• Privacy Policy

Research Method

Home » Descriptive Research Design – Types, Methods and Examples

Descriptive Research Design – Types, Methods and Examples

Table of Contents

Descriptive Research Design

Descriptive Research Design

Definition:

Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied.

Descriptive research design does not attempt to establish cause-and-effect relationships between variables or make predictions about future outcomes. Instead, it focuses on providing a detailed and accurate representation of the data collected, which can be useful for generating hypotheses, exploring trends, and identifying patterns in the data.

Types of Descriptive Research Design

Types of Descriptive Research Design are as follows:

Cross-sectional Study

This involves collecting data at a single point in time from a sample or population to describe their characteristics or behaviors. For example, a researcher may conduct a cross-sectional study to investigate the prevalence of certain health conditions among a population, or to describe the attitudes and beliefs of a particular group.

Longitudinal Study

This involves collecting data over an extended period of time, often through repeated observations or surveys of the same group or population. Longitudinal studies can be used to track changes in attitudes, behaviors, or outcomes over time, or to investigate the effects of interventions or treatments.

This involves an in-depth examination of a single individual, group, or situation to gain a detailed understanding of its characteristics or dynamics. Case studies are often used in psychology, sociology, and business to explore complex phenomena or to generate hypotheses for further research.

Survey Research

This involves collecting data from a sample or population through standardized questionnaires or interviews. Surveys can be used to describe attitudes, opinions, behaviors, or demographic characteristics of a group, and can be conducted in person, by phone, or online.

Observational Research

This involves observing and documenting the behavior or interactions of individuals or groups in a natural or controlled setting. Observational studies can be used to describe social, cultural, or environmental phenomena, or to investigate the effects of interventions or treatments.

Correlational Research

This involves examining the relationships between two or more variables to describe their patterns or associations. Correlational studies can be used to identify potential causal relationships or to explore the strength and direction of relationships between variables.

Data Analysis Methods

Descriptive research design data analysis methods depend on the type of data collected and the research question being addressed. Here are some common methods of data analysis for descriptive research:

Descriptive Statistics

This method involves analyzing data to summarize and describe the key features of a sample or population. Descriptive statistics can include measures of central tendency (e.g., mean, median, mode) and measures of variability (e.g., range, standard deviation).

Cross-tabulation

This method involves analyzing data by creating a table that shows the frequency of two or more variables together. Cross-tabulation can help identify patterns or relationships between variables.

Content Analysis

This method involves analyzing qualitative data (e.g., text, images, audio) to identify themes, patterns, or trends. Content analysis can be used to describe the characteristics of a sample or population, or to identify factors that influence attitudes or behaviors.

Qualitative Coding

This method involves analyzing qualitative data by assigning codes to segments of data based on their meaning or content. Qualitative coding can be used to identify common themes, patterns, or categories within the data.

Visualization

This method involves creating graphs or charts to represent data visually. Visualization can help identify patterns or relationships between variables and make it easier to communicate findings to others.

Comparative Analysis

This method involves comparing data across different groups or time periods to identify similarities and differences. Comparative analysis can help describe changes in attitudes or behaviors over time or differences between subgroups within a population.

Applications of Descriptive Research Design

Descriptive research design has numerous applications in various fields. Some of the common applications of descriptive research design are:

  • Market research: Descriptive research design is widely used in market research to understand consumer preferences, behavior, and attitudes. This helps companies to develop new products and services, improve marketing strategies, and increase customer satisfaction.
  • Health research: Descriptive research design is used in health research to describe the prevalence and distribution of a disease or health condition in a population. This helps healthcare providers to develop prevention and treatment strategies.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs. This helps educators to improve teaching methods and develop effective educational programs.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs. This helps researchers to understand social behavior and develop effective policies.
  • Public opinion research: Descriptive research design is used in public opinion research to understand the opinions and attitudes of the general public on various issues. This helps policymakers to develop effective policies that are aligned with public opinion.
  • Environmental research: Descriptive research design is used in environmental research to describe the environmental conditions of a particular region or ecosystem. This helps policymakers and environmentalists to develop effective conservation and preservation strategies.

Descriptive Research Design Examples

Here are some real-time examples of descriptive research designs:

  • A restaurant chain wants to understand the demographics and attitudes of its customers. They conduct a survey asking customers about their age, gender, income, frequency of visits, favorite menu items, and overall satisfaction. The survey data is analyzed using descriptive statistics and cross-tabulation to describe the characteristics of their customer base.
  • A medical researcher wants to describe the prevalence and risk factors of a particular disease in a population. They conduct a cross-sectional study in which they collect data from a sample of individuals using a standardized questionnaire. The data is analyzed using descriptive statistics and cross-tabulation to identify patterns in the prevalence and risk factors of the disease.
  • An education researcher wants to describe the learning outcomes of students in a particular school district. They collect test scores from a representative sample of students in the district and use descriptive statistics to calculate the mean, median, and standard deviation of the scores. They also create visualizations such as histograms and box plots to show the distribution of scores.
  • A marketing team wants to understand the attitudes and behaviors of consumers towards a new product. They conduct a series of focus groups and use qualitative coding to identify common themes and patterns in the data. They also create visualizations such as word clouds to show the most frequently mentioned topics.
  • An environmental scientist wants to describe the biodiversity of a particular ecosystem. They conduct an observational study in which they collect data on the species and abundance of plants and animals in the ecosystem. The data is analyzed using descriptive statistics to describe the diversity and richness of the ecosystem.

How to Conduct Descriptive Research Design

To conduct a descriptive research design, you can follow these general steps:

  • Define your research question: Clearly define the research question or problem that you want to address. Your research question should be specific and focused to guide your data collection and analysis.
  • Choose your research method: Select the most appropriate research method for your research question. As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies.
  • Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan. Determine the sample size and sampling method, decide on the data collection tools (such as questionnaires, interviews, or observations), and outline your data analysis plan.
  • Collect data: Collect data from your sample or population using the data collection tools you have chosen. Ensure that you follow ethical guidelines for research and obtain informed consent from participants.
  • Analyze data: Use appropriate statistical or qualitative analysis methods to analyze your data. As discussed earlier, common data analysis methods for descriptive research include descriptive statistics, cross-tabulation, content analysis, qualitative coding, visualization, and comparative analysis.
  • I nterpret results: Interpret your findings in light of your research question and objectives. Identify patterns, trends, and relationships in the data, and describe the characteristics of your sample or population.
  • Draw conclusions and report results: Draw conclusions based on your analysis and interpretation of the data. Report your results in a clear and concise manner, using appropriate tables, graphs, or figures to present your findings. Ensure that your report follows accepted research standards and guidelines.

When to Use Descriptive Research Design

Descriptive research design is used in situations where the researcher wants to describe a population or phenomenon in detail. It is used to gather information about the current status or condition of a group or phenomenon without making any causal inferences. Descriptive research design is useful in the following situations:

  • Exploratory research: Descriptive research design is often used in exploratory research to gain an initial understanding of a phenomenon or population.
  • Identifying trends: Descriptive research design can be used to identify trends or patterns in a population, such as changes in consumer behavior or attitudes over time.
  • Market research: Descriptive research design is commonly used in market research to understand consumer preferences, behavior, and attitudes.
  • Health research: Descriptive research design is useful in health research to describe the prevalence and distribution of a disease or health condition in a population.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs.

Purpose of Descriptive Research Design

The main purpose of descriptive research design is to describe and measure the characteristics of a population or phenomenon in a systematic and objective manner. It involves collecting data that describe the current status or condition of the population or phenomenon of interest, without manipulating or altering any variables.

The purpose of descriptive research design can be summarized as follows:

  • To provide an accurate description of a population or phenomenon: Descriptive research design aims to provide a comprehensive and accurate description of a population or phenomenon of interest. This can help researchers to develop a better understanding of the characteristics of the population or phenomenon.
  • To identify trends and patterns: Descriptive research design can help researchers to identify trends and patterns in the data, such as changes in behavior or attitudes over time. This can be useful for making predictions and developing strategies.
  • To generate hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • To establish a baseline: Descriptive research design can establish a baseline or starting point for future research. This can be useful for comparing data from different time periods or populations.

Characteristics of Descriptive Research Design

Descriptive research design has several key characteristics that distinguish it from other research designs. Some of the main characteristics of descriptive research design are:

  • Objective : Descriptive research design is objective in nature, which means that it focuses on collecting factual and accurate data without any personal bias. The researcher aims to report the data objectively without any personal interpretation.
  • Non-experimental: Descriptive research design is non-experimental, which means that the researcher does not manipulate any variables. The researcher simply observes and records the behavior or characteristics of the population or phenomenon of interest.
  • Quantitative : Descriptive research design is quantitative in nature, which means that it involves collecting numerical data that can be analyzed using statistical techniques. This helps to provide a more precise and accurate description of the population or phenomenon.
  • Cross-sectional: Descriptive research design is often cross-sectional, which means that the data is collected at a single point in time. This can be useful for understanding the current state of the population or phenomenon, but it may not provide information about changes over time.
  • Large sample size: Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Systematic and structured: Descriptive research design involves a systematic and structured approach to data collection, which helps to ensure that the data is accurate and reliable. This involves using standardized procedures for data collection, such as surveys, questionnaires, or observation checklists.

Advantages of Descriptive Research Design

Descriptive research design has several advantages that make it a popular choice for researchers. Some of the main advantages of descriptive research design are:

  • Provides an accurate description: Descriptive research design is focused on accurately describing the characteristics of a population or phenomenon. This can help researchers to develop a better understanding of the subject of interest.
  • Easy to conduct: Descriptive research design is relatively easy to conduct and requires minimal resources compared to other research designs. It can be conducted quickly and efficiently, and data can be collected through surveys, questionnaires, or observations.
  • Useful for generating hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • Large sample size : Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Can be used to monitor changes : Descriptive research design can be used to monitor changes over time in a population or phenomenon. This can be useful for identifying trends and patterns, and for making predictions about future behavior or attitudes.
  • Can be used in a variety of fields : Descriptive research design can be used in a variety of fields, including social sciences, healthcare, business, and education.

Limitation of Descriptive Research Design

Descriptive research design also has some limitations that researchers should consider before using this design. Some of the main limitations of descriptive research design are:

  • Cannot establish cause and effect: Descriptive research design cannot establish cause and effect relationships between variables. It only provides a description of the characteristics of the population or phenomenon of interest.
  • Limited generalizability: The results of a descriptive study may not be generalizable to other populations or situations. This is because descriptive research design often involves a specific sample or situation, which may not be representative of the broader population.
  • Potential for bias: Descriptive research design can be subject to bias, particularly if the researcher is not objective in their data collection or interpretation. This can lead to inaccurate or incomplete descriptions of the population or phenomenon of interest.
  • Limited depth: Descriptive research design may provide a superficial description of the population or phenomenon of interest. It does not delve into the underlying causes or mechanisms behind the observed behavior or characteristics.
  • Limited utility for theory development: Descriptive research design may not be useful for developing theories about the relationship between variables. It only provides a description of the variables themselves.
  • Relies on self-report data: Descriptive research design often relies on self-report data, such as surveys or questionnaires. This type of data may be subject to biases, such as social desirability bias or recall bias.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Research

Survey Research – Types, Methods, Examples

Observational Research

Observational Research – Methods and Guide

Basic Research

Basic Research – Types, Methods and Examples

Explanatory Research

Explanatory Research – Types, Methods, Guide

Experimental Research Design

Experimental Design – Types, Methods, Guide

Transformative Design

Transformative Design – Methods, Types, Guide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

case study in descriptive research

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved June 28, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Defense Schedule - Commons Calendar This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment Chapter 1 This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Conceptual Framework
  • Theoretical Framework
  • Locating Theoretical and Conceptual Frameworks This link opens in a new window
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Descriptive

This type of case study allows the researcher to:

How has the implementation and use of the instructional coaching intervention for elementary teachers impacted students’ attitudes toward reading?

Explanatory

This type of case study allows the researcher to:

Why do differences exist when implementing the same online reading curriculum in three elementary classrooms?

Exploratory

This type of case study allows the researcher to:

 

What are potential barriers to student’s reading success when middle school teachers implement the Ready Reader curriculum online?

Multiple Case Studies

or

Collective Case Study

This type of case study allows the researcher to:

How are individual school districts addressing student engagement in an online classroom?

Intrinsic

This type of case study allows the researcher to:

How does a student’s familial background influence a teacher’s ability to provide meaningful instruction?

Instrumental

This type of case study allows the researcher to:

How a rural school district’s integration of a reward system maximized student engagement?

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

 

This type of study is implemented to understand an individual by developing a detailed explanation of the individual’s lived experiences or perceptions.

 

 

 

This type of study is implemented to explore a particular group of people’s perceptions.

This type of study is implemented to explore the perspectives of people who work for or had interaction with a specific organization or company.

This type of study is implemented to explore participant’s perceptions of an event.

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

 

Writing Icon Purple Circle w/computer inside

Was this resource helpful?

  • << Previous: Thematic Data Analysis in Qualitative Design
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: May 29, 2024 8:05 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

Case Study vs. Descriptive Approach to Research

What's the difference.

The case study approach and the descriptive approach are two different methods used in research. The case study approach involves in-depth analysis of a specific individual, group, or situation. It aims to provide a detailed understanding of the subject matter by examining various aspects and collecting qualitative data. On the other hand, the descriptive approach focuses on describing and summarizing a larger population or phenomenon. It involves collecting quantitative data through surveys, observations, or experiments to draw general conclusions. While the case study approach provides rich and detailed information, it is limited in terms of generalizability. In contrast, the descriptive approach allows for broader generalizations but may lack the depth and context provided by case studies. Ultimately, the choice between these approaches depends on the research objectives and the nature of the research question.

AttributeCase StudyDescriptive Approach to Research
Research DesignQualitativeQuantitative or Qualitative
PurposeTo explore a specific case or phenomenon in-depthTo describe and analyze a larger population or group
Data CollectionInterviews, observations, documents, etc.Surveys, questionnaires, observations, etc.
Data AnalysisInductive, thematic analysisStatistical analysis, frequency distribution, etc.
Sample SizeSmall, often single or few casesLarge, representative sample
GeneralizabilityLow, specific to the case studiedHigh, can be generalized to the larger population
TimeframeLonger, in-depth investigationShorter, quick data collection and analysis

Further Detail

Introduction.

Research is a fundamental aspect of any scientific inquiry, aiming to gather information and gain insights into various phenomena. When conducting research, researchers employ different approaches and methodologies to achieve their objectives. Two commonly used approaches are the case study and descriptive approach. While both approaches have their unique attributes, they differ in terms of their focus, data collection methods, and generalizability.

Case Study Approach

The case study approach is a qualitative research method that focuses on in-depth analysis of a specific individual, group, or event. It aims to provide a comprehensive understanding of the subject under investigation by examining its context, history, and unique characteristics. Case studies often involve multiple sources of data, such as interviews, observations, and document analysis, to gather rich and detailed information.

One of the key attributes of the case study approach is its ability to explore complex and unique phenomena that may not be easily captured by other research methods. By delving deep into a specific case, researchers can uncover intricate details and gain a holistic understanding of the subject. This approach is particularly useful when studying rare or exceptional cases, as it allows researchers to examine the intricacies and nuances that may not be apparent in larger-scale studies.

Furthermore, the case study approach enables researchers to generate new hypotheses and theories by closely examining the relationships and patterns within the case. It provides an opportunity for researchers to explore and develop new ideas, which can contribute to the advancement of knowledge in a particular field. Additionally, case studies often involve a longitudinal design, allowing researchers to track changes and developments over time.

However, it is important to note that the case study approach has limitations. Due to its focus on a specific case, the findings may not be easily generalizable to a larger population. The small sample size and unique characteristics of the case may limit the external validity of the findings. Therefore, caution should be exercised when applying the results of a case study to broader contexts.

