the 4 by multiplying it by 12, multiplying it by –7, and adding the products.

To be more precise when describing this property, we say that multiplication distributes over addition. The reverse is not true, as we can see in this example.

A special case of the distributive property occurs when a sum of terms is subtracted.

For example, consider the difference 12 − ( 5 + 3 ) . 12 − ( 5 + 3 ) . We can rewrite the difference of the two terms 12 and ( 5 + 3 ) ( 5 + 3 ) by turning the subtraction expression into addition of the opposite. So instead of subtracting ( 5 + 3 ) , ( 5 + 3 ) , we add the opposite.

Now, distribute −1 −1 and simplify the result.

This seems like a lot of trouble for a simple sum, but it illustrates a powerful result that will be useful once we introduce algebraic terms. To subtract a sum of terms, change the sign of each term and add the results. With this in mind, we can rewrite the last example.

Identity Properties

The identity property of addition states that there is a unique number, called the additive identity (0) that, when added to a number, results in the original number.

The identity property of multiplication states that there is a unique number, called the multiplicative identity (1) that, when multiplied by a number, results in the original number.

For example, we have ( −6 ) + 0 = −6 ( −6 ) + 0 = −6 and 23 ⋅ 1 = 23. 23 ⋅ 1 = 23. There are no exceptions for these properties; they work for every real number, including 0 and 1.

Inverse Properties

The inverse property of addition states that, for every real number a , there is a unique number, called the additive inverse (or opposite), denoted by (− a ), that, when added to the original number, results in the additive identity, 0.

For example, if a = −8 , a = −8 , the additive inverse is 8, since ( −8 ) + 8 = 0. ( −8 ) + 8 = 0.

The inverse property of multiplication holds for all real numbers except 0 because the reciprocal of 0 is not defined. The property states that, for every real number a , there is a unique number, called the multiplicative inverse (or reciprocal), denoted 1 a , 1 a , that, when multiplied by the original number, results in the multiplicative identity, 1.

For example, if a = − 2 3 , a = − 2 3 , the reciprocal, denoted 1 a , 1 a , is − 3 2 − 3 2 because

Properties of Real Numbers

The following properties hold for real numbers a , b , and c .

Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

  • ⓐ 3 ⋅ 6 + 3 ⋅ 4 3 ⋅ 6 + 3 ⋅ 4
  • ⓑ ( 5 + 8 ) + ( −8 ) ( 5 + 8 ) + ( −8 )
  • ⓒ 6 − ( 15 + 9 ) 6 − ( 15 + 9 )
  • ⓓ 4 7 ⋅ ( 2 3 ⋅ 7 4 ) 4 7 ⋅ ( 2 3 ⋅ 7 4 )
  • ⓔ 100 ⋅ [ 0.75 + ( −2.38 ) ] 100 ⋅ [ 0.75 + ( −2.38 ) ]
  • ⓐ 3 ⋅ 6 + 3 ⋅ 4 = 3 ⋅ ( 6 + 4 ) Distributive property. = 3 ⋅ 10 Simplify. = 30 Simplify. 3 ⋅ 6 + 3 ⋅ 4 = 3 ⋅ ( 6 + 4 ) Distributive property. = 3 ⋅ 10 Simplify. = 30 Simplify.
  • ⓑ ( 5 + 8 ) + ( −8 ) = 5 + [ 8 + ( −8 ) ] Associative property of addition. = 5 + 0 Inverse property of addition. = 5 Identity property of addition. ( 5 + 8 ) + ( −8 ) = 5 + [ 8 + ( −8 ) ] Associative property of addition. = 5 + 0 Inverse property of addition. = 5 Identity property of addition.
  • ⓒ 6 − ( 15 + 9 ) = 6 + [ ( −15 ) + ( −9 ) ] Distributive property. = 6 + ( −24 ) Simplify. = −18 Simplify. 6 − ( 15 + 9 ) = 6 + [ ( −15 ) + ( −9 ) ] Distributive property. = 6 + ( −24 ) Simplify. = −18 Simplify.
  • ⓓ 4 7 ⋅ ( 2 3 ⋅ 7 4 ) = 4 7 ⋅ ( 7 4 ⋅ 2 3 ) Commutative property of multiplication. = ( 4 7 ⋅ 7 4 ) ⋅ 2 3 Associative property of multiplication. = 1 ⋅ 2 3 Inverse property of multiplication. = 2 3 Identity property of multiplication. 4 7 ⋅ ( 2 3 ⋅ 7 4 ) = 4 7 ⋅ ( 7 4 ⋅ 2 3 ) Commutative property of multiplication. = ( 4 7 ⋅ 7 4 ) ⋅ 2 3 Associative property of multiplication. = 1 ⋅ 2 3 Inverse property of multiplication. = 2 3 Identity property of multiplication.
  • ⓔ 100 ⋅ [ 0.75 + ( − 2.38 ) ] = 100 ⋅ 0.75 + 100 ⋅ ( −2.38 ) Distributive property. = 75 + ( −238 ) Simplify. = −163 Simplify. 100 ⋅ [ 0.75 + ( − 2.38 ) ] = 100 ⋅ 0.75 + 100 ⋅ ( −2.38 ) Distributive property. = 75 + ( −238 ) Simplify. = −163 Simplify.
  • ⓐ ( − 23 5 ) ⋅ [ 11 ⋅ ( − 5 23 ) ] ( − 23 5 ) ⋅ [ 11 ⋅ ( − 5 23 ) ]
  • ⓑ 5 ⋅ ( 6.2 + 0.4 ) 5 ⋅ ( 6.2 + 0.4 )
  • ⓒ 18 − ( 7 −15 ) 18 − ( 7 −15 )
  • ⓓ 17 18 + [ 4 9 + ( − 17 18 ) ] 17 18 + [ 4 9 + ( − 17 18 ) ]
  • ⓔ 6 ⋅ ( −3 ) + 6 ⋅ 3 6 ⋅ ( −3 ) + 6 ⋅ 3

Evaluating Algebraic Expressions

So far, the mathematical expressions we have seen have involved real numbers only. In mathematics, we may see expressions such as x + 5 , 4 3 π r 3 , x + 5 , 4 3 π r 3 , or 2 m 3 n 2 . 2 m 3 n 2 . In the expression x + 5 , x + 5 , 5 is called a constant because it does not vary and x is called a variable because it does. (In naming the variable, ignore any exponents or radicals containing the variable.) An algebraic expression is a collection of constants and variables joined together by the algebraic operations of addition, subtraction, multiplication, and division.

We have already seen some real number examples of exponential notation, a shorthand method of writing products of the same factor. When variables are used, the constants and variables are treated the same way.

In each case, the exponent tells us how many factors of the base to use, whether the base consists of constants or variables.

Any variable in an algebraic expression may take on or be assigned different values. When that happens, the value of the algebraic expression changes. To evaluate an algebraic expression means to determine the value of the expression for a given value of each variable in the expression. Replace each variable in the expression with the given value, then simplify the resulting expression using the order of operations. If the algebraic expression contains more than one variable, replace each variable with its assigned value and simplify the expression as before.

Describing Algebraic Expressions

List the constants and variables for each algebraic expression.

  • ⓑ 4 3 π r 3 4 3 π r 3
  • ⓒ 2 m 3 n 2 2 m 3 n 2
  • ⓐ 2 π r ( r + h ) 2 π r ( r + h )
  • ⓑ 2( L + W )
  • ⓒ 4 y 3 + y 4 y 3 + y

Evaluating an Algebraic Expression at Different Values

Evaluate the expression 2 x − 7 2 x − 7 for each value for x.

  • ⓐ x = 0 x = 0
  • ⓑ x = 1 x = 1
  • ⓒ x = 1 2 x = 1 2
  • ⓓ x = −4 x = −4
  • ⓐ Substitute 0 for x . x . 2 x − 7 = 2 ( 0 ) − 7 = 0 − 7 = −7 2 x − 7 = 2 ( 0 ) − 7 = 0 − 7 = −7
  • ⓑ Substitute 1 for x . x . 2 x − 7 = 2 ( 1 ) − 7 = 2 − 7 = −5 2 x − 7 = 2 ( 1 ) − 7 = 2 − 7 = −5
  • ⓒ Substitute 1 2 1 2 for x . x . 2 x − 7 = 2 ( 1 2 ) − 7 = 1 − 7 = −6 2 x − 7 = 2 ( 1 2 ) − 7 = 1 − 7 = −6
  • ⓓ Substitute −4 −4 for x . x . 2 x − 7 = 2 ( − 4 ) − 7 = − 8 − 7 = −15 2 x − 7 = 2 ( − 4 ) − 7 = − 8 − 7 = −15

Evaluate the expression 11 − 3 y 11 − 3 y for each value for y.