Descriptive Approach

The descriptive approach, also known as the survey method, aims to describe and analyze the characteristics, behaviors, and opinions of a specific population or sample. It involves collecting data through questionnaires, interviews, or observations, and analyzing the responses to draw conclusions about the population under study. The descriptive approach provides a snapshot of the current state of affairs and allows researchers to identify patterns and trends.

One of the key attributes of the descriptive approach is its ability to provide a broad overview of a population or phenomenon. By collecting data from a large sample, researchers can make generalizations about the population and draw conclusions that are applicable to a wider context. This approach is particularly useful when studying large populations or when the research objective is to describe the prevalence of certain characteristics or behaviors.

Moreover, the descriptive approach allows researchers to quantify data and analyze it statistically. By using statistical techniques, researchers can identify relationships between variables, test hypotheses, and make predictions. This quantitative aspect of the descriptive approach provides a level of objectivity and allows for comparisons across different groups or populations.

However, the descriptive approach also has limitations. It may not capture the complexity and richness of individual cases or unique phenomena. The focus on generalizability may overlook important contextual factors that influence the research topic. Additionally, the reliance on self-report measures in surveys may introduce biases and inaccuracies in the data collected.

While the case study and descriptive approaches differ in their focus and data collection methods, they both contribute to the field of research in their own ways. The case study approach provides in-depth insights into specific cases, allowing researchers to explore complex phenomena and generate new hypotheses. On the other hand, the descriptive approach provides a broader overview of populations, enabling researchers to make generalizations and identify patterns.

Both approaches have their strengths and weaknesses, and the choice between them depends on the research objectives and the nature of the phenomenon under investigation. Researchers should carefully consider the specific research question, the available resources, and the desired level of generalizability when selecting the appropriate approach.

In conclusion, the case study and descriptive approaches are two distinct research methodologies that offer different perspectives and insights. The case study approach allows for in-depth analysis of specific cases, providing rich and detailed information. On the other hand, the descriptive approach provides a broader overview of populations, allowing for generalizations and statistical analysis. Both approaches have their merits and limitations, and researchers should choose the most appropriate approach based on their research objectives and the nature of the phenomenon under investigation.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

case study in descriptive research

Designing and Conducting Case Studies

This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of records, and collections of writing samples. Starting with a definition of the case study, the guide moves to a brief history of this research method. Using several well documented case studies, the guide then looks at applications and methods including data collection and analysis. A discussion of ways to handle validity, reliability, and generalizability follows, with special attention to case studies as they are applied to composition studies. Finally, this guide examines the strengths and weaknesses of case studies.

Definition and Overview

Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions only about that participant or group and only in that specific context. Researchers do not focus on the discovery of a universal, generalizable truth, nor do they typically look for cause-effect relationships; instead, emphasis is placed on exploration and description.

Case studies typically examine the interplay of all variables in order to provide as complete an understanding of an event or situation as possible. This type of comprehensive understanding is arrived at through a process known as thick description, which involves an in-depth description of the entity being evaluated, the circumstances under which it is used, the characteristics of the people involved in it, and the nature of the community in which it is located. Thick description also involves interpreting the meaning of demographic and descriptive data such as cultural norms and mores, community values, ingrained attitudes, and motives.

Unlike quantitative methods of research, like the survey, which focus on the questions of who, what, where, how much, and how many, and archival analysis, which often situates the participant in some form of historical context, case studies are the preferred strategy when how or why questions are asked. Likewise, they are the preferred method when the researcher has little control over the events, and when there is a contemporary focus within a real life context. In addition, unlike more specifically directed experiments, case studies require a problem that seeks a holistic understanding of the event or situation in question using inductive logic--reasoning from specific to more general terms.

In scholarly circles, case studies are frequently discussed within the context of qualitative research and naturalistic inquiry. Case studies are often referred to interchangeably with ethnography, field study, and participant observation. The underlying philosophical assumptions in the case are similar to these types of qualitative research because each takes place in a natural setting (such as a classroom, neighborhood, or private home), and strives for a more holistic interpretation of the event or situation under study.

Unlike more statistically-based studies which search for quantifiable data, the goal of a case study is to offer new variables and questions for further research. F.H. Giddings, a sociologist in the early part of the century, compares statistical methods to the case study on the basis that the former are concerned with the distribution of a particular trait, or a small number of traits, in a population, whereas the case study is concerned with the whole variety of traits to be found in a particular instance" (Hammersley 95).

Case studies are not a new form of research; naturalistic inquiry was the primary research tool until the development of the scientific method. The fields of sociology and anthropology are credited with the primary shaping of the concept as we know it today. However, case study research has drawn from a number of other areas as well: the clinical methods of doctors; the casework technique being developed by social workers; the methods of historians and anthropologists, plus the qualitative descriptions provided by quantitative researchers like LePlay; and, in the case of Robert Park, the techniques of newspaper reporters and novelists.

Park was an ex-newspaper reporter and editor who became very influential in developing sociological case studies at the University of Chicago in the 1920s. As a newspaper professional he coined the term "scientific" or "depth" reporting: the description of local events in a way that pointed to major social trends. Park viewed the sociologist as "merely a more accurate, responsible, and scientific reporter." Park stressed the variety and value of human experience. He believed that sociology sought to arrive at natural, but fluid, laws and generalizations in regard to human nature and society. These laws weren't static laws of the kind sought by many positivists and natural law theorists, but rather, they were laws of becoming--with a constant possibility of change. Park encouraged students to get out of the library, to quit looking at papers and books, and to view the constant experiment of human experience. He writes, "Go and sit in the lounges of the luxury hotels and on the doorsteps of the flophouses; sit on the Gold Coast settees and on the slum shakedowns; sit in the Orchestra Hall and in the Star and Garter Burlesque. In short, gentlemen [sic], go get the seats of your pants dirty in real research."

But over the years, case studies have drawn their share of criticism. In fact, the method had its detractors from the start. In the 1920s, the debate between pro-qualitative and pro-quantitative became quite heated. Case studies, when compared to statistics, were considered by many to be unscientific. From the 1930's on, the rise of positivism had a growing influence on quantitative methods in sociology. People wanted static, generalizable laws in science. The sociological positivists were looking for stable laws of social phenomena. They criticized case study research because it failed to provide evidence of inter subjective agreement. Also, they condemned it because of the few number of cases studied and that the under-standardized character of their descriptions made generalization impossible. By the 1950s, quantitative methods, in the form of survey research, had become the dominant sociological approach and case study had become a minority practice.

Educational Applications

The 1950's marked the dawning of a new era in case study research, namely that of the utilization of the case study as a teaching method. "Instituted at Harvard Business School in the 1950s as a primary method of teaching, cases have since been used in classrooms and lecture halls alike, either as part of a course of study or as the main focus of the course to which other teaching material is added" (Armisted 1984). The basic purpose of instituting the case method as a teaching strategy was "to transfer much of the responsibility for learning from the teacher on to the student, whose role, as a result, shifts away from passive absorption toward active construction" (Boehrer 1990). Through careful examination and discussion of various cases, "students learn to identify actual problems, to recognize key players and their agendas, and to become aware of those aspects of the situation that contribute to the problem" (Merseth 1991). In addition, students are encouraged to "generate their own analysis of the problems under consideration, to develop their own solutions, and to practically apply their own knowledge of theory to these problems" (Boyce 1993). Along the way, students also develop "the power to analyze and to master a tangled circumstance by identifying and delineating important factors; the ability to utilize ideas, to test them against facts, and to throw them into fresh combinations" (Merseth 1991).

In addition to the practical application and testing of scholarly knowledge, case discussions can also help students prepare for real-world problems, situations and crises by providing an approximation of various professional environments (i.e. classroom, board room, courtroom, or hospital). Thus, through the examination of specific cases, students are given the opportunity to work out their own professional issues through the trials, tribulations, experiences, and research findings of others. An obvious advantage to this mode of instruction is that it allows students the exposure to settings and contexts that they might not otherwise experience. For example, a student interested in studying the effects of poverty on minority secondary student's grade point averages and S.A.T. scores could access and analyze information from schools as geographically diverse as Los Angeles, New York City, Miami, and New Mexico without ever having to leave the classroom.

The case study method also incorporates the idea that students can learn from one another "by engaging with each other and with each other's ideas, by asserting something and then having it questioned, challenged and thrown back at them so that they can reflect on what they hear, and then refine what they say" (Boehrer 1990). In summary, students can direct their own learning by formulating questions and taking responsibility for the study.

Types and Design Concerns

Researchers use multiple methods and approaches to conduct case studies.

Types of Case Studies

Under the more generalized category of case study exist several subdivisions, each of which is custom selected for use depending upon the goals and/or objectives of the investigator. These types of case study include the following:

Illustrative Case Studies These are primarily descriptive studies. They typically utilize one or two instances of an event to show what a situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies These are condensed case studies performed before implementing a large scale investigation. Their basic function is to help identify questions and select types of measurement prior to the main investigation. The primary pitfall of this type of study is that initial findings may seem convincing enough to be released prematurely as conclusions.

Cumulative Case Studies These serve to aggregate information from several sites collected at different times. The idea behind these studies is the collection of past studies will allow for greater generalization without additional cost or time being expended on new, possibly repetitive studies.

Critical Instance Case Studies These examine one or more sites for either the purpose of examining a situation of unique interest with little to no interest in generalizability, or to call into question or challenge a highly generalized or universal assertion. This method is useful for answering cause and effect questions.

Identifying a Theoretical Perspective

Much of the case study's design is inherently determined for researchers, depending on the field from which they are working. In composition studies, researchers are typically working from a qualitative, descriptive standpoint. In contrast, physicists will approach their research from a more quantitative perspective. Still, in designing the study, researchers need to make explicit the questions to be explored and the theoretical perspective from which they will approach the case. The three most commonly adopted theories are listed below:

Individual Theories These focus primarily on the individual development, cognitive behavior, personality, learning and disability, and interpersonal interactions of a particular subject.

Organizational Theories These focus on bureaucracies, institutions, organizational structure and functions, or excellence in organizational performance.

Social Theories These focus on urban development, group behavior, cultural institutions, or marketplace functions.

Two examples of case studies are used consistently throughout this chapter. The first, a study produced by Berkenkotter, Huckin, and Ackerman (1988), looks at a first year graduate student's initiation into an academic writing program. The study uses participant-observer and linguistic data collecting techniques to assess the student's knowledge of appropriate discourse conventions. Using the pseudonym Nate to refer to the subject, the study sought to illuminate the particular experience rather than to generalize about the experience of fledgling academic writers collectively.

For example, in Berkenkotter, Huckin, and Ackerman's (1988) study we are told that the researchers are interested in disciplinary communities. In the first paragraph, they ask what constitutes membership in a disciplinary community and how achieving membership might affect a writer's understanding and production of texts. In the third paragraph they state that researchers must negotiate their claims "within the context of his sub specialty's accepted knowledge and methodology." In the next paragraph they ask, "How is literacy acquired? What is the process through which novices gain community membership? And what factors either aid or hinder students learning the requisite linguistic behaviors?" This introductory section ends with a paragraph in which the study's authors claim that during the course of the study, the subject, Nate, successfully makes the transition from "skilled novice" to become an initiated member of the academic discourse community and that his texts exhibit linguistic changes which indicate this transition. In the next section the authors make explicit the sociolinguistic theoretical and methodological assumptions on which the study is based (1988). Thus the reader has a good understanding of the authors' theoretical background and purpose in conducting the study even before it is explicitly stated on the fourth page of the study. "Our purpose was to examine the effects of the educational context on one graduate student's production of texts as he wrote in different courses and for different faculty members over the academic year 1984-85." The goal of the study then, was to explore the idea that writers must be initiated into a writing community, and that this initiation will change the way one writes.

The second example is Janet Emig's (1971) study of the composing process of a group of twelfth graders. In this study, Emig seeks to answer the question of what happens to the self as a result educational stimuli in terms of academic writing. The case study used methods such as protocol analysis, tape-recorded interviews, and discourse analysis.

In the case of Janet Emig's (1971) study of the composing process of eight twelfth graders, four specific hypotheses were made:

  • Twelfth grade writers engage in two modes of composing: reflexive and extensive.
  • These differences can be ascertained and characterized through having the writers compose aloud their composition process.
  • A set of implied stylistic principles governs the writing process.
  • For twelfth grade writers, extensive writing occurs chiefly as a school-sponsored activity, or reflexive, as a self-sponsored activity.

In this study, the chief distinction is between the two dominant modes of composing among older, secondary school students. The distinctions are:

  • The reflexive mode, which focuses on the writer's thoughts and feelings.
  • The extensive mode, which focuses on conveying a message.

Emig also outlines the specific questions which guided the research in the opening pages of her Review of Literature , preceding the report.

Designing a Case Study

After considering the different sub categories of case study and identifying a theoretical perspective, researchers can begin to design their study. Research design is the string of logic that ultimately links the data to be collected and the conclusions to be drawn to the initial questions of the study. Typically, research designs deal with at least four problems:

  • What questions to study
  • What data are relevant
  • What data to collect
  • How to analyze that data

In other words, a research design is basically a blueprint for getting from the beginning to the end of a study. The beginning is an initial set of questions to be answered, and the end is some set of conclusions about those questions.

Because case studies are conducted on topics as diverse as Anglo-Saxon Literature (Thrane 1986) and AIDS prevention (Van Vugt 1994), it is virtually impossible to outline any strict or universal method or design for conducting the case study. However, Robert K. Yin (1993) does offer five basic components of a research design:

  • A study's questions.
  • A study's propositions (if any).
  • A study's units of analysis.
  • The logic that links the data to the propositions.
  • The criteria for interpreting the findings.

In addition to these five basic components, Yin also stresses the importance of clearly articulating one's theoretical perspective, determining the goals of the study, selecting one's subject(s), selecting the appropriate method(s) of collecting data, and providing some considerations to the composition of the final report.

Conducting Case Studies

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of approaches and methods. These approaches, methods, and related issues are discussed in depth in this section.

Method: Single or Multi-modal?

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of methods. Some common methods include interviews , protocol analyses, field studies, and participant-observations. Emig (1971) chose to use several methods of data collection. Her sources included conversations with the students, protocol analysis, discrete observations of actual composition, writing samples from each student, and school records (Lauer and Asher 1988).

Berkenkotter, Huckin, and Ackerman (1988) collected data by observing classrooms, conducting faculty and student interviews, collecting self reports from the subject, and by looking at the subject's written work.

A study that was criticized for using a single method model was done by Flower and Hayes (1984). In this study that explores the ways in which writers use different forms of knowing to create space, the authors used only protocol analysis to gather data. The study came under heavy fire because of their decision to use only one method.

Participant Selection

Case studies can use one participant, or a small group of participants. However, it is important that the participant pool remain relatively small. The participants can represent a diverse cross section of society, but this isn't necessary.

For example, the Berkenkotter, Huckin, and Ackerman (1988) study looked at just one participant, Nate. By contrast, in Janet Emig's (1971) study of the composition process of twelfth graders, eight participants were selected representing a diverse cross section of the community, with volunteers from an all-white upper-middle-class suburban school, an all-black inner-city school, a racially mixed lower-middle-class school, an economically and racially mixed school, and a university school.

Often, a brief "case history" is done on the participants of the study in order to provide researchers with a clearer understanding of their participants, as well as some insight as to how their own personal histories might affect the outcome of the study. For instance, in Emig's study, the investigator had access to the school records of five of the participants, and to standardized test scores for the remaining three. Also made available to the researcher was the information that three of the eight students were selected as NCTE Achievement Award winners. These personal histories can be useful in later stages of the study when data are being analyzed and conclusions drawn.

Data Collection

There are six types of data collected in case studies:

  • Archival records.
  • Interviews.
  • Direct observation.
  • Participant observation.

In the field of composition research, these six sources might be:

  • A writer's drafts.
  • School records of student writers.
  • Transcripts of interviews with a writer.
  • Transcripts of conversations between writers (and protocols).
  • Videotapes and notes from direct field observations.
  • Hard copies of a writer's work on computer.

Depending on whether researchers have chosen to use a single or multi-modal approach for the case study, they may choose to collect data from one or any combination of these sources.