  • ⓐ y = 2 y = 2
  • ⓑ y = 0 y = 0
  • ⓒ y = 2 3 y = 2 3
  • ⓓ y = −5 y = −5

Evaluate each expression for the given values.

  • ⓐ x + 5 x + 5 for x = −5 x = −5
  • ⓑ t 2 t −1 t 2 t −1 for t = 10 t = 10
  • ⓒ 4 3 π r 3 4 3 π r 3 for r = 5 r = 5
  • ⓓ a + a b + b a + a b + b for a = 11 , b = −8 a = 11 , b = −8
  • ⓔ 2 m 3 n 2 2 m 3 n 2 for m = 2 , n = 3 m = 2 , n = 3
  • ⓐ Substitute −5 −5 for x . x . x + 5 = ( −5 ) + 5 = 0 x + 5 = ( −5 ) + 5 = 0
  • ⓑ Substitute 10 for t . t . t 2 t − 1 = ( 10 ) 2 ( 10 ) − 1 = 10 20 − 1 = 10 19 t 2 t − 1 = ( 10 ) 2 ( 10 ) − 1 = 10 20 − 1 = 10 19
  • ⓒ Substitute 5 for r . r . 4 3 π r 3 = 4 3 π ( 5 ) 3 = 4 3 π ( 125 ) = 500 3 π 4 3 π r 3 = 4 3 π ( 5 ) 3 = 4 3 π ( 125 ) = 500 3 π
  • ⓓ Substitute 11 for a a and –8 for b . b . a + a b + b = ( 11 ) + ( 11 ) ( −8 ) + ( −8 ) = 11 − 88 − 8 = −85 a + a b + b = ( 11 ) + ( 11 ) ( −8 ) + ( −8 ) = 11 − 88 − 8 = −85
  • ⓔ Substitute 2 for m m and 3 for n . n . 2 m 3 n 2 = 2 ( 2 ) 3 ( 3 ) 2 = 2 ( 8 ) ( 9 ) = 144 = 12 2 m 3 n 2 = 2 ( 2 ) 3 ( 3 ) 2 = 2 ( 8 ) ( 9 ) = 144 = 12
  • ⓐ y + 3 y − 3 y + 3 y − 3 for y = 5 y = 5
  • ⓑ 7 − 2 t 7 − 2 t for t = −2 t = −2
  • ⓒ 1 3 π r 2 1 3 π r 2 for r = 11 r = 11
  • ⓓ ( p 2 q ) 3 ( p 2 q ) 3 for p = −2 , q = 3 p = −2 , q = 3
  • ⓔ 4 ( m − n ) − 5 ( n − m ) 4 ( m − n ) − 5 ( n − m ) for m = 2 3 , n = 1 3 m = 2 3 , n = 1 3

An equation is a mathematical statement indicating that two expressions are equal. The expressions can be numerical or algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation true, the solutions, are found using the properties of real numbers and other results. For example, the equation 2 x + 1 = 7 2 x + 1 = 7 has the solution of 3 because when we substitute 3 for x x in the equation, we obtain the true statement 2 ( 3 ) + 1 = 7. 2 ( 3 ) + 1 = 7.

A formula is an equation expressing a relationship between constant and variable quantities. Very often, the equation is a means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One of the most common examples is the formula for finding the area A A of a circle in terms of the radius r r of the circle: A = π r 2 . A = π r 2 . For any value of r , r , the area A A can be found by evaluating the expression π r 2 . π r 2 .

Using a Formula

A right circular cylinder with radius r r and height h h has the surface area S S (in square units) given by the formula S = 2 π r ( r + h ) . S = 2 π r ( r + h ) . See Figure 3 . Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the answer in terms of π . π .