Protocols, that is, transcriptions of participants talking aloud about what they are doing as they do it, have been particularly common in composition case studies. For example, in Emig's (1971) study, the students were asked, in four different sessions, to give oral autobiographies of their writing experiences and to compose aloud three themes in the presence of a tape recorder and the investigator.

In some studies, only one method of data collection is conducted. For example, the Flower and Hayes (1981) report on the cognitive process theory of writing depends on protocol analysis alone. However, using multiple sources of evidence to increase the reliability and validity of the data can be advantageous.

Case studies are likely to be much more convincing and accurate if they are based on several different sources of information, following a corroborating mode. This conclusion is echoed among many composition researchers. For example, in her study of predrafting processes of high and low-apprehensive writers, Cynthia Selfe (1985) argues that because "methods of indirect observation provide only an incomplete reflection of the complex set of processes involved in composing, a combination of several such methods should be used to gather data in any one study." Thus, in this study, Selfe collected her data from protocols, observations of students role playing their writing processes, audio taped interviews with the students, and videotaped observations of the students in the process of composing.

It can be said then, that cross checking data from multiple sources can help provide a multidimensional profile of composing activities in a particular setting. Sharan Merriam (1985) suggests "checking, verifying, testing, probing, and confirming collected data as you go, arguing that this process will follow in a funnel-like design resulting in less data gathering in later phases of the study along with a congruent increase in analysis checking, verifying, and confirming."

It is important to note that in case studies, as in any qualitative descriptive research, while researchers begin their studies with one or several questions driving the inquiry (which influence the key factors the researcher will be looking for during data collection), a researcher may find new key factors emerging during data collection. These might be unexpected patterns or linguistic features which become evident only during the course of the research. While not bearing directly on the researcher's guiding questions, these variables may become the basis for new questions asked at the end of the report, thus linking to the possibility of further research.

Data Analysis

As the information is collected, researchers strive to make sense of their data. Generally, researchers interpret their data in one of two ways: holistically or through coding. Holistic analysis does not attempt to break the evidence into parts, but rather to draw conclusions based on the text as a whole. Flower and Hayes (1981), for example, make inferences from entire sections of their students' protocols, rather than searching through the transcripts to look for isolatable characteristics.

However, composition researchers commonly interpret their data by coding, that is by systematically searching data to identify and/or categorize specific observable actions or characteristics. These observable actions then become the key variables in the study. Sharan Merriam (1988) suggests seven analytic frameworks for the organization and presentation of data:

  • The role of participants.
  • The network analysis of formal and informal exchanges among groups.
  • Historical.
  • Thematical.
  • Ritual and symbolism.
  • Critical incidents that challenge or reinforce fundamental beliefs, practices, and values.

There are two purposes of these frameworks: to look for patterns among the data and to look for patterns that give meaning to the case study.

As stated above, while most researchers begin their case studies expecting to look for particular observable characteristics, it is not unusual for key variables to emerge during data collection. Typical variables coded in case studies of writers include pauses writers make in the production of a text, the use of specific linguistic units (such as nouns or verbs), and writing processes (planning, drafting, revising, and editing). In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, researchers coded the participant's texts for use of connectives, discourse demonstratives, average sentence length, off-register words, use of the first person pronoun, and the ratio of definite articles to indefinite articles.

Since coding is inherently subjective, more than one coder is usually employed. In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, three rhetoricians were employed to code the participant's texts for off-register phrases. The researchers established the agreement among the coders before concluding that the participant used fewer off-register words as the graduate program progressed.

Composing the Case Study Report

In the many forms it can take, "a case study is generically a story; it presents the concrete narrative detail of actual, or at least realistic events, it has a plot, exposition, characters, and sometimes even dialogue" (Boehrer 1990). Generally, case study reports are extensively descriptive, with "the most problematic issue often referred to as being the determination of the right combination of description and analysis" (1990). Typically, authors address each step of the research process, and attempt to give the reader as much context as possible for the decisions made in the research design and for the conclusions drawn.

This contextualization usually includes a detailed explanation of the researchers' theoretical positions, of how those theories drove the inquiry or led to the guiding research questions, of the participants' backgrounds, of the processes of data collection, of the training and limitations of the coders, along with a strong attempt to make connections between the data and the conclusions evident.

Although the Berkenkotter, Huckin, and Ackerman (1988) study does not, case study reports often include the reactions of the participants to the study or to the researchers' conclusions. Because case studies tend to be exploratory, most end with implications for further study. Here researchers may identify significant variables that emerged during the research and suggest studies related to these, or the authors may suggest further general questions that their case study generated.

For example, Emig's (1971) study concludes with a section dedicated solely to the topic of implications for further research, in which she suggests several means by which this particular study could have been improved, as well as questions and ideas raised by this study which other researchers might like to address, such as: is there a correlation between a certain personality and a certain composing process profile (e.g. is there a positive correlation between ego strength and persistence in revising)?

Also included in Emig's study is a section dedicated to implications for teaching, which outlines the pedagogical ramifications of the study's findings for teachers currently involved in high school writing programs.

Sharan Merriam (1985) also offers several suggestions for alternative presentations of data:

  • Prepare specialized condensations for appropriate groups.
  • Replace narrative sections with a series of answers to open-ended questions.
  • Present "skimmer's" summaries at beginning of each section.
  • Incorporate headlines that encapsulate information from text.
  • Prepare analytic summaries with supporting data appendixes.
  • Present data in colorful and/or unique graphic representations.

Issues of Validity and Reliability

Once key variables have been identified, they can be analyzed. Reliability becomes a key concern at this stage, and many case study researchers go to great lengths to ensure that their interpretations of the data will be both reliable and valid. Because issues of validity and reliability are an important part of any study in the social sciences, it is important to identify some ways of dealing with results.

Multi-modal case study researchers often balance the results of their coding with data from interviews or writer's reflections upon their own work. Consequently, the researchers' conclusions become highly contextualized. For example, in a case study which looked at the time spent in different stages of the writing process, Berkenkotter concluded that her participant, Donald Murray, spent more time planning his essays than in other writing stages. The report of this case study is followed by Murray's reply, wherein he agrees with some of Berkenkotter's conclusions and disagrees with others.

As is the case with other research methodologies, issues of external validity, construct validity, and reliability need to be carefully considered.

Commentary on Case Studies

Researchers often debate the relative merits of particular methods, among them case study. In this section, we comment on two key issues. To read the commentaries, choose any of the items below:

Strengths and Weaknesses of Case Studies

Most case study advocates point out that case studies produce much more detailed information than what is available through a statistical analysis. Advocates will also hold that while statistical methods might be able to deal with situations where behavior is homogeneous and routine, case studies are needed to deal with creativity, innovation, and context. Detractors argue that case studies are difficult to generalize because of inherent subjectivity and because they are based on qualitative subjective data, generalizable only to a particular context.

Flexibility

The case study approach is a comparatively flexible method of scientific research. Because its project designs seem to emphasize exploration rather than prescription or prediction, researchers are comparatively freer to discover and address issues as they arise in their experiments. In addition, the looser format of case studies allows researchers to begin with broad questions and narrow their focus as their experiment progresses rather than attempt to predict every possible outcome before the experiment is conducted.

Emphasis on Context

By seeking to understand as much as possible about a single subject or small group of subjects, case studies specialize in "deep data," or "thick description"--information based on particular contexts that can give research results a more human face. This emphasis can help bridge the gap between abstract research and concrete practice by allowing researchers to compare their firsthand observations with the quantitative results obtained through other methods of research.

Inherent Subjectivity

"The case study has long been stereotyped as the weak sibling among social science methods," and is often criticized as being too subjective and even pseudo-scientific. Likewise, "investigators who do case studies are often regarded as having deviated from their academic disciplines, and their investigations as having insufficient precision (that is, quantification), objectivity and rigor" (Yin 1989). Opponents cite opportunities for subjectivity in the implementation, presentation, and evaluation of case study research. The approach relies on personal interpretation of data and inferences. Results may not be generalizable, are difficult to test for validity, and rarely offer a problem-solving prescription. Simply put, relying on one or a few subjects as a basis for cognitive extrapolations runs the risk of inferring too much from what might be circumstance.

High Investment

Case studies can involve learning more about the subjects being tested than most researchers would care to know--their educational background, emotional background, perceptions of themselves and their surroundings, their likes, dislikes, and so on. Because of its emphasis on "deep data," the case study is out of reach for many large-scale research projects which look at a subject pool in the tens of thousands. A budget request of $10,000 to examine 200 subjects sounds more efficient than a similar request to examine four subjects.

Ethical Considerations

Researchers conducting case studies should consider certain ethical issues. For example, many educational case studies are often financed by people who have, either directly or indirectly, power over both those being studied and those conducting the investigation (1985). This conflict of interests can hinder the credibility of the study.

The personal integrity, sensitivity, and possible prejudices and/or biases of the investigators need to be taken into consideration as well. Personal biases can creep into how the research is conducted, alternative research methods used, and the preparation of surveys and questionnaires.

A common complaint in case study research is that investigators change direction during the course of the study unaware that their original research design was inadequate for the revised investigation. Thus, the researchers leave unknown gaps and biases in the study. To avoid this, researchers should report preliminary findings so that the likelihood of bias will be reduced.

Concerns about Reliability, Validity, and Generalizability

Merriam (1985) offers several suggestions for how case study researchers might actively combat the popular attacks on the validity, reliability, and generalizability of case studies:

  • Prolong the Processes of Data Gathering on Site: This will help to insure the accuracy of the findings by providing the researcher with more concrete information upon which to formulate interpretations.
  • Employ the Process of "Triangulation": Use a variety of data sources as opposed to relying solely upon one avenue of observation. One example of such a data check would be what McClintock, Brannon, and Maynard (1985) refer to as a "case cluster method," that is, when a single unit within a larger case is randomly sampled, and that data treated quantitatively." For instance, in Emig's (1971) study, the case cluster method was employed, singling out the productivity of a single student named Lynn. This cluster profile included an advanced case history of the subject, specific examination and analysis of individual compositions and protocols, and extensive interview sessions. The seven remaining students were then compared with the case of Lynn, to ascertain if there are any shared, or unique dimensions to the composing process engaged in by these eight students.
  • Conduct Member Checks: Initiate and maintain an active corroboration on the interpretation of data between the researcher and those who provided the data. In other words, talk to your subjects.
  • Collect Referential Materials: Complement the file of materials from the actual site with additional document support. For example, Emig (1971) supports her initial propositions with historical accounts by writers such as T.S. Eliot, James Joyce, and D.H. Lawrence. Emig also cites examples of theoretical research done with regards to the creative process, as well as examples of empirical research dealing with the writing of adolescents. Specific attention is then given to the four stages description of the composing process delineated by Helmoltz, Wallas, and Cowley, as it serves as the focal point in this study.
  • Engage in Peer Consultation: Prior to composing the final draft of the report, researchers should consult with colleagues in order to establish validity through pooled judgment.

Although little can be done to combat challenges concerning the generalizability of case studies, "most writers suggest that qualitative research should be judged as credible and confirmable as opposed to valid and reliable" (Merriam 1985). Likewise, it has been argued that "rather than transplanting statistical, quantitative notions of generalizability and thus finding qualitative research inadequate, it makes more sense to develop an understanding of generalization that is congruent with the basic characteristics of qualitative inquiry" (1985). After all, criticizing the case study method for being ungeneralizable is comparable to criticizing a washing machine for not being able to tell the correct time. In other words, it is unjust to criticize a method for not being able to do something which it was never originally designed to do in the first place.

Annotated Bibliography

Armisted, C. (1984). How Useful are Case Studies. Training and Development Journal, 38 (2), 75-77.

This article looks at eight types of case studies, offers pros and cons of using case studies in the classroom, and gives suggestions for successfully writing and using case studies.

Bardovi-Harlig, K. (1997). Beyond Methods: Components of Second Language Teacher Education . New York: McGraw-Hill.

A compilation of various research essays which address issues of language teacher education. Essays included are: "Non-native reading research and theory" by Lee, "The case for Psycholinguistics" by VanPatten, and "Assessment and Second Language Teaching" by Gradman and Reed.

Bartlett, L. (1989). A Question of Good Judgment; Interpretation Theory and Qualitative Enquiry Address. 70th Annual Meeting of the American Educational Research Association. San Francisco.

Bartlett selected "quasi-historical" methodology, which focuses on the "truth" found in case records, as one that will provide "good judgments" in educational inquiry. He argues that although the method is not comprehensive, it can try to connect theory with practice.

Baydere, S. et. al. (1993). Multimedia conferencing as a tool for collaborative writing: a case study in Computer Supported Collaborative Writing. New York: Springer-Verlag.

The case study by Baydere et. al. is just one of the many essays in this book found in the series "Computer Supported Cooperative Work." Denley, Witefield and May explore similar issues in their essay, "A case study in task analysis for the design of a collaborative document production system."

Berkenkotter, C., Huckin, T., N., & Ackerman J. (1988). Conventions, Conversations, and the Writer: Case Study of a Student in a Rhetoric Ph.D. Program. Research in the Teaching of English, 22, 9-44.

The authors focused on how the writing of their subject, Nate or Ackerman, changed as he became more acquainted or familiar with his field's discourse community.

Berninger, V., W., and Gans, B., M. (1986). Language Profiles in Nonspeaking Individuals of Normal Intelligence with Severe Cerebral Palsy. Augmentative and Alternative Communication, 2, 45-50.

Argues that generalizations about language abilities in patients with severe cerebral palsy (CP) should be avoided. Standardized tests of different levels of processing oral language, of processing written language, and of producing written language were administered to 3 male participants (aged 9, 16, and 40 yrs).

Bockman, J., R., and Couture, B. (1984). The Case Method in Technical Communication: Theory and Models. Texas: Association of Teachers of Technical Writing.

Examines the study and teaching of technical writing, communication of technical information, and the case method in terms of those applications.

Boehrer, J. (1990). Teaching With Cases: Learning to Question. New Directions for Teaching and Learning, 42 41-57.

This article discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for the case discussion, including the role of the question, and new directions for case teaching.

Bowman, W. R. (1993). Evaluating JTPA Programs for Economically Disadvantaged Adults: A Case Study of Utah and General Findings . Washington: National Commission for Employment Policy.

"To encourage state-level evaluations of JTPA, the Commission and the State of Utah co-sponsored this report on the effectiveness of JTPA Title II programs for adults in Utah. The technique used is non-experimental and the comparison group was selected from registrants with Utah's Employment Security. In a step-by-step approach, the report documents how non-experimental techniques can be applied and several specific technical issues can be addressed."

Boyce, A. (1993) The Case Study Approach for Pedagogists. Annual Meeting of the American Alliance for Health, Physical Education, Recreation and Dance. (Address). Washington DC.

This paper addresses how case studies 1) bridge the gap between teaching theory and application, 2) enable students to analyze problems and develop solutions for situations that will be encountered in the real world of teaching, and 3) helps students to evaluate the feasibility of alternatives and to understand the ramifications of a particular course of action.

Carson, J. (1993) The Case Study: Ideal Home of WAC Quantitative and Qualitative Data. Annual Meeting of the Conference on College Composition and Communication. (Address). San Diego.

"Increasingly, one of the most pressing questions for WAC advocates is how to keep [WAC] programs going in the face of numerous difficulties. Case histories offer the best chance for fashioning rhetorical arguments to keep WAC programs going because they offer the opportunity to provide a coherent narrative that contextualizes all documents and data, including what is generally considered scientific data. A case study of the WAC program, . . . at Robert Morris College in Pittsburgh demonstrates the advantages of this research method. Such studies are ideal homes for both naturalistic and positivistic data as well as both quantitative and qualitative information."

---. (1991). A Cognitive Process Theory of Writing. College Composition and Communication. 32. 365-87.

No abstract available.

Cromer, R. (1994) A Case Study of Dissociations Between Language and Cognition. Constraints on Language Acquisition: Studies of Atypical Children . Hillsdale: Lawrence Erlbaum Associates, 141-153.