Evaluate the expression 2 π r ( r + h ) 2 π r ( r + h ) for r = 6 r = 6 and h = 9. h = 9.

The surface area is 180 π 180 π square inches.

A photograph with length L and width W is placed in a mat of width 8 centimeters (cm). The area of the mat (in square centimeters, or cm 2 ) is found to be A = ( L + 16 ) ( W + 16 ) − L ⋅ W . A = ( L + 16 ) ( W + 16 ) − L ⋅ W . See Figure 4 . Find the area of a mat for a photograph with length 32 cm and width 24 cm.

Simplifying Algebraic Expressions

Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do so, we use the properties of real numbers. We can use the same properties in formulas because they contain algebraic expressions.

Simplify each algebraic expression.

  • ⓐ 3 x − 2 y + x − 3 y − 7 3 x − 2 y + x − 3 y − 7
  • ⓑ 2 r − 5 ( 3 − r ) + 4 2 r − 5 ( 3 − r ) + 4
  • ⓒ ( 4 t − 5 4 s ) − ( 2 3 t + 2 s ) ( 4 t − 5 4 s ) − ( 2 3 t + 2 s )
  • ⓓ 2 m n − 5 m + 3 m n + n 2 m n − 5 m + 3 m n + n
  • ⓐ 3 x − 2 y + x − 3 y − 7 = 3 x + x − 2 y − 3 y − 7 Commutative property of addition. = 4 x − 5 y − 7 Simplify. 3 x − 2 y + x − 3 y − 7 = 3 x + x − 2 y − 3 y − 7 Commutative property of addition. = 4 x − 5 y − 7 Simplify.
  • ⓑ 2 r − 5 ( 3 − r ) + 4 = 2 r − 15 + 5 r + 4 Distributive property. = 2 r + 5 r − 15 + 4 Commutative property of addition. = 7 r − 11 Simplify. 2 r − 5 ( 3 − r ) + 4 = 2 r − 15 + 5 r + 4 Distributive property. = 2 r + 5 r − 15 + 4 Commutative property of addition. = 7 r − 11 Simplify.
  • ⓒ ( 4 t − 5 4 s ) − ( 2 3 t + 2 s ) = 4 t − 5 4 s − 2 3 t − 2 s Distributive property. = 4 t − 2 3 t − 5 4 s − 2 s Commutative property of addition. = 10 3 t − 13 4 s Simplify. ( 4 t − 5 4 s ) − ( 2 3 t + 2 s ) = 4 t − 5 4 s − 2 3 t − 2 s Distributive property. = 4 t − 2 3 t − 5 4 s − 2 s Commutative property of addition. = 10 3 t − 13 4 s Simplify.
  • ⓓ 2 m n − 5 m + 3 m n + n = 2 m n + 3 m n − 5 m + n Commutative property of addition. = 5 m n − 5 m + n Simplify. 2 m n − 5 m + 3 m n + n = 2 m n + 3 m n − 5 m + n Commutative property of addition. = 5 m n − 5 m + n Simplify.
  • ⓐ 2 3 y − 2 ( 4 3 y + z ) 2 3 y − 2 ( 4 3 y + z )
  • ⓑ 5 t − 2 − 3 t + 1 5 t − 2 − 3 t + 1
  • ⓒ 4 p ( q − 1 ) + q ( 1 − p ) 4 p ( q − 1 ) + q ( 1 − p )
  • ⓓ 9 r − ( s + 2 r ) + ( 6 − s ) 9 r − ( s + 2 r ) + ( 6 − s )

Simplifying a Formula

A rectangle with length L L and width W W has a perimeter P P given by P = L + W + L + W . P = L + W + L + W . Simplify this expression.

If the amount P P is deposited into an account paying simple interest r r for time t , t , the total value of the deposit A A is given by A = P + P r t . A = P + P r t . Simplify the expression. (This formula will be explored in more detail later in the course.)

Access these online resources for additional instruction and practice with real numbers.

  • Simplify an Expression.
  • Evaluate an Expression 1.
  • Evaluate an Expression 2.

1.1 Section Exercises

Is 2 2 an example of a rational terminating, rational repeating, or irrational number? Tell why it fits that category.

What is the order of operations? What acronym is used to describe the order of operations, and what does it stand for?

What do the Associative Properties allow us to do when following the order of operations? Explain your answer.

For the following exercises, simplify the given expression.

10 + 2 × ( 5 − 3 ) 10 + 2 × ( 5 − 3 )

6 ÷ 2 − ( 81 ÷ 3 2 ) 6 ÷ 2 − ( 81 ÷ 3 2 )

18 + ( 6 − 8 ) 3 18 + ( 6 − 8 ) 3

−2 × [ 16 ÷ ( 8 − 4 ) 2 ] 2 −2 × [ 16 ÷ ( 8 − 4 ) 2 ] 2

4 − 6 + 2 × 7 4 − 6 + 2 × 7

3 ( 5 − 8 ) 3 ( 5 − 8 )

4 + 6 − 10 ÷ 2 4 + 6 − 10 ÷ 2

12 ÷ ( 36 ÷ 9 ) + 6 12 ÷ ( 36 ÷ 9 ) + 6

( 4 + 5 ) 2 ÷ 3 ( 4 + 5 ) 2 ÷ 3

3 − 12 × 2 + 19 3 − 12 × 2 + 19

2 + 8 × 7 ÷ 4 2 + 8 × 7 ÷ 4

5 + ( 6 + 4 ) − 11 5 + ( 6 + 4 ) − 11

9 − 18 ÷ 3 2 9 − 18 ÷ 3 2

14 × 3 ÷ 7 − 6 14 × 3 ÷ 7 − 6

9 − ( 3 + 11 ) × 2 9 − ( 3 + 11 ) × 2

6 + 2 × 2 − 1 6 + 2 × 2 − 1

64 ÷ ( 8 + 4 × 2 ) 64 ÷ ( 8 + 4 × 2 )

9 + 4 ( 2 2 ) 9 + 4 ( 2 2 )

( 12 ÷ 3 × 3 ) 2 ( 12 ÷ 3 × 3 ) 2

25 ÷ 5 2 − 7 25 ÷ 5 2 − 7

( 15 − 7 ) × ( 3 − 7 ) ( 15 − 7 ) × ( 3 − 7 )

2 × 4 − 9 ( −1 ) 2 × 4 − 9 ( −1 )

4 2 − 25 × 1 5 4 2 − 25 × 1 5

12 ( 3 − 1 ) ÷ 6 12 ( 3 − 1 ) ÷ 6

For the following exercises, evaluate the expression using the given value of the variable.

8 ( x + 3 ) – 64 8 ( x + 3 ) – 64 for x = 2 x = 2

4 y + 8 – 2 y 4 y + 8 – 2 y for y = 3 y = 3

( 11 a + 3 ) − 18 a + 4 ( 11 a + 3 ) − 18 a + 4 for a = –2 a = –2

4 z − 2 z ( 1 + 4 ) – 36 4 z − 2 z ( 1 + 4 ) – 36 for z = 5 z = 5

4 y ( 7 − 2 ) 2 + 200 4 y ( 7 − 2 ) 2 + 200 for y = –2 y = –2

− ( 2 x ) 2 + 1 + 3 − ( 2 x ) 2 + 1 + 3 for x = 2 x = 2

For the 8 ( 2 + 4 ) − 15 b + b 8 ( 2 + 4 ) − 15 b + b for b = –3 b = –3

2 ( 11 c − 4 ) – 36 2 ( 11 c − 4 ) – 36 for c = 0 c = 0

4 ( 3 − 1 ) x – 4 4 ( 3 − 1 ) x – 4 for x = 10 x = 10

1 4 ( 8 w − 4 2 ) 1 4 ( 8 w − 4 2 ) for w = 1 w = 1

For the following exercises, simplify the expression.