Crossley, M. (1983) Case Study in Comparative and International Education: An Approach to Bridging the Theory-Practice Gap. Proceedings of the 11th Annual Conference of the Australian Comparative and International Education Society. Hamilton, NZ.

Case study research, as presented here, helps bridge the theory-practice gap in comparative and international research studies of education because it focuses on the practical, day-to-day context rather than on the national arena. The paper asserts that the case study method can be valuable at all levels of research, formation, and verification of theories in education.

Daillak, R., H., and Alkin, M., C. (1982). Qualitative Studies in Context: Reflections on the CSE Studies of Evaluation Use . California: EDRS

The report shows how the Center of the Study of Evaluation (CSE) applied qualitative techniques to a study of evaluation information use in local, Los Angeles schools. It critiques the effectiveness and the limitations of using case study, evaluation, field study, and user interview survey methodologies.

Davey, L. (1991). The Application of Case Study Evaluations. ERIC/TM Digest.

This article examines six types of case studies, the type of evaluation questions that can be answered, the functions served, some design features, and some pitfalls of the method.

Deutch, C. E. (1996). A course in research ethics for graduate students. College Teaching, 44, 2, 56-60.

This article describes a one-credit discussion course in research ethics for graduate students in biology. Case studies are focused on within the four parts of the course: 1) major issues, 2 )practical issues in scholarly work, 3) ownership of research results, and 4) training and personal decisions.

DeVoss, G. (1981). Ethics in Fieldwork Research. RIE 27p. (ERIC)

This article examines four of the ethical problems that can happen when conducting case study research: acquiring permission to do research, knowing when to stop digging, the pitfalls of doing collaborative research, and preserving the integrity of the participants.

Driscoll, A. (1985). Case Study of a Research Intervention: the University of Utah’s Collaborative Approach . San Francisco: Far West Library for Educational Research Development.

Paper presented at the annual meeting of the American Association of Colleges of Teacher Education, Denver, CO, March 1985. Offers information of in-service training, specifically case studies application.

Ellram, L. M. (1996). The Use of the Case Study Method in Logistics Research. Journal of Business Logistics, 17, 2, 93.

This article discusses the increased use of case study in business research, and the lack of understanding of when and how to use case study methodology in business.

Emig, J. (1971) The Composing Processes of Twelfth Graders . Urbana: NTCE.

This case study uses observation, tape recordings, writing samples, and school records to show that writing in reflexive and extensive situations caused different lengths of discourse and different clusterings of the components of the writing process.

Feagin, J. R. (1991). A Case For the Case Study . Chapel Hill: The University of North Carolina Press.

This book discusses the nature, characteristics, and basic methodological issues of the case study as a research method.

Feldman, H., Holland, A., & Keefe, K. (1989) Language Abilities after Left Hemisphere Brain Injury: A Case Study of Twins. Topics in Early Childhood Special Education, 9, 32-47.

"Describes the language abilities of 2 twin pairs in which 1 twin (the experimental) suffered brain injury to the left cerebral hemisphere around the time of birth and1 twin (the control) did not. One pair of twins was initially assessed at age 23 mo. and the other at about 30 mo.; they were subsequently evaluated in their homes 3 times at about 6-mo intervals."

Fidel, R. (1984). The Case Study Method: A Case Study. Library and Information Science Research, 6.

The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

Flower, L., & Hayes, J. R. (1984). Images, Plans and Prose: The Representation of Meaning in Writing. Written Communication, 1, 120-160.

Explores the ways in which writers actually use different forms of knowing to create prose.

Frey, L. R. (1992). Interpreting Communication Research: A Case Study Approach Englewood Cliffs, N.J.: Prentice Hall.

The book discusses research methodologies in the Communication field. It focuses on how case studies bridge the gap between communication research, theory, and practice.

Gilbert, V. K. (1981). The Case Study as a Research Methodology: Difficulties and Advantages of Integrating the Positivistic, Phenomenological and Grounded Theory Approaches . The Annual Meeting of the Canadian Association for the Study of Educational Administration. (Address) Halifax, NS, Can.

This study on an innovative secondary school in England shows how a "low-profile" participant-observer case study was crucial to the initial observation, the testing of hypotheses, the interpretive approach, and the grounded theory.

Gilgun, J. F. (1994). A Case for Case Studies in Social Work Research. Social Work, 39, 4, 371-381.

This article defines case study research, presents guidelines for evaluation of case studies, and shows the relevance of case studies to social work research. It also looks at issues such as evaluation and interpretations of case studies.

Glennan, S. L., Sharp-Bittner, M. A. & Tullos, D. C. (1991). Augmentative and Alternative Communication Training with a Nonspeaking Adult: Lessons from MH. Augmentative and Alternative Communication, 7, 240-7.

"A response-guided case study documented changes in a nonspeaking 36-yr-old man's ability to communicate using 3 trained augmentative communication modes. . . . Data were collected in videotaped interaction sessions between the nonspeaking adult and a series of adult speaking."

Graves, D. (1981). An Examination of the Writing Processes of Seven Year Old Children. Research in the Teaching of English, 15, 113-134.

Hamel, J. (1993). Case Study Methods . Newbury Park: Sage. .

"In a most economical fashion, Hamel provides a practical guide for producing theoretically sharp and empirically sound sociological case studies. A central idea put forth by Hamel is that case studies must "locate the global in the local" thus making the careful selection of the research site the most critical decision in the analytic process."

Karthigesu, R. (1986, July). Television as a Tool for Nation-Building in the Third World: A Post-Colonial Pattern, Using Malaysia as a Case-Study. International Television Studies Conference. (Address). London, 10-12.

"The extent to which Television Malaysia, as a national mass media organization, has been able to play a role in nation building in the post-colonial period is . . . studied in two parts: how the choice of a model of nation building determines the character of the organization; and how the character of the organization influences the output of the organization."

Kenny, R. (1984). Making the Case for the Case Study. Journal of Curriculum Studies, 16, (1), 37-51.

The article looks at how and why the case study is justified as a viable and valuable approach to educational research and program evaluation.

Knirk, F. (1991). Case Materials: Research and Practice. Performance Improvement Quarterly, 4 (1 ), 73-81.

The article addresses the effectiveness of case studies, subject areas where case studies are commonly used, recent examples of their use, and case study design considerations.

Klos, D. (1976). Students as Case Writers. Teaching of Psychology, 3.2, 63-66.

This article reviews a course in which students gather data for an original case study of another person. The task requires the students to design the study, collect the data, write the narrative, and interpret the findings.

Leftwich, A. (1981). The Politics of Case Study: Problems of Innovation in University Education. Higher Education Review, 13.2, 38-64.

The article discusses the use of case studies as a teaching method. Emphasis is on the instructional materials, interdisciplinarity, and the complex relationships within the university that help or hinder the method.

Mabrito, M. (1991, Oct.). Electronic Mail as a Vehicle for Peer Response: Conversations of High and Low Apprehensive Writers. Written Communication, 509-32.

McCarthy, S., J. (1955). The Influence of Classroom Discourse on Student Texts: The Case of Ella . East Lansing: Institute for Research on Teaching.

A look at how students of color become marginalized within traditional classroom discourse. The essay follows the struggles of one black student: Ella.

Matsuhashi, A., ed. (1987). Writing in Real Time: Modeling Production Processes Norwood, NJ: Ablex Publishing Corporation.

Investigates how writers plan to produce discourse for different purposes to report, to generalize, and to persuade, as well as how writers plan for sentence level units of language. To learn about planning, an observational measure of pause time was used" (ERIC).

Merriam, S. B. (1985). The Case Study in Educational Research: A Review of Selected Literature. Journal of Educational Thought, 19.3, 204-17.

The article examines the characteristics of, philosophical assumptions underlying the case study, the mechanics of conducting a case study, and the concerns about the reliability, validity, and generalizability of the method.

---. (1988). Case Study Research in Education: A Qualitative Approach San Francisco: Jossey Bass.

Merry, S. E., & Milner, N. eds. (1993). The Possibility of Popular Justice: A Case Study of Community Mediation in the United States . Ann Arbor: U of Michigan.

". . . this volume presents a case study of one experiment in popular justice, the San Francisco Community Boards. This program has made an explicit claim to create an alternative justice, or new justice, in the midst of a society ordered by state law. The contributors to this volume explore the history and experience of the program and compare it to other versions of popular justice in the United States, Europe, and the Third World."

Merseth, K. K. (1991). The Case for Cases in Teacher Education. RIE. 42p. (ERIC).

This monograph argues that the case method of instruction offers unique potential for revitalizing the field of teacher education.

Michaels, S. (1987). Text and Context: A New Approach to the Study of Classroom Writing. Discourse Processes, 10, 321-346.

"This paper argues for and illustrates an approach to the study of writing that integrates ethnographic analysis of classroom interaction with linguistic analysis of written texts and teacher/student conversational exchanges. The approach is illustrated through a case study of writing in a single sixth grade classroom during a single writing assignment."

Milburn, G. (1995). Deciphering a Code or Unraveling a Riddle: A Case Study in the Application of a Humanistic Metaphor to the Reporting of Social Studies Teaching. Theory and Research in Education, 13.

This citation serves as an example of how case studies document learning procedures in a senior-level economics course.

Milley, J. E. (1979). An Investigation of Case Study as an Approach to Program Evaluation. 19th Annual Forum of the Association for Institutional Research. (Address). San Diego.

The case study method merged a narrative report focusing on the evaluator as participant-observer with document review, interview, content analysis, attitude questionnaire survey, and sociogram analysis. Milley argues that case study program evaluation has great potential for widespread use.

Minnis, J. R. (1985, Sept.). Ethnography, Case Study, Grounded Theory, and Distance Education Research. Distance Education, 6.2.

This article describes and defines the strengths and weaknesses of ethnography, case study, and grounded theory.

Nunan, D. (1992). Collaborative language learning and teaching . New York: Cambridge University Press.

Included in this series of essays is Peter Sturman’s "Team Teaching: a case study from Japan" and David Nunan’s own "Toward a collaborative approach to curriculum development: a case study."

Nystrand, M., ed. (1982). What Writers Know: The Language, Process, and Structure of Written Discourse . New York: Academic Press.

Owenby, P. H. (1992). Making Case Studies Come Alive. Training, 29, (1), 43-46. (ERIC)

This article provides tips for writing more effective case studies.

---. (1981). Pausing and Planning: The Tempo of Writer Discourse Production. Research in the Teaching of English, 15 (2),113-34.

Perl, S. (1979). The Composing Processes of Unskilled College Writers. Research in the Teaching of English, 13, 317-336.

"Summarizes a study of five unskilled college writers, focusing especially on one of the five, and discusses the findings in light of current pedagogical practice and research design."

Pilcher J. and A. Coffey. eds. (1996). Gender and Qualitative Research . Brookfield: Aldershot, Hants, England.

This book provides a series of essays which look at gender identity research, qualitative research and applications of case study to questions of gendered pedagogy.

Pirie, B. S. (1993). The Case of Morty: A Four Year Study. Gifted Education International, 9 (2), 105-109.

This case study describes a boy from kindergarten through third grade with above average intelligence but difficulty in learning to read, write, and spell.

Popkewitz, T. (1993). Changing Patterns of Power: Social Regulation and Teacher Education Reform. Albany: SUNY Press.

Popkewitz edits this series of essays that address case studies on educational change and the training of teachers. The essays vary in terms of discipline and scope. Also, several authors include case studies of educational practices in countries other than the United States.

---. (1984). The Predrafting Processes of Four High- and Four Low Apprehensive Writers. Research in the Teaching of English, 18, (1), 45-64.

Rasmussen, P. (1985, March) A Case Study on the Evaluation of Research at the Technical University of Denmark. International Journal of Institutional Management in Higher Education, 9 (1).

This is an example of a case study methodology used to evaluate the chemistry and chemical engineering departments at the University of Denmark.

Roth, K. J. (1986). Curriculum Materials, Teacher Talk, and Student Learning: Case Studies in Fifth-Grade Science Teaching . East Lansing: Institute for Research on Teaching.

Roth offers case studies on elementary teachers, elementary school teaching, science studies and teaching, and verbal learning.

Selfe, C. L. (1985). An Apprehensive Writer Composes. When a Writer Can't Write: Studies in Writer's Block and Other Composing-Process Problems . (pp. 83-95). Ed. Mike Rose. NMY: Guilford.

Smith-Lewis, M., R. and Ford, A. (1987). A User's Perspective on Augmentative Communication. Augmentative and Alternative Communication, 3, 12-7.

"During a series of in-depth interviews, a 25-yr-old woman with cerebral palsy who utilized augmentative communication reflected on the effectiveness of the devices designed for her during her school career."

St. Pierre, R., G. (1980, April). Follow Through: A Case Study in Metaevaluation Research . 64th Annual Meeting of the American Educational Research Association. (Address).

The three approaches to metaevaluation are evaluation of primary evaluations, integrative meta-analysis with combined primary evaluation results, and re-analysis of the raw data from a primary evaluation.

Stahler, T., M. (1996, Feb.) Early Field Experiences: A Model That Worked. ERIC.

"This case study of a field and theory class examines a model designed to provide meaningful field experiences for preservice teachers while remaining consistent with the instructor's beliefs about the role of teacher education in preparing teachers for the classroom."

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks: Sage Publications.

This book examines case study research in education and case study methodology.

Stiegelbauer, S. (1984) Community, Context, and Co-curriculum: Situational Factors Influencing School Improvements in a Study of High Schools. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Discussion of several case studies: one looking at high school environments, another examining educational innovations.

Stolovitch, H. (1990). Case Study Method. Performance And Instruction, 29, (9), 35-37.

This article describes the case study method as a form of simulation and presents guidelines for their use in professional training situations.

Thaller, E. (1994). Bibliography for the Case Method: Using Case Studies in Teacher Education. RIE. 37 p.

This bibliography presents approximately 450 citations on the use of case studies in teacher education from 1921-1993.

Thrane, T. (1986). On Delimiting the Senses of Near-Synonyms in Historical Semantics: A Case Study of Adjectives of 'Moral Sufficiency' in the Old English Andreas. Linguistics Across Historical and Geographical Boundaries: In Honor of Jacek Fisiak on the Occasion of his Fiftieth Birthday . Berlin: Mouton de Gruyter.

United Nations. (1975). Food and Agriculture Organization. Report on the FAO/UNFPA Seminar on Methodology, Research and Country: Case Studies on Population, Employment and Productivity . Rome: United Nations.

This example case study shows how the methodology can be used in a demographic and psychographic evaluation. At the same time, it discusses the formation and instigation of the case study methodology itself.

Van Vugt, J. P., ed. (1994). Aids Prevention and Services: Community Based Research . Westport: Bergin and Garvey.

"This volume has been five years in the making. In the process, some of the policy applications called for have met with limited success, such as free needle exchange programs in a limited number of American cities, providing condoms to prison inmates, and advertisements that depict same-sex couples. Rather than dating our chapters that deal with such subjects, such policy applications are verifications of the type of research demonstrated here. Furthermore, they indicate the critical need to continue community based research in the various communities threatened by acquired immuno-deficiency syndrome (AIDS) . . . "

Welch, W., ed. (1981, May). Case Study Methodology in Educational Evaluation. Proceedings of the Minnesota Evaluation Conference. Minnesota. (Address).

The four papers in these proceedings provide a comprehensive picture of the rationale, methodology, strengths, and limitations of case studies.

Williams, G. (1987). The Case Method: An Approach to Teaching and Learning in Educational Administration. RIE, 31p.

This paper examines the viability of the case method as a teaching and learning strategy in instructional systems geared toward the training of personnel of the administration of various aspects of educational systems.

Yin, R. K. (1993). Advancing Rigorous Methodologies: A Review of 'Towards Rigor in Reviews of Multivocal Literatures.' Review of Educational Research, 61, (3).

"R. T. Ogawa and B. Malen's article does not meet its own recommended standards for rigorous testing and presentation of its own conclusions. Use of the exploratory case study to analyze multivocal literatures is not supported, and the claim of grounded theory to analyze multivocal literatures may be stronger."

---. (1989). Case Study Research: Design and Methods. London: Sage Publications Inc.

This book discusses in great detail, the entire design process of the case study, including entire chapters on collecting evidence, analyzing evidence, composing the case study report, and designing single and multiple case studies.

Related Links

Consider the following list of related Web sites for more information on the topic of case study research. Note: although many of the links cover the general category of qualitative research, all have sections that address issues of case studies.

  • Sage Publications on Qualitative Methodology: Search here for a comprehensive list of new books being published about "Qualitative Methodology" http://www.sagepub.co.uk/
  • The International Journal of Qualitative Studies in Education: An on-line journal "to enhance the theory and practice of qualitative research in education." On-line submissions are welcome. http://www.tandf.co.uk/journals/tf/09518398.html
  • Qualitative Research Resources on the Internet: From syllabi to home pages to bibliographies. All links relate somehow to qualitative research. http://www.nova.edu/ssss/QR/qualres.html

Becker, Bronwyn, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon Leydens, Debbie Matuskevich, Carol Traver, & Mike Palmquist. (2005). Case Studies. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=60

  • Descriptive Research Designs: Types, Examples & Methods

busayo.longe

One of the components of research is getting enough information about the research problem—the what, how, when and where answers, which is why descriptive research is an important type of research. It is very useful when conducting research whose aim is to identify characteristics, frequencies, trends, correlations, and categories.

This research method takes a problem with little to no relevant information and gives it a befitting description using qualitative and quantitative research method s. Descriptive research aims to accurately describe a research problem.

In the subsequent sections, we will be explaining what descriptive research means, its types, examples, and data collection methods.

What is Descriptive Research?

Descriptive research is a type of research that describes a population, situation, or phenomenon that is being studied. It focuses on answering the how, what, when, and where questions If a research problem, rather than the why.

This is mainly because it is important to have a proper understanding of what a research problem is about before investigating why it exists in the first place. 

For example, an investor considering an investment in the ever-changing Amsterdam housing market needs to understand what the current state of the market is, how it changes (increasing or decreasing), and when it changes (time of the year) before asking for the why. This is where descriptive research comes in.

What Are The Types of Descriptive Research?

Descriptive research is classified into different types according to the kind of approach that is used in conducting descriptive research. The different types of descriptive research are highlighted below:

  • Descriptive-survey

Descriptive survey research uses surveys to gather data about varying subjects. This data aims to know the extent to which different conditions can be obtained among these subjects.

For example, a researcher wants to determine the qualification of employed professionals in Maryland. He uses a survey as his research instrument , and each item on the survey related to qualifications is subjected to a Yes/No answer. 

This way, the researcher can describe the qualifications possessed by the employed demographics of this community. 

  • Descriptive-normative survey

This is an extension of the descriptive survey, with the addition being the normative element. In the descriptive-normative survey, the results of the study should be compared with the norm.

For example, an organization that wishes to test the skills of its employees by a team may have them take a skills test. The skills tests are the evaluation tool in this case, and the result of this test is compared with the norm of each role.

If the score of the team is one standard deviation above the mean, it is very satisfactory, if within the mean, satisfactory, and one standard deviation below the mean is unsatisfactory.

  • Descriptive-status

This is a quantitative description technique that seeks to answer questions about real-life situations. For example, a researcher researching the income of the employees in a company, and the relationship with their performance.

A survey will be carried out to gather enough data about the income of the employees, then their performance will be evaluated and compared to their income. This will help determine whether a higher income means better performance and low income means lower performance or vice versa.

  • Descriptive-analysis

The descriptive-analysis method of research describes a subject by further analyzing it, which in this case involves dividing it into 2 parts. For example, the HR personnel of a company that wishes to analyze the job role of each employee of the company may divide the employees into the people that work at the Headquarters in the US and those that work from Oslo, Norway office.

A questionnaire is devised to analyze the job role of employees with similar salaries and who work in similar positions.

  • Descriptive classification

This method is employed in biological sciences for the classification of plants and animals. A researcher who wishes to classify the sea animals into different species will collect samples from various search stations, then classify them accordingly.

  • Descriptive-comparative

In descriptive-comparative research, the researcher considers 2 variables that are not manipulated, and establish a formal procedure to conclude that one is better than the other. For example, an examination body wants to determine the better method of conducting tests between paper-based and computer-based tests.

A random sample of potential participants of the test may be asked to use the 2 different methods, and factors like failure rates, time factors, and others will be evaluated to arrive at the best method.

  • Correlative Survey

Correlative surveys are used to determine whether the relationship between 2 variables is positive, negative, or neutral. That is, if 2 variables say X and Y are directly proportional, inversely proportional or are not related to each other.

Examples of Descriptive Research

There are different examples of descriptive research, that may be highlighted from its types, uses, and applications. However, we will be restricting ourselves to only 3 distinct examples in this article.

  • Comparing Student Performance:

An academic institution may wish 2 compare the performance of its junior high school students in English language and Mathematics. This may be used to classify students based on 2 major groups, with one group going ahead to study while courses, while the other study courses in the Arts & Humanities field.

Students who are more proficient in mathematics will be encouraged to go into STEM and vice versa. Institutions may also use this data to identify students’ weak points and work on ways to assist them.

  • Scientific Classification

During the major scientific classification of plants, animals, and periodic table elements, the characteristics and components of each subject are evaluated and used to determine how they are classified.

For example, living things may be classified into kingdom Plantae or kingdom animal is depending on their nature. Further classification may group animals into mammals, pieces, vertebrae, invertebrae, etc. 

All these classifications are made a result of descriptive research which describes what they are.

  • Human Behavior

When studying human behaviour based on a factor or event, the researcher observes the characteristics, behaviour, and reaction, then use it to conclude. A company willing to sell to its target market needs to first study the behaviour of the market.

This may be done by observing how its target reacts to a competitor’s product, then use it to determine their behaviour.

What are the Characteristics of Descriptive Research?  

The characteristics of descriptive research can be highlighted from its definition, applications, data collection methods, and examples. Some characteristics of descriptive research are:

  • Quantitativeness

Descriptive research uses a quantitative research method by collecting quantifiable information to be used for statistical analysis of the population sample. This is very common when dealing with research in the physical sciences.

  • Qualitativeness

It can also be carried out using the qualitative research method, to properly describe the research problem. This is because descriptive research is more explanatory than exploratory or experimental.

  • Uncontrolled variables

In descriptive research, researchers cannot control the variables like they do in experimental research.

  • The basis for further research

The results of descriptive research can be further analyzed and used in other research methods. It can also inform the next line of research, including the research method that should be used.

This is because it provides basic information about the research problem, which may give birth to other questions like why a particular thing is the way it is.

Why Use Descriptive Research Design?  

Descriptive research can be used to investigate the background of a research problem and get the required information needed to carry out further research. It is used in multiple ways by different organizations, and especially when getting the required information about their target audience.

  • Define subject characteristics :

It is used to determine the characteristics of the subjects, including their traits, behaviour, opinion, etc. This information may be gathered with the use of surveys, which are shared with the respondents who in this case, are the research subjects.

For example, a survey evaluating the number of hours millennials in a community spends on the internet weekly, will help a service provider make informed business decisions regarding the market potential of the community.

  • Measure Data Trends

It helps to measure the changes in data over some time through statistical methods. Consider the case of individuals who want to invest in stock markets, so they evaluate the changes in prices of the available stocks to make a decision investment decision.

Brokerage companies are however the ones who carry out the descriptive research process, while individuals can view the data trends and make decisions.

Descriptive research is also used to compare how different demographics respond to certain variables. For example, an organization may study how people with different income levels react to the launch of a new Apple phone.

This kind of research may take a survey that will help determine which group of individuals are purchasing the new Apple phone. Do the low-income earners also purchase the phone, or only the high-income earners do?

Further research using another technique will explain why low-income earners are purchasing the phone even though they can barely afford it. This will help inform strategies that will lure other low-income earners and increase company sales.

  • Validate existing conditions

When you are not sure about the validity of an existing condition, you can use descriptive research to ascertain the underlying patterns of the research object. This is because descriptive research methods make an in-depth analysis of each variable before making conclusions.

  • Conducted Overtime

Descriptive research is conducted over some time to ascertain the changes observed at each point in time. The higher the number of times it is conducted, the more authentic the conclusion will be.

What are the Disadvantages of Descriptive Research?  

  • Response and Non-response Bias

Respondents may either decide not to respond to questions or give incorrect responses if they feel the questions are too confidential. When researchers use observational methods, respondents may also decide to behave in a particular manner because they feel they are being watched.

  • The researcher may decide to influence the result of the research due to personal opinion or bias towards a particular subject. For example, a stockbroker who also has a business of his own may try to lure investors into investing in his own company by manipulating results.
  • A case-study or sample taken from a large population is not representative of the whole population.
  • Limited scope:The scope of descriptive research is limited to the what of research, with no information on why thereby limiting the scope of the research.

What are the Data Collection Methods in Descriptive Research?  

There are 3 main data collection methods in descriptive research, namely; observational method, case study method, and survey research.

1. Observational Method

The observational method allows researchers to collect data based on their view of the behaviour and characteristics of the respondent, with the respondents themselves not directly having an input. It is often used in market research, psychology, and some other social science research to understand human behaviour.

It is also an important aspect of physical scientific research, with it being one of the most effective methods of conducting descriptive research . This process can be said to be either quantitative or qualitative.

Quantitative observation involved the objective collection of numerical data , whose results can be analyzed using numerical and statistical methods. 

Qualitative observation, on the other hand, involves the monitoring of characteristics and not the measurement of numbers. The researcher makes his observation from a distance, records it, and is used to inform conclusions.

2. Case Study Method

A case study is a sample group (an individual, a group of people, organizations, events, etc.) whose characteristics are used to describe the characteristics of a larger group in which the case study is a subgroup. The information gathered from investigating a case study may be generalized to serve the larger group.

This generalization, may, however, be risky because case studies are not sufficient to make accurate predictions about larger groups. Case studies are a poor case of generalization.

3. Survey Research

This is a very popular data collection method in research designs. In survey research, researchers create a survey or questionnaire and distribute it to respondents who give answers.

Generally, it is used to obtain quick information directly from the primary source and also conducting rigorous quantitative and qualitative research. In some cases, survey research uses a blend of both qualitative and quantitative strategies.

Survey research can be carried out both online and offline using the following methods

  • Online Surveys: This is a cheap method of carrying out surveys and getting enough responses. It can be carried out using Formplus, an online survey builder. Formplus has amazing tools and features that will help increase response rates.
  • Offline Surveys: This includes paper forms, mobile offline forms , and SMS-based forms.

What Are The Differences Between Descriptive and Correlational Research?  

Before going into the differences between descriptive and correlation research, we need to have a proper understanding of what correlation research is about. Therefore, we will be giving a summary of the correlation research below.

Correlational research is a type of descriptive research, which is used to measure the relationship between 2 variables, with the researcher having no control over them. It aims to find whether there is; positive correlation (both variables change in the same direction), negative correlation (the variables change in the opposite direction), or zero correlation (there is no relationship between the variables).

Correlational research may be used in 2 situations;

(i) when trying to find out if there is a relationship between two variables, and

(ii) when a causal relationship is suspected between two variables, but it is impractical or unethical to conduct experimental research that manipulates one of the variables. 

Below are some of the differences between correlational and descriptive research:

  • Definitions :

Descriptive research aims is a type of research that provides an in-depth understanding of the study population, while correlational research is the type of research that measures the relationship between 2 variables. 

  • Characteristics :

Descriptive research provides descriptive data explaining what the research subject is about, while correlation research explores the relationship between data and not their description.

  • Predictions :

 Predictions cannot be made in descriptive research while correlation research accommodates the possibility of making predictions.

Descriptive Research vs. Causal Research

Descriptive research and causal research are both research methodologies, however, one focuses on a subject’s behaviors while the latter focuses on a relationship’s cause-and-effect. To buttress the above point, descriptive research aims to describe and document the characteristics, behaviors, or phenomena of a particular or specific population or situation. 

It focuses on providing an accurate and detailed account of an already existing state of affairs between variables. Descriptive research answers the questions of “what,” “where,” “when,” and “how” without attempting to establish any causal relationships or explain any underlying factors that might have caused the behavior.

Causal research, on the other hand, seeks to determine cause-and-effect relationships between variables. It aims to point out the factors that influence or cause a particular result or behavior. Causal research involves manipulating variables, controlling conditions or a subgroup, and observing the resulting effects. The primary objective of causal research is to establish a cause-effect relationship and provide insights into why certain phenomena happen the way they do.

Descriptive Research vs. Analytical Research

Descriptive research provides a detailed and comprehensive account of a specific situation or phenomenon. It focuses on describing and summarizing data without making inferences or attempting to explain underlying factors or the cause of the factor. 

It is primarily concerned with providing an accurate and objective representation of the subject of research. While analytical research goes beyond the description of the phenomena and seeks to analyze and interpret data to discover if there are patterns, relationships, or any underlying factors. 

It examines the data critically, applies statistical techniques or other analytical methods, and draws conclusions based on the discovery. Analytical research also aims to explore the relationships between variables and understand the underlying mechanisms or processes involved.

Descriptive Research vs. Exploratory Research

Descriptive research is a research method that focuses on providing a detailed and accurate account of a specific situation, group, or phenomenon. This type of research describes the characteristics, behaviors, or relationships within the given context without looking for an underlying cause. 

Descriptive research typically involves collecting and analyzing quantitative or qualitative data to generate descriptive statistics or narratives. Exploratory research differs from descriptive research because it aims to explore and gain firsthand insights or knowledge into a relatively unexplored or poorly understood topic. 

It focuses on generating ideas, hypotheses, or theories rather than providing definitive answers. Exploratory research is often conducted at the early stages of a research project to gather preliminary information and identify key variables or factors for further investigation. It involves open-ended interviews, observations, or small-scale surveys to gather qualitative data.

Read More – Exploratory Research: What are its Method & Examples?

Descriptive Research vs. Experimental Research

Descriptive research aims to describe and document the characteristics, behaviors, or phenomena of a particular population or situation. It focuses on providing an accurate and detailed account of the existing state of affairs. 

Descriptive research typically involves collecting data through surveys, observations, or existing records and analyzing the data to generate descriptive statistics or narratives. It does not involve manipulating variables or establishing cause-and-effect relationships.

Experimental research, on the other hand, involves manipulating variables and controlling conditions to investigate cause-and-effect relationships. It aims to establish causal relationships by introducing an intervention or treatment and observing the resulting effects. 

Experimental research typically involves randomly assigning participants to different groups, such as control and experimental groups, and measuring the outcomes. It allows researchers to control for confounding variables and draw causal conclusions.

Related – Experimental vs Non-Experimental Research: 15 Key Differences

Descriptive Research vs. Explanatory Research

Descriptive research focuses on providing a detailed and accurate account of a specific situation, group, or phenomenon. It aims to describe the characteristics, behaviors, or relationships within the given context. 

Descriptive research is primarily concerned with providing an objective representation of the subject of study without explaining underlying causes or mechanisms. Explanatory research seeks to explain the relationships between variables and uncover the underlying causes or mechanisms. 

It goes beyond description and aims to understand the reasons or factors that influence a particular outcome or behavior. Explanatory research involves analyzing data, conducting statistical analyses, and developing theories or models to explain the observed relationships.

Descriptive Research vs. Inferential Research

Descriptive research focuses on describing and summarizing data without making inferences or generalizations beyond the specific sample or population being studied. It aims to provide an accurate and objective representation of the subject of study. 

Descriptive research typically involves analyzing data to generate descriptive statistics, such as means, frequencies, or percentages, to describe the characteristics or behaviors observed.

Inferential research, however, involves making inferences or generalizations about a larger population based on a smaller sample. 

It aims to draw conclusions about the population characteristics or relationships by analyzing the sample data. Inferential research uses statistical techniques to estimate population parameters, test hypotheses, and determine the level of confidence or significance in the findings.