4 x + x ( 13 − 7 ) 4 x + x ( 13 − 7 )

2 y − ( 4 ) 2 y − 11 2 y − ( 4 ) 2 y − 11

a 2 3 ( 64 ) − 12 a ÷ 6 a 2 3 ( 64 ) − 12 a ÷ 6

8 b − 4 b ( 3 ) + 1 8 b − 4 b ( 3 ) + 1

5 l ÷ 3 l × ( 9 − 6 ) 5 l ÷ 3 l × ( 9 − 6 )

7 z − 3 + z × 6 2 7 z − 3 + z × 6 2

4 × 3 + 18 x ÷ 9 − 12 4 × 3 + 18 x ÷ 9 − 12

9 ( y + 8 ) − 27 9 ( y + 8 ) − 27

( 9 6 t − 4 ) 2 ( 9 6 t − 4 ) 2

6 + 12 b − 3 × 6 b 6 + 12 b − 3 × 6 b

18 y − 2 ( 1 + 7 y ) 18 y − 2 ( 1 + 7 y )

( 4 9 ) 2 × 27 x ( 4 9 ) 2 × 27 x

8 ( 3 − m ) + 1 ( − 8 ) 8 ( 3 − m ) + 1 ( − 8 )

9 x + 4 x ( 2 + 3 ) − 4 ( 2 x + 3 x ) 9 x + 4 x ( 2 + 3 ) − 4 ( 2 x + 3 x )

5 2 − 4 ( 3 x ) 5 2 − 4 ( 3 x )

Real-World Applications

For the following exercises, consider this scenario: Fred earns $40 at the community garden. He spends $10 on a streaming subscription, puts half of what is left in a savings account, and gets another $5 for walking his neighbor’s dog.

Write the expression that represents the number of dollars Fred keeps (and does not put in his savings account). Remember the order of operations.

How much money does Fred keep?

For the following exercises, solve the given problem.

According to the U.S. Mint, the diameter of a quarter is 0.955 inches. The circumference of the quarter would be the diameter multiplied by π . π . Is the circumference of a quarter a whole number, a rational number, or an irrational number?

Jessica and her roommate, Adriana, have decided to share a change jar for joint expenses. Jessica put her loose change in the jar first, and then Adriana put her change in the jar. We know that it does not matter in which order the change was added to the jar. What property of addition describes this fact?

For the following exercises, consider this scenario: There is a mound of g g pounds of gravel in a quarry. Throughout the day, 400 pounds of gravel is added to the mound. Two orders of 600 pounds are sold and the gravel is removed from the mound. At the end of the day, the mound has 1,200 pounds of gravel.

Write the equation that describes the situation.

Solve for g .

For the following exercise, solve the given problem.

Ramon runs the marketing department at their company. Their department gets a budget every year, and every year, they must spend the entire budget without going over. If they spend less than the budget, then the department gets a smaller budget the following year. At the beginning of this year, Ramon got $2.5 million for the annual marketing budget. They must spend the budget such that 2,500,000 − x = 0. 2,500,000 − x = 0. What property of addition tells us what the value of x must be?

For the following exercises, use a graphing calculator to solve for x . Round the answers to the nearest hundredth.

0.5 ( 12.3 ) 2 − 48 x = 3 5 0.5 ( 12.3 ) 2 − 48 x = 3 5

( 0.25 − 0.75 ) 2 x − 7.2 = 9.9 ( 0.25 − 0.75 ) 2 x − 7.2 = 9.9

If a whole number is not a natural number, what must the number be?

Determine whether the statement is true or false: The multiplicative inverse of a rational number is also rational.

Determine whether the statement is true or false: The product of a rational and irrational number is always irrational.

Determine whether the simplified expression is rational or irrational: −18 − 4 ( 5 ) ( −1 ) . −18 − 4 ( 5 ) ( −1 ) .

Determine whether the simplified expression is rational or irrational: −16 + 4 ( 5 ) + 5 . −16 + 4 ( 5 ) + 5 .

The division of two natural numbers will always result in what type of number?

What property of real numbers would simplify the following expression: 4 + 7 ( x − 1 ) ? 4 + 7 ( x − 1 ) ?