Related – Inferential Statistics: Definition, Types + Examples

Conclusion  

The uniqueness of descriptive research partly lies in its ability to explore both quantitative and qualitative research methods. Therefore, when conducting descriptive research, researchers have the opportunity to use a wide variety of techniques that aids the research process.

Descriptive research explores research problems in-depth, beyond the surface level thereby giving a detailed description of the research subject. That way, it can aid further research in the field, including other research methods .

It is also very useful in solving real-life problems in various fields of social science, physical science, and education.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • descriptive research
  • descriptive research method
  • example of descriptive research
  • types of descriptive research
  • busayo.longe

Formplus

You may also like:

Type I vs Type II Errors: Causes, Examples & Prevention

This article will discuss the two different types of errors in hypothesis testing and how you can prevent them from occurring in your research

case study in descriptive research

Extrapolation in Statistical Research: Definition, Examples, Types, Applications

In this article we’ll look at the different types and characteristics of extrapolation, plus how it contrasts to interpolation.

Acceptance Sampling: Meaning, Examples, When to Use

In this post, we will discuss extensively what acceptance sampling is and when it is applied.

Cross-Sectional Studies: Types, Pros, Cons & Uses

In this article, we’ll look at what cross-sectional studies are, how it applies to your research and how to use Formplus to collect...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

case study in descriptive research

Home Market Research

Descriptive Research: Definition, Characteristics, Methods + Examples

Descriptive Research

Suppose an apparel brand wants to understand the fashion purchasing trends among New York’s buyers, then it must conduct a demographic survey of the specific region, gather population data, and then conduct descriptive research on this demographic segment.

The study will then uncover details on “what is the purchasing pattern of New York buyers,” but will not cover any investigative information about “ why ” the patterns exist. Because for the apparel brand trying to break into this market, understanding the nature of their market is the study’s main goal. Let’s talk about it.

What is descriptive research?

Descriptive research is a research method describing the characteristics of the population or phenomenon studied. This descriptive methodology focuses more on the “what” of the research subject than the “why” of the research subject.

The method primarily focuses on describing the nature of a demographic segment without focusing on “why” a particular phenomenon occurs. In other words, it “describes” the research subject without covering “why” it happens.

Characteristics of descriptive research

The term descriptive research then refers to research questions, the design of the study, and data analysis conducted on that topic. We call it an observational research method because none of the research study variables are influenced in any capacity.

Some distinctive characteristics of descriptive research are:

  • Quantitative research: It is a quantitative research method that attempts to collect quantifiable information for statistical analysis of the population sample. It is a popular market research tool that allows us to collect and describe the demographic segment’s nature.
  • Uncontrolled variables: In it, none of the variables are influenced in any way. This uses observational methods to conduct the research. Hence, the nature of the variables or their behavior is not in the hands of the researcher.
  • Cross-sectional studies: It is generally a cross-sectional study where different sections belonging to the same group are studied.
  • The basis for further research: Researchers further research the data collected and analyzed from descriptive research using different research techniques. The data can also help point towards the types of research methods used for the subsequent research.

Applications of descriptive research with examples

A descriptive research method can be used in multiple ways and for various reasons. Before getting into any survey , though, the survey goals and survey design are crucial. Despite following these steps, there is no way to know if one will meet the research outcome. How to use descriptive research? To understand the end objective of research goals, below are some ways organizations currently use descriptive research today:

  • Define respondent characteristics: The aim of using close-ended questions is to draw concrete conclusions about the respondents. This could be the need to derive patterns, traits, and behaviors of the respondents. It could also be to understand from a respondent their attitude, or opinion about the phenomenon. For example, understand millennials and the hours per week they spend browsing the internet. All this information helps the organization researching to make informed business decisions.
  • Measure data trends: Researchers measure data trends over time with a descriptive research design’s statistical capabilities. Consider if an apparel company researches different demographics like age groups from 24-35 and 36-45 on a new range launch of autumn wear. If one of those groups doesn’t take too well to the new launch, it provides insight into what clothes are like and what is not. The brand drops the clothes and apparel that customers don’t like.
  • Conduct comparisons: Organizations also use a descriptive research design to understand how different groups respond to a specific product or service. For example, an apparel brand creates a survey asking general questions that measure the brand’s image. The same study also asks demographic questions like age, income, gender, geographical location, geographic segmentation , etc. This consumer research helps the organization understand what aspects of the brand appeal to the population and what aspects do not. It also helps make product or marketing fixes or even create a new product line to cater to high-growth potential groups.
  • Validate existing conditions: Researchers widely use descriptive research to help ascertain the research object’s prevailing conditions and underlying patterns. Due to the non-invasive research method and the use of quantitative observation and some aspects of qualitative observation , researchers observe each variable and conduct an in-depth analysis . Researchers also use it to validate any existing conditions that may be prevalent in a population.
  • Conduct research at different times: The analysis can be conducted at different periods to ascertain any similarities or differences. This also allows any number of variables to be evaluated. For verification, studies on prevailing conditions can also be repeated to draw trends.

Advantages of descriptive research

Some of the significant advantages of descriptive research are:

Advantages of descriptive research

  • Data collection: A researcher can conduct descriptive research using specific methods like observational method, case study method, and survey method. Between these three, all primary data collection methods are covered, which provides a lot of information. This can be used for future research or even for developing a hypothesis for your research object.
  • Varied: Since the data collected is qualitative and quantitative, it gives a holistic understanding of a research topic. The information is varied, diverse, and thorough.
  • Natural environment: Descriptive research allows for the research to be conducted in the respondent’s natural environment, which ensures that high-quality and honest data is collected.
  • Quick to perform and cheap: As the sample size is generally large in descriptive research, the data collection is quick to conduct and is inexpensive.

Descriptive research methods

There are three distinctive methods to conduct descriptive research. They are:

Observational method

The observational method is the most effective method to conduct this research, and researchers make use of both quantitative and qualitative observations.

A quantitative observation is the objective collection of data primarily focused on numbers and values. It suggests “associated with, of or depicted in terms of a quantity.” Results of quantitative observation are derived using statistical and numerical analysis methods. It implies observation of any entity associated with a numeric value such as age, shape, weight, volume, scale, etc. For example, the researcher can track if current customers will refer the brand using a simple Net Promoter Score question .

Qualitative observation doesn’t involve measurements or numbers but instead just monitoring characteristics. In this case, the researcher observes the respondents from a distance. Since the respondents are in a comfortable environment, the characteristics observed are natural and effective. In a descriptive research design, the researcher can choose to be either a complete observer, an observer as a participant, a participant as an observer, or a full participant. For example, in a supermarket, a researcher can from afar monitor and track the customers’ selection and purchasing trends. This offers a more in-depth insight into the purchasing experience of the customer.

Case study method

Case studies involve in-depth research and study of individuals or groups. Case studies lead to a hypothesis and widen a further scope of studying a phenomenon. However, case studies should not be used to determine cause and effect as they can’t make accurate predictions because there could be a bias on the researcher’s part. The other reason why case studies are not a reliable way of conducting descriptive research is that there could be an atypical respondent in the survey. Describing them leads to weak generalizations and moving away from external validity.

Survey research

In survey research, respondents answer through surveys or questionnaires or polls . They are a popular market research tool to collect feedback from respondents. A study to gather useful data should have the right survey questions. It should be a balanced mix of open-ended questions and close ended-questions . The survey method can be conducted online or offline, making it the go-to option for descriptive research where the sample size is enormous.

Examples of descriptive research

Some examples of descriptive research are:

  • A specialty food group launching a new range of barbecue rubs would like to understand what flavors of rubs are favored by different people. To understand the preferred flavor palette, they conduct this type of research study using various methods like observational methods in supermarkets. By also surveying while collecting in-depth demographic information, offers insights about the preference of different markets. This can also help tailor make the rubs and spreads to various preferred meats in that demographic. Conducting this type of research helps the organization tweak their business model and amplify marketing in core markets.
  • Another example of where this research can be used is if a school district wishes to evaluate teachers’ attitudes about using technology in the classroom. By conducting surveys and observing their comfortableness using technology through observational methods, the researcher can gauge what they can help understand if a full-fledged implementation can face an issue. This also helps in understanding if the students are impacted in any way with this change.

Some other research problems and research questions that can lead to descriptive research are:

  • Market researchers want to observe the habits of consumers.
  • A company wants to evaluate the morale of its staff.
  • A school district wants to understand if students will access online lessons rather than textbooks.
  • To understand if its wellness questionnaire programs enhance the overall health of the employees.

FREE TRIAL         RICHIEDI DEMO

MORE LIKE THIS

case study in descriptive research

When You Have Something Important to Say, You want to Shout it From the Rooftops

Jun 28, 2024

The Item I Failed to Leave Behind — Tuesday CX Thoughts

The Item I Failed to Leave Behind — Tuesday CX Thoughts

Jun 25, 2024

feedback loop

Feedback Loop: What It Is, Types & How It Works?

Jun 21, 2024

case study in descriptive research

QuestionPro Thrive: A Space to Visualize & Share the Future of Technology

Jun 18, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence
  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 7 March 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

case study in descriptive research

Users report unexpectedly high data usage, especially during streaming sessions.

case study in descriptive research

Users find it hard to navigate from the home page to relevant playlists in the app.

case study in descriptive research

It would be great to have a sleep timer feature, especially for bedtime listening.

case study in descriptive research

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Module 2: Research and Ethics in Abnormal Psychology

Descriptive research and case studies, learning objectives.

  • Explain the importance and uses of descriptive research, especially case studies, in studying abnormal behavior

Types of Research Methods

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions; to extensive, in-depth interviews; to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research, it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While surveys allow results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While existing records can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later, there is a tremendous amount of control over variables of interest. While performing an experiment is a powerful approach, experiments are often conducted in very artificial settings, which calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are case studies, naturalistic observation, and surveys.

Clinical or Case Studies

Psychologists can use a detailed description of one person or a small group based on careful observation.  Case studies  are intensive studies of individuals and have commonly been seen as a fruitful way to come up with hypotheses and generate theories. Case studies add descriptive richness. Case studies are also useful for formulating concepts, which are an important aspect of theory construction. Through fine-grained knowledge and description, case studies can fully specify the causal mechanisms in a way that may be harder in a large study.

Sigmund Freud   developed  many theories from case studies (Anna O., Little Hans, Wolf Man, Dora, etc.). F or example, he conducted a case study of a man, nicknamed “Rat Man,”  in which he claimed that this patient had been cured by psychoanalysis.  T he nickname derives from the fact that among the patient’s many compulsions, he had an obsession with nightmarish fantasies about rats. 

Today, more commonly, case studies reflect an up-close, in-depth, and detailed examination of an individual’s course of treatment. Case studies typically include a complete history of the subject’s background and response to treatment. From the particular client’s experience in therapy, the therapist’s goal is to provide information that may help other therapists who treat similar clients.

Case studies are generally a single-case design, but can also be a multiple-case design, where replication instead of sampling is the criterion for inclusion. Like other research methodologies within psychology, the case study must produce valid and reliable results in order to be useful for the development of future research. Distinct advantages and disadvantages are associated with the case study in psychology.

A commonly described limit of case studies is that they do not lend themselves to generalizability . The other issue is that the case study is subject to the bias of the researcher in terms of how the case is written, and that cases are chosen because they are consistent with the researcher’s preconceived notions, resulting in biased research. Another common problem in case study research is that of reconciling conflicting interpretations of the same case history.

Despite these limitations, there are advantages to using case studies. One major advantage of the case study in psychology is the potential for the development of novel hypotheses of the  cause of abnormal behavior   for later testing. Second, the case study can provide detailed descriptions of specific and rare cases and help us study unusual conditions that occur too infrequently to study with large sample sizes. The major disadvantage is that case studies cannot be used to determine causation, as is the case in experimental research, where the factors or variables hypothesized to play a causal role are manipulated or controlled by the researcher. 

Single-Case Experimental Designs

The lack of control available in the traditional case study research strategy led researchers to develop more sophisticated methods, such as single-subject research, which provides the statistical framework for making inferences from quantitative case-study data.

Pills

Figure 1 . Antipsychotics are the treatment of choice in managing schizophrenia and other psychotic disorders. Several major trials have been conducted examining the clinical difference between typical antipsychotics and atypical antipsychotics and how the selection may affect the quality of life.

The single-case experimental design  (sometimes called  single-participant research designs ), is particularly useful for studies of treatment effectiveness.  In  single-case experimental designs ,  the same  research participant  serves as the subject in both the experimental and control conditions.  One of the most common forms of the single-case experimental design is the A-B-A-B design, or  reversal design ,  reflecting the alternation between conditions, or phases A and B. The  AB design is a two-part or phase design composed of a baseline (“A” phase) with no changes, and a treatment or intervention (“B”) phase.  If there is a change, then the treatment may be said to have had an effect. However, it is subject to many possible competing hypotheses, making strong conclusions difficult. The A-B-A-B design, or reversal design, is a variant on the AB design. It introduces ways to control for the competing hypotheses and allows for stronger conclusions. T he reversal design (ABAB) is the most powerful of the single-subject research designs because it shows a strong reversal from baseline (“A”) to treatment (“B”) and back again. In an ABAB design, researchers observe behaviors in the “A” phase, institute treatment in the “B” phase, and then repeat the process. If the variable returns to baseline measure without treatment and then resumes its effects when reapplied, the researcher can have greater confidence in the efficacy of that treatment. However, many interventions cannot be reversed for ethical reasons (e.g., involving self-injurious behavior like smoking).  It may be unethical to end an experiment on a baseline measure if the treatment is self-sustaining and highly beneficial and/or related to health. Control condition participants may also deserve the benefits of research once all data has been collected. It is a researcher’s ethical duty to maximize benefits and to ensure that all participants have access to those benefits when possible.

File:A-B-A-B Design.png

Figure 2. The investigator looks for evidence that the change in the observed behavior occurred coincident with treatment. If the problem behavior declines whenever treatment is introduced (during the first and second treatment phases) but returns (is “reversed”) to baseline levels during the reversal phase, the experimenter can be reasonably confident the treatment had the intended effect.

Link to Learning: Famous Case Studies

Some well-known case studies that related to abnormal psychology include the following:

  • Harlow— Phineas Gage
  • Breuer & Freud (1895)— Anna O.
  • Cleckley’s case studies: on psychopathy ( The Mask of Sanity ) (1941) and multiple personality disorder ( The Three Faces of Eve ) (1957)
  • Freud and  Little Hans
  • Freud and the  Rat Man
  • John Money and the  John/Joan case
  • Genie (feral child)
  • Piaget’s studies
  • Rosenthal’s book on the  murder of Kitty Genovese
  • Washoe (sign language)
  • Patient H.M.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about handwashing, we have other options available to us.

Suppose we send a researcher to a school playground to observe how aggressive or socially anxious children interact with peers. Will our observer blend into the playground environment by wearing a white lab coat, sitting with a clipboard, and staring at the swings? We want our researcher to be inconspicuous and unobtrusively positioned—perhaps pretending to be a school monitor while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

woman in black leather jacket sitting on concrete bench

Figure 3 . In naturalistic observation, psychologists take their research into the streets, homes, restaurants, schools, and other settings where behavior can be directly observed.

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. For example, psychologists have spent weeks observing the behavior of homeless people on the streets, in train stations, and bus terminals. They try to ensure that their naturalistic observations are unobtrusive, so as to minimize interference with the behavior they observe. Nevertheless, the presence of the observer may distort the behavior that is observed, and this must be taken into consideration (Figure 1).

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. Although something as simple as observation may seem like it would be a part of all research methods, participant observation is a distinct methodology that involves the researcher embedding themselves into a group in order to study its dynamics. For example, Festinger, Riecken, and Shacter (1956) were very interested in the psychology of a particular cult. However, this cult was very secretive and wouldn’t grant interviews to outside members. So, in order to study these people, Festinger and his colleagues pretended to be cult members, allowing them access to the behavior and psychology of the cult. Despite this example, it should be noted that the people being observed in a participant observation study usually know that the researcher is there to study them. [1]

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

Figure 4 . Surveys can be administered in a number of ways, including electronically administered research, like the survey shown here. (credit: Robert Nyman)

There is both strength and weakness in surveys when compared to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people do not always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the U.S. Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Think iT Over

Research has shown that parental depressive symptoms are linked to a number of negative child outcomes. A classmate of yours is interested in  the associations between parental depressive symptoms and actual child behaviors in everyday life [2] because this associations remains largely unknown. After reading this section, what do you think is the best way to better understand such associations? Which method might result in the most valid data?

A-B-A-B design:  an experimental design in which the a person is given treatment, or experimental condition (B), to compare against the baseline (A), and this repeats in order to determine effectiveness

clinical or case study:  observational research study focusing on one or a few people

correlational research:  tests whether a relationship exists between two or more variables

descriptive research:  research studies that do not test specific relationships between variables; they are used to describe general or specific behaviors and attributes that are observed and measured

experimental research:  tests a hypothesis to determine cause-and-effect relationships

generalizability:  inferring that the results for a sample apply to the larger population

inter-rater reliability:  measure of agreement among observers on how they record and classify a particular event

naturalistic observation:  observation of behavior in its natural setting

observer bias:  when observations may be skewed to align with observer expectations

population:  overall group of individuals that the researchers are interested in

sample:  subset of individuals selected from the larger population

single-case experimental design:   when the same  research participant  serves as the subject in both the experimental and control conditions

survey:  list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵
  • Slatcher, R. B., & Trentacosta, C. J. (2011). A naturalistic observation study of the links between parental depressive symptoms and preschoolers' behaviors in everyday life. Journal of family psychology : JFP : journal of the Division of Family Psychology of the American Psychological Association (Division 43), 25(3), 444–448. https://doi.org/10.1037/a0023728 ↵
  • Modification and adaptation. Authored by : Sonja Ann Miller for Lumen Learning. Provided by : Lumen Learning. License : CC BY-SA: Attribution-ShareAlike
  • Approaches to Research. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:iMyFZJzg@5/Approaches-to-Research . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Descriptive Research. Provided by : Boundless. Located at : https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/researching-psychology-2/types-of-research-studies-27/descriptive-research-124-12659/ . License : CC BY-SA: Attribution-ShareAlike
  • Case Study. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Case_study . License : CC BY-SA: Attribution-ShareAlike
  • Rat man. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Rat_Man#Legacy . License : CC BY-SA: Attribution-ShareAlike
  • Case study in psychology. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Case_study_in_psychology . License : CC BY-SA: Attribution-ShareAlike
  • Research Designs. Authored by : Christie Napa Scollon. Provided by : Singapore Management University. Located at : https://nobaproject.com/modules/research-designs#reference-6 . Project : The Noba Project. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Single subject design. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Single-subject_design . License : CC BY-SA: Attribution-ShareAlike
  • Single subject research. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Single-subject_research#A-B-A-B . License : Public Domain: No Known Copyright
  • Pills. Authored by : qimono. Provided by : Pixabay. Located at : https://pixabay.com/illustrations/pill-capsule-medicine-medical-1884775/ . License : CC0: No Rights Reserved
  • ABAB Design. Authored by : Doc. Yu. Provided by : Wikimedia. Located at : https://commons.wikimedia.org/wiki/File:A-B-A-B_Design.png . License : CC BY-SA: Attribution-ShareAlike

Footer Logo Lumen Waymaker

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Qual Stud Health Well-being

Methodology or method? A critical review of qualitative case study reports

Despite on-going debate about credibility, and reported limitations in comparison to other approaches, case study is an increasingly popular approach among qualitative researchers. We critically analysed the methodological descriptions of published case studies. Three high-impact qualitative methods journals were searched to locate case studies published in the past 5 years; 34 were selected for analysis. Articles were categorized as health and health services ( n= 12), social sciences and anthropology ( n= 7), or methods ( n= 15) case studies. The articles were reviewed using an adapted version of established criteria to determine whether adequate methodological justification was present, and if study aims, methods, and reported findings were consistent with a qualitative case study approach. Findings were grouped into five themes outlining key methodological issues: case study methodology or method, case of something particular and case selection, contextually bound case study, researcher and case interactions and triangulation, and study design inconsistent with methodology reported. Improved reporting of case studies by qualitative researchers will advance the methodology for the benefit of researchers and practitioners.

Case study research is an increasingly popular approach among qualitative researchers (Thomas, 2011 ). Several prominent authors have contributed to methodological developments, which has increased the popularity of case study approaches across disciplines (Creswell, 2013b ; Denzin & Lincoln, 2011b ; Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Current qualitative case study approaches are shaped by paradigm, study design, and selection of methods, and, as a result, case studies in the published literature vary. Differences between published case studies can make it difficult for researchers to define and understand case study as a methodology.

Experienced qualitative researchers have identified case study research as a stand-alone qualitative approach (Denzin & Lincoln, 2011b ). Case study research has a level of flexibility that is not readily offered by other qualitative approaches such as grounded theory or phenomenology. Case studies are designed to suit the case and research question and published case studies demonstrate wide diversity in study design. There are two popular case study approaches in qualitative research. The first, proposed by Stake ( 1995 ) and Merriam ( 2009 ), is situated in a social constructivist paradigm, whereas the second, by Yin ( 2012 ), Flyvbjerg ( 2011 ), and Eisenhardt ( 1989 ), approaches case study from a post-positivist viewpoint. Scholarship from both schools of inquiry has contributed to the popularity of case study and development of theoretical frameworks and principles that characterize the methodology.

The diversity of case studies reported in the published literature, and on-going debates about credibility and the use of case study in qualitative research practice, suggests that differences in perspectives on case study methodology may prevent researchers from developing a mutual understanding of practice and rigour. In addition, discussion about case study limitations has led some authors to query whether case study is indeed a methodology (Luck, Jackson, & Usher, 2006 ; Meyer, 2001 ; Thomas, 2010 ; Tight, 2010 ). Methodological discussion of qualitative case study research is timely, and a review is required to analyse and understand how this methodology is applied in the qualitative research literature. The aims of this study were to review methodological descriptions of published qualitative case studies, to review how the case study methodological approach was applied, and to identify issues that need to be addressed by researchers, editors, and reviewers. An outline of the current definitions of case study and an overview of the issues proposed in the qualitative methodological literature are provided to set the scene for the review.

Definitions of qualitative case study research

Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995 ). Qualitative case study research, as described by Stake ( 1995 ), draws together “naturalistic, holistic, ethnographic, phenomenological, and biographic research methods” in a bricoleur design, or in his words, “a palette of methods” (Stake, 1995 , pp. xi–xii). Case study methodology maintains deep connections to core values and intentions and is “particularistic, descriptive and heuristic” (Merriam, 2009 , p. 46).

As a study design, case study is defined by interest in individual cases rather than the methods of inquiry used. The selection of methods is informed by researcher and case intuition and makes use of naturally occurring sources of knowledge, such as people or observations of interactions that occur in the physical space (Stake, 1998 ). Thomas ( 2011 ) suggested that “analytical eclecticism” is a defining factor (p. 512). Multiple data collection and analysis methods are adopted to further develop and understand the case, shaped by context and emergent data (Stake, 1995 ). This qualitative approach “explores a real-life, contemporary bounded system (a case ) or multiple bounded systems (cases) over time, through detailed, in-depth data collection involving multiple sources of information … and reports a case description and case themes ” (Creswell, 2013b , p. 97). Case study research has been defined by the unit of analysis, the process of study, and the outcome or end product, all essentially the case (Merriam, 2009 ).

The case is an object to be studied for an identified reason that is peculiar or particular. Classification of the case and case selection procedures informs development of the study design and clarifies the research question. Stake ( 1995 ) proposed three types of cases and study design frameworks. These include the intrinsic case, the instrumental case, and the collective instrumental case. The intrinsic case is used to understand the particulars of a single case, rather than what it represents. An instrumental case study provides insight on an issue or is used to refine theory. The case is selected to advance understanding of the object of interest. A collective refers to an instrumental case which is studied as multiple, nested cases, observed in unison, parallel, or sequential order. More than one case can be simultaneously studied; however, each case study is a concentrated, single inquiry, studied holistically in its own entirety (Stake, 1995 , 1998 ).

Researchers who use case study are urged to seek out what is common and what is particular about the case. This involves careful and in-depth consideration of the nature of the case, historical background, physical setting, and other institutional and political contextual factors (Stake, 1998 ). An interpretive or social constructivist approach to qualitative case study research supports a transactional method of inquiry, where the researcher has a personal interaction with the case. The case is developed in a relationship between the researcher and informants, and presented to engage the reader, inviting them to join in this interaction and in case discovery (Stake, 1995 ). A postpositivist approach to case study involves developing a clear case study protocol with careful consideration of validity and potential bias, which might involve an exploratory or pilot phase, and ensures that all elements of the case are measured and adequately described (Yin, 2009 , 2012 ).

Current methodological issues in qualitative case study research

The future of qualitative research will be influenced and constructed by the way research is conducted, and by what is reviewed and published in academic journals (Morse, 2011 ). If case study research is to further develop as a principal qualitative methodological approach, and make a valued contribution to the field of qualitative inquiry, issues related to methodological credibility must be considered. Researchers are required to demonstrate rigour through adequate descriptions of methodological foundations. Case studies published without sufficient detail for the reader to understand the study design, and without rationale for key methodological decisions, may lead to research being interpreted as lacking in quality or credibility (Hallberg, 2013 ; Morse, 2011 ).

There is a level of artistic license that is embraced by qualitative researchers and distinguishes practice, which nurtures creativity, innovation, and reflexivity (Denzin & Lincoln, 2011b ; Morse, 2009 ). Qualitative research is “inherently multimethod” (Denzin & Lincoln, 2011a , p. 5); however, with this creative freedom, it is important for researchers to provide adequate description for methodological justification (Meyer, 2001 ). This includes paradigm and theoretical perspectives that have influenced study design. Without adequate description, study design might not be understood by the reader, and can appear to be dishonest or inaccurate. Reviewers and readers might be confused by the inconsistent or inappropriate terms used to describe case study research approach and methods, and be distracted from important study findings (Sandelowski, 2000 ). This issue extends beyond case study research, and others have noted inconsistencies in reporting of methodology and method by qualitative researchers. Sandelowski ( 2000 , 2010 ) argued for accurate identification of qualitative description as a research approach. She recommended that the selected methodology should be harmonious with the study design, and be reflected in methods and analysis techniques. Similarly, Webb and Kevern ( 2000 ) uncovered inconsistencies in qualitative nursing research with focus group methods, recommending that methodological procedures must cite seminal authors and be applied with respect to the selected theoretical framework. Incorrect labelling using case study might stem from the flexibility in case study design and non-directional character relative to other approaches (Rosenberg & Yates, 2007 ). Methodological integrity is required in design of qualitative studies, including case study, to ensure study rigour and to enhance credibility of the field (Morse, 2011 ).

Case study has been unnecessarily devalued by comparisons with statistical methods (Eisenhardt, 1989 ; Flyvbjerg, 2006 , 2011 ; Jensen & Rodgers, 2001 ; Piekkari, Welch, & Paavilainen, 2009 ; Tight, 2010 ; Yin, 1999 ). It is reputed to be the “the weak sibling” in comparison to other, more rigorous, approaches (Yin, 2009 , p. xiii). Case study is not an inherently comparative approach to research. The objective is not statistical research, and the aim is not to produce outcomes that are generalizable to all populations (Thomas, 2011 ). Comparisons between case study and statistical research do little to advance this qualitative approach, and fail to recognize its inherent value, which can be better understood from the interpretive or social constructionist viewpoint of other authors (Merriam, 2009 ; Stake, 1995 ). Building on discussions relating to “fuzzy” (Bassey, 2001 ), or naturalistic generalizations (Stake, 1978 ), or transference of concepts and theories (Ayres, Kavanaugh, & Knafl, 2003 ; Morse et al., 2011 ) would have more relevance.

Case study research has been used as a catch-all design to justify or add weight to fundamental qualitative descriptive studies that do not fit with other traditional frameworks (Merriam, 2009 ). A case study has been a “convenient label for our research—when we ‘can't think of anything ‘better”—in an attempt to give it [qualitative methodology] some added respectability” (Tight, 2010 , p. 337). Qualitative case study research is a pliable approach (Merriam, 2009 ; Meyer, 2001 ; Stake, 1995 ), and has been likened to a “curious methodological limbo” (Gerring, 2004 , p. 341) or “paradigmatic bridge” (Luck et al., 2006 , p. 104), that is on the borderline between postpositivist and constructionist interpretations. This has resulted in inconsistency in application, which indicates that flexibility comes with limitations (Meyer, 2001 ), and the open nature of case study research might be off-putting to novice researchers (Thomas, 2011 ). The development of a well-(in)formed theoretical framework to guide a case study should improve consistency, rigour, and trust in studies published in qualitative research journals (Meyer, 2001 ).

Assessment of rigour

The purpose of this study was to analyse the methodological descriptions of case studies published in qualitative methods journals. To do this we needed to develop a suitable framework, which used existing, established criteria for appraising qualitative case study research rigour (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ). A number of qualitative authors have developed concepts and criteria that are used to determine whether a study is rigorous (Denzin & Lincoln, 2011b ; Lincoln, 1995 ; Sandelowski & Barroso, 2002 ). The criteria proposed by Stake ( 1995 ) provide a framework for readers and reviewers to make judgements regarding case study quality, and identify key characteristics essential for good methodological rigour. Although each of the factors listed in Stake's criteria could enhance the quality of a qualitative research report, in Table I we present an adapted criteria used in this study, which integrates more recent work by Merriam ( 2009 ) and Creswell ( 2013b ). Stake's ( 1995 ) original criteria were separated into two categories. The first list of general criteria is “relevant for all qualitative research.” The second list, “high relevance to qualitative case study research,” was the criteria that we decided had higher relevance to case study research. This second list was the main criteria used to assess the methodological descriptions of the case studies reviewed. The complete table has been preserved so that the reader can determine how the original criteria were adapted.

Framework for assessing quality in qualitative case study research.

Checklist for assessing the quality of a case study report
Relevant for all qualitative research
1. Is this report easy to read?
2. Does it fit together, each sentence contributing to the whole?
3. Does this report have a conceptual structure (i.e., themes or issues)?
4. Are its issues developed in a series and scholarly way?
5. Have quotations been used effectively?
6. Has the writer made sound assertions, neither over- or under-interpreting?
7. Are headings, figures, artefacts, appendices, indexes effectively used?
8. Was it edited well, then again with a last minute polish?
9. Were sufficient raw data presented?
10. Is the nature of the intended audience apparent?
11. Does it appear that individuals were put at risk?
High relevance to qualitative case study research
12. Is the case adequately defined?
13. Is there a sense of story to the presentation?
14. Is the reader provided some vicarious experience?
15. Has adequate attention been paid to various contexts?
16. Were data sources well-chosen and in sufficient number?
17. Do observations and interpretations appear to have been triangulated?
18. Is the role and point of view of the researcher nicely apparent?
19. Is empathy shown for all sides?
20. Are personal intentions examined?
Added from Merriam ( )
21. Is the case study particular?
22. Is the case study descriptive?
23. Is the case study heuristic?
Added from Creswell ( )
24. Was study design appropriate to methodology?

Adapted from Stake ( 1995 , p. 131).

Study design

The critical review method described by Grant and Booth ( 2009 ) was used, which is appropriate for the assessment of research quality, and is used for literature analysis to inform research and practice. This type of review goes beyond the mapping and description of scoping or rapid reviews, to include “analysis and conceptual innovation” (Grant & Booth, 2009 , p. 93). A critical review is used to develop existing, or produce new, hypotheses or models. This is different to systematic reviews that answer clinical questions. It is used to evaluate existing research and competing ideas, to provide a “launch pad” for conceptual development and “subsequent testing” (Grant & Booth, 2009 , p. 93).