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-algebra-2e/pages/1-introduction-to-prerequisites
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: College Algebra 2e
  • Publication date: Dec 21, 2021
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-algebra-2e/pages/1-introduction-to-prerequisites
  • Section URL: https://openstax.org/books/college-algebra-2e/pages/1-1-real-numbers-algebra-essentials

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Course: 8th grade   >   Unit 1

  • Intro to rational & irrational numbers
  • Classifying numbers: rational & irrational
  • Classify numbers: rational & irrational
  • Classifying numbers

Classify numbers

  • Classifying numbers review
  • Worked example: classifying numbers

homework & practice 1 7 identify the number 0

  • (Choice A)   Whole number A Whole number
  • (Choice B)   Integer B Integer
  • (Choice C)   Rational C Rational
  • (Choice D)   Irrational D Irrational

homework & practice 1 7 identify the number 0

Finished Papers

Customer Reviews

Definitely! It's not a matter of "yes you can", but a matter of "yes, you should". Chatting with professional paper writers through a one-on-one encrypted chat allows them to express their views on how the assignment should turn out and share their feedback. Be on the same page with your writer!

Customer Reviews

Megan Sharp

1555 Lakeside Drive, Oakland

Extra spacious rarely available courtyard facing unit at the Lakeside…

homework & practice 1 7 identify the number 0

COMMENTS

  1. Kindergarten Math Lesson 1-7 "Identifying the Number Zero"

    About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ...

  2. Number 0 Worksheets

    Number 0 Worksheets. Choose a number Zero worksheet. Customize your number zero worksheet by changing the text and font. You can create your own math problems, practice writing the number 0 and the word zero. Grab your crayons and print some 0 worksheets!

  3. Free Printable Number 0 (Zero) Worksheets for Kids [PDFs]

    Brighterly is an online math learning platform with educators who are dogged in their quest for every child to understand math. They use a number 0 worksheet for preschool to introduce kids to the concept of "zero means nothing.". They also teach kids that adding zeros after single-digit numbers like 1, 2, and 3 can make these numbers more ...

  4. All about the Number 0 Worksheet (Teacher-Made)

    This worksheet introduces children to the number 0. Children will be encouraged to trace, count and recognize the number in the fun activities on this sheet. Perfect for your Kindergarten children. Show more. zero number 0 adding zero all about 0 zero as a place holder adding with zero. adding 0 adding 0 to a number zero worksheet number zero i ...

  5. Number 0 worksheets for preschool and kindergarten

    Number 0 Trace Worksheet. Number 0 Worksheet. Number 0 Trace Worksheet. Number 0 Number 1 Number 2 Number 3 Number 4 Number 5 Number 6 Number 7 Number 8 Number 9 Number 10 Number 11 Number 12 Number 13 Number 14 Number 15 Number 16 Number 17 Number 18 Number 19 Number 20 Number 21 Number 22 Number 23 Number 24. Handwriting Worksheets.

  6. Learning Numbers Worksheets for Preschool and Kindergarten

    Numbers worksheets from one to 20. These free worksheets help kids learn to recognize, read and write numbers from 1-20. Learn the numbers from one to ten. Numbers in sequence (tracing 1-10) Numbers in sequence (writing 1-10) Sequences 1-10 with counts. Count & color.

  7. 10 worksheets to write and identify the number 0 Zero

    Description. 5 worksheets of writing the number Zero 0 and 5 worksheets of identifying Zero 0. Handwriting pages contain a dot starting point and arrows. These are awesome to use both in the classroom and in a distance learning environment- the worksheets can be mailed home, available for the parents to pick up, emailed etc.

  8. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  9. PDF Homework & Practice 7-1

    Homework & Practice 7-1 Represent Addition and Subtraction Problems Another Look! Jamal has some green apples and 17 red apples. He has 29 apples in all. How many green apples does he have? 1. Jill bikes 15 miles in the morning and ... 396 three hundred ninety-six Topic 7 Lesson 1.

  10. Brainly

    Get Expert-Verified Homework Help and explanations personalized with AI. Understand faster with 24/7 personalized learning. Score higher with practice tests included in Study Sets. New. Learning, your way. Get ahead with Brainly, the AI Learning Companion™ ...

  11. Chegg Study Questions and Answers

    Our extensive question and answer board features hundreds of experts waiting to provide answers to your questions, no matter what the subject. You can ask any study question and get expert answers in as little as two hours. And unlike your professor's office we don't have limited hours, so you can get your questions answered 24/7.