Qualitative methods journals were located by a search of the 2011 ISI Journal Citation Reports in Social Science, via the database Web of Knowledge (see m.webofknowledge.com). No “qualitative research methods” category existed in the citation reports; therefore, a search of all categories was performed using the term “qualitative.” In Table II , we present the qualitative methods journals located, ranked by impact factor. The highest ranked journals were selected for searching. We acknowledge that the impact factor ranking system might not be the best measure of journal quality (Cheek, Garnham, & Quan, 2006 ); however, this was the most appropriate and accessible method available.

International Journal of Qualitative Studies on Health and Well-being.

Journal title2011 impact factor5-year impact factor
2.1882.432
1.426N/A
0.8391.850
0.780N/A
0.612N/A

Search strategy

In March 2013, searches of the journals, Qualitative Health Research , Qualitative Research , and Qualitative Inquiry were completed to retrieve studies with “case study” in the abstract field. The search was limited to the past 5 years (1 January 2008 to 1 March 2013). The objective was to locate published qualitative case studies suitable for assessment using the adapted criterion. Viewpoints, commentaries, and other article types were excluded from review. Title and abstracts of the 45 retrieved articles were read by the first author, who identified 34 empirical case studies for review. All authors reviewed the 34 studies to confirm selection and categorization. In Table III , we present the 34 case studies grouped by journal, and categorized by research topic, including health sciences, social sciences and anthropology, and methods research. There was a discrepancy in categorization of one article on pedagogy and a new teaching method published in Qualitative Inquiry (Jorrín-Abellán, Rubia-Avi, Anguita-Martínez, Gómez-Sánchez, & Martínez-Mones, 2008 ). Consensus was to allocate to the methods category.

Outcomes of search of qualitative methods journals.

Journal titleDate of searchNumber of studies locatedNumber of full text studies extractedHealth sciencesSocial sciences and anthropologyMethods
4 Mar 20131816 Barone ( ); Bronken et al. ( ); Colón-Emeric et al. ( ); Fourie and Theron ( ); Gallagher et al. ( ); Gillard et al. ( ); Hooghe et al. ( ); Jackson et al. ( ); Ledderer ( ); Mawn et al. ( ); Roscigno et al. ( ); Rytterström et al. ( ) Nil Austin, Park, and Goble ( ); Broyles, Rodriguez, Price, Bayliss, and Sevick ( ); De Haene et al. ( ); Fincham et al. ( )
7 Mar 2013117Nil Adamson and Holloway ( ); Coltart and Henwood ( ) Buckley and Waring ( ); Cunsolo Willox et al. ( ); Edwards and Weller ( ); Gratton and O'Donnell ( ); Sumsion ( )
4 Mar 20131611Nil Buzzanell and D’Enbeau ( ); D'Enbeau et al. ( ); Nagar-Ron and Motzafi-Haller ( ); Snyder-Young ( ); Yeh ( ) Ajodhia-Andrews and Berman ( ); Alexander et al. ( ); Jorrín-Abellán et al. ( ); Nairn and Panelli ( ); Nespor ( ); Wimpenny and Savin-Baden ( )
Total453412715

In Table III , the number of studies located, and final numbers selected for review have been reported. Qualitative Health Research published the most empirical case studies ( n= 16). In the health category, there were 12 case studies of health conditions, health services, and health policy issues, all published in Qualitative Health Research . Seven case studies were categorized as social sciences and anthropology research, which combined case study with biography and ethnography methodologies. All three journals published case studies on methods research to illustrate a data collection or analysis technique, methodological procedure, or related issue.

The methodological descriptions of 34 case studies were critically reviewed using the adapted criteria. All articles reviewed contained a description of study methods; however, the length, amount of detail, and position of the description in the article varied. Few studies provided an accurate description and rationale for using a qualitative case study approach. In the 34 case studies reviewed, three described a theoretical framework informed by Stake ( 1995 ), two by Yin ( 2009 ), and three provided a mixed framework informed by various authors, which might have included both Yin and Stake. Few studies described their case study design, or included a rationale that explained why they excluded or added further procedures, and whether this was to enhance the study design, or to better suit the research question. In 26 of the studies no reference was provided to principal case study authors. From reviewing the description of methods, few authors provided a description or justification of case study methodology that demonstrated how their study was informed by the methodological literature that exists on this approach.

The methodological descriptions of each study were reviewed using the adapted criteria, and the following issues were identified: case study methodology or method; case of something particular and case selection; contextually bound case study; researcher and case interactions and triangulation; and, study design inconsistent with methodology. An outline of how the issues were developed from the critical review is provided, followed by a discussion of how these relate to the current methodological literature.

Case study methodology or method

A third of the case studies reviewed appeared to use a case report method, not case study methodology as described by principal authors (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). Case studies were identified as a case report because of missing methodological detail and by review of the study aims and purpose. These reports presented data for small samples of no more than three people, places or phenomenon. Four studies, or “case reports” were single cases selected retrospectively from larger studies (Bronken, Kirkevold, Martinsen, & Kvigne, 2012 ; Coltart & Henwood, 2012 ; Hooghe, Neimeyer, & Rober, 2012 ; Roscigno et al., 2012 ). Case reports were not a case of something, instead were a case demonstration or an example presented in a report. These reports presented outcomes, and reported on how the case could be generalized. Descriptions focussed on the phenomena, rather than the case itself, and did not appear to study the case in its entirety.

Case reports had minimal in-text references to case study methodology, and were informed by other qualitative traditions or secondary sources (Adamson & Holloway, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nagar-Ron & Motzafi-Haller, 2011 ). This does not suggest that case study methodology cannot be multimethod, however, methodology should be consistent in design, be clearly described (Meyer, 2001 ; Stake, 1995 ), and maintain focus on the case (Creswell, 2013b ).

To demonstrate how case reports were identified, three examples are provided. The first, Yeh ( 2013 ) described their study as, “the examination of the emergence of vegetarianism in Victorian England serves as a case study to reveal the relationships between boundaries and entities” (p. 306). The findings were a historical case report, which resulted from an ethnographic study of vegetarianism. Cunsolo Willox, Harper, Edge, ‘My Word’: Storytelling and Digital Media Lab, and Rigolet Inuit Community Government (2013) used “a case study that illustrates the usage of digital storytelling within an Inuit community” (p. 130). This case study reported how digital storytelling can be used with indigenous communities as a participatory method to illuminate the benefits of this method for other studies. This “case study was conducted in the Inuit community” but did not include the Inuit community in case analysis (Cunsolo Willox et al., 2013 , p. 130). Bronken et al. ( 2012 ) provided a single case report to demonstrate issues observed in a larger clinical study of aphasia and stroke, without adequate case description or analysis.

Case study of something particular and case selection

Case selection is a precursor to case analysis, which needs to be presented as a convincing argument (Merriam, 2009 ). Descriptions of the case were often not adequate to ascertain why the case was selected, or whether it was a particular exemplar or outlier (Thomas, 2011 ). In a number of case studies in the health and social science categories, it was not explicit whether the case was of something particular, or peculiar to their discipline or field (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson, Botelho, Welch, Joseph, & Tennstedt, 2012 ; Mawn et al., 2010 ; Snyder-Young, 2011 ). There were exceptions in the methods category ( Table III ), where cases were selected by researchers to report on a new or innovative method. The cases emerged through heuristic study, and were reported to be particular, relative to the existing methods literature (Ajodhia-Andrews & Berman, 2009 ; Buckley & Waring, 2013 ; Cunsolo Willox et al., 2013 ; De Haene, Grietens, & Verschueren, 2010 ; Gratton & O'Donnell, 2011 ; Sumsion, 2013 ; Wimpenny & Savin-Baden, 2012 ).

Case selection processes were sometimes insufficient to understand why the case was selected from the global population of cases, or what study of this case would contribute to knowledge as compared with other possible cases (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson et al., 2012 ; Mawn et al., 2010 ). In two studies, local cases were selected (Barone, 2010 ; Fourie & Theron, 2012 ) because the researcher was familiar with and had access to the case. Possible limitations of a convenience sample were not acknowledged. Purposeful sampling was used to recruit participants within the case of one study, but not of the case itself (Gallagher et al., 2013 ). Random sampling was completed for case selection in two studies (Colón-Emeric et al., 2010 ; Jackson et al., 2012 ), which has limited meaning in interpretive qualitative research.

To demonstrate how researchers provided a good justification for the selection of case study approaches, four examples are provided. The first, cases of residential care homes, were selected because of reported occurrences of mistreatment, which included residents being locked in rooms at night (Rytterström, Unosson, & Arman, 2013 ). Roscigno et al. ( 2012 ) selected cases of parents who were admitted for early hospitalization in neonatal intensive care with a threatened preterm delivery before 26 weeks. Hooghe et al. ( 2012 ) used random sampling to select 20 couples that had experienced the death of a child; however, the case study was of one couple and a particular metaphor described only by them. The final example, Coltart and Henwood ( 2012 ), provided a detailed account of how they selected two cases from a sample of 46 fathers based on personal characteristics and beliefs. They described how the analysis of the two cases would contribute to their larger study on first time fathers and parenting.

Contextually bound case study

The limits or boundaries of the case are a defining factor of case study methodology (Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Adequate contextual description is required to understand the setting or context in which the case is revealed. In the health category, case studies were used to illustrate a clinical phenomenon or issue such as compliance and health behaviour (Colón-Emeric et al., 2010 ; D'Enbeau, Buzzanell, & Duckworth, 2010 ; Gallagher et al., 2013 ; Hooghe et al., 2012 ; Jackson et al., 2012 ; Roscigno et al., 2012 ). In these case studies, contextual boundaries, such as physical and institutional descriptions, were not sufficient to understand the case as a holistic system, for example, the general practitioner (GP) clinic in Gallagher et al. ( 2013 ), or the nursing home in Colón-Emeric et al. ( 2010 ). Similarly, in the social science and methods categories, attention was paid to some components of the case context, but not others, missing important information required to understand the case as a holistic system (Alexander, Moreira, & Kumar, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nairn & Panelli, 2009 ; Wimpenny & Savin-Baden, 2012 ).

In two studies, vicarious experience or vignettes (Nairn & Panelli, 2009 ) and images (Jorrín-Abellán et al., 2008 ) were effective to support description of context, and might have been a useful addition for other case studies. Missing contextual boundaries suggests that the case might not be adequately defined. Additional information, such as the physical, institutional, political, and community context, would improve understanding of the case (Stake, 1998 ). In Boxes 1 and 2 , we present brief synopses of two studies that were reviewed, which demonstrated a well bounded case. In Box 1 , Ledderer ( 2011 ) used a qualitative case study design informed by Stake's tradition. In Box 2 , Gillard, Witt, and Watts ( 2011 ) were informed by Yin's tradition. By providing a brief outline of the case studies in Boxes 1 and 2 , we demonstrate how effective case boundaries can be constructed and reported, which may be of particular interest to prospective case study researchers.

Article synopsis of case study research using Stake's tradition

Ledderer ( 2011 ) used a qualitative case study research design, informed by modern ethnography. The study is bounded to 10 general practice clinics in Denmark, who had received federal funding to implement preventative care services based on a Motivational Interviewing intervention. The researcher question focussed on “why is it so difficult to create change in medical practice?” (Ledderer, 2011 , p. 27). The study context was adequately described, providing detail on the general practitioner (GP) clinics and relevant political and economic influences. Methodological decisions are described in first person narrative, providing insight on researcher perspectives and interaction with the case. Forty-four interviews were conducted, which focussed on how GPs conducted consultations, and the form, nature and content, rather than asking their opinion or experience (Ledderer, 2011 , p. 30). The duration and intensity of researcher immersion in the case enhanced depth of description and trustworthiness of study findings. Analysis was consistent with Stake's tradition, and the researcher provided examples of inquiry techniques used to challenge assumptions about emerging themes. Several other seminal qualitative works were cited. The themes and typology constructed are rich in narrative data and storytelling by clinic staff, demonstrating individual clinic experiences as well as shared meanings and understandings about changing from a biomedical to psychological approach to preventative health intervention. Conclusions make note of social and cultural meanings and lessons learned, which might not have been uncovered using a different methodology.

Article synopsis of case study research using Yin's tradition

Gillard et al. ( 2011 ) study of camps for adolescents living with HIV/AIDs provided a good example of Yin's interpretive case study approach. The context of the case is bounded by the three summer camps of which the researchers had prior professional involvement. A case study protocol was developed that used multiple methods to gather information at three data collection points coinciding with three youth camps (Teen Forum, Discover Camp, and Camp Strong). Gillard and colleagues followed Yin's ( 2009 ) principles, using a consistent data protocol that enhanced cross-case analysis. Data described the young people, the camp physical environment, camp schedule, objectives and outcomes, and the staff of three youth camps. The findings provided a detailed description of the context, with less detail of individual participants, including insight into researcher's interpretations and methodological decisions throughout the data collection and analysis process. Findings provided the reader with a sense of “being there,” and are discovered through constant comparison of the case with the research issues; the case is the unit of analysis. There is evidence of researcher immersion in the case, and Gillard reports spending significant time in the field in a naturalistic and integrated youth mentor role.

This case study is not intended to have a significant impact on broader health policy, although does have implications for health professionals working with adolescents. Study conclusions will inform future camps for young people with chronic disease, and practitioners are able to compare similarities between this case and their own practice (for knowledge translation). No limitations of this article were reported. Limitations related to publication of this case study were that it was 20 pages long and used three tables to provide sufficient description of the camp and program components, and relationships with the research issue.

Researcher and case interactions and triangulation

Researcher and case interactions and transactions are a defining feature of case study methodology (Stake, 1995 ). Narrative stories, vignettes, and thick description are used to provoke vicarious experience and a sense of being there with the researcher in their interaction with the case. Few of the case studies reviewed provided details of the researcher's relationship with the case, researcher–case interactions, and how these influenced the development of the case study (Buzzanell & D'Enbeau, 2009 ; D'Enbeau et al., 2010 ; Gallagher et al., 2013 ; Gillard et al., 2011 ; Ledderer, 2011 ; Nagar-Ron & Motzafi-Haller, 2011 ). The role and position of the researcher needed to be self-examined and understood by readers, to understand how this influenced interactions with participants, and to determine what triangulation is needed (Merriam, 2009 ; Stake, 1995 ).

Gillard et al. ( 2011 ) provided a good example of triangulation, comparing data sources in a table (p. 1513). Triangulation of sources was used to reveal as much depth as possible in the study by Nagar-Ron and Motzafi-Haller ( 2011 ), while also enhancing confirmation validity. There were several case studies that would have benefited from improved range and use of data sources, and descriptions of researcher–case interactions (Ajodhia-Andrews & Berman, 2009 ; Bronken et al., 2012 ; Fincham, Scourfield, & Langer, 2008 ; Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Snyder-Young, 2011 ; Yeh, 2013 ).

Study design inconsistent with methodology

Good, rigorous case studies require a strong methodological justification (Meyer, 2001 ) and a logical and coherent argument that defines paradigm, methodological position, and selection of study methods (Denzin & Lincoln, 2011b ). Methodological justification was insufficient in several of the studies reviewed (Barone, 2010 ; Bronken et al., 2012 ; Hooghe et al., 2012 ; Mawn et al., 2010 ; Roscigno et al., 2012 ; Yeh, 2013 ). This was judged by the absence, or inadequate or inconsistent reference to case study methodology in-text.

In six studies, the methodological justification provided did not relate to case study. There were common issues identified. Secondary sources were used as primary methodological references indicating that study design might not have been theoretically sound (Colón-Emeric et al., 2010 ; Coltart & Henwood, 2012 ; Roscigno et al., 2012 ; Snyder-Young, 2011 ). Authors and sources cited in methodological descriptions were inconsistent with the actual study design and practices used (Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Jorrín-Abellán et al., 2008 ; Mawn et al., 2010 ; Rytterström et al., 2013 ; Wimpenny & Savin-Baden, 2012 ). This occurred when researchers cited Stake or Yin, or