  12. Course Hero

    Instant access to millions of Study Resources, Course Notes, Test Prep, 24/7 Homework Help, Tutors, and more. Learn, teach, and study with Course Hero. Get unstuck. AI Homework Help. Expert Help. Study Resources. Log in Join. ... Module 5 Lesson 1_ The Executive Branch, Part 1-.docx. 64 523 How culture affects the strategy sourcing of employee ...

  13. Foundation Number: Identify and Represent Numbers 0-20 Lesson 1

    Teach your Foundation children to identify and represent numbers 0-20 with this Number and Place Value Lesson Pack. Children practise subitising small collections, counting counters and small manipulatives, using their senses and exploring pictures to identify and represent numbers 0-20. This Lesson Pack includes a detailed lesson plan, lesson presentation and differentiated activities. It ...

  14. DOC s3.amazonaws.com

    1. 1. 1-7. Identify the Number 0 Objectives Vocabulary materials Mathematics. Use zero to tell when there are no objects. Language. Name the number 0 to describe groups of no objects. none, zero Counters (or Teaching Tool 6), 0-5 number cubes essential understanding Ell Zero is a number that tells how many objects there are when there are none.

  15. 1-7 The Distributive Property

    The Distributive Property - Word Docs & PowerPoint. 1-7 Assignment - The Distributive Property. 1-7 Bell Work - The Distributive Property. 1-7 Exit Quiz - The Distributive Property. 1-7 Guide Notes SE - The Distributive Property. 1-7 Guide Notes TE - The Distributive Property. 1-7 Lesson Plan - The Distributive Property.

  16. 1.1 Real Numbers: Algebra Essentials

    The equation is not inherently true or false, but only a proposition. The values that make the equation true, the solutions, are found using the properties of real numbers and other results. For example, the equation 2 x + 1 = 7 2 x + 1 = 7 has the solution of 3 because when we substitute 3 for x x in the equation, we obtain the true statement ...

  17. Classify numbers

    Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

  18. enVisionmath 2.0, Additional Practice Workbook Grade 7

    Find step-by-step solutions and answers to enVisionmath 2.0, Additional Practice Workbook Grade 7 - 9780328885039, as well as thousands of textbooks so you can move forward with confidence. ... Additional Practice Workbook Grade 7 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for enVisionmath 2.0 ...

  19. PDF NAME DATE PERIOD Lesson 1 Homework Practice

    Lesson 1 Homework Practice Equations Identify the solution of each equation from the list given. 1. h + 9 = 21; 10, 11, 12 2. 34 + p = 52; 18, 19, 20 3. 45 - k = 27; 17, 18, 19 ... 80 - m = 60, m represents the number of miles it has yet to fly that day. Find the solution to the equation. 5. ... Lesson 3 Homework Practice Solve and Write ...

  20. Homework & Practice 1 7 Identify The Number 0

    Homework & Practice 1 7 Identify The Number 0 - Lucy Giles #23 in Global Rating 4240 Orders prepared. ... Kaylin G. 1(888)814-4206 1(888)499-5521. 14 Customer reviews. Homework & Practice 1 7 Identify The Number 0: Login Order now Level: College, University, High School, Master's, PHD, Undergraduate. 1349

  21. PDF Lesson 7

    Creative Commons Attribution -NonCommercial ShareAlike 3.0 Unported License. Lesson 7 Objective: Identify and represent shaded and non-shaded parts of one whole as fractions. Related Topics: More Lesson Plans for the Common Core Math Suggested Lesson Structure Fluen cy Pra ti e (12 minutes) Application Problem (10 minutes)

  22. Homework & Practice 1 7 Identify The Number 0

    With or without extra services - you are guaranteed the best result! 4.8/5. 20Customer reviews. Andre Cardoso. #30 in Global Rating. The shortest time frame in which our writers can complete your order is 6 hours. Length and the complexity of your "write my essay" order are determining factors.

  23. PDF Homework Helper eHelpeHelp

    Complete each number sentence. Identify the property or rule used. 1. 85 + 0 = 2. 96 + 13 = 13 + 3. - 0 = 37 4. (15 + 23) + 7 = 15 + ( + 7) Need help? connectED.mcgraw-hill.com Homework Helper Add (44 + 18) + 22 mentally. Use the Associative Property of Addition to make these numbers ... Lesson 1 My Homework 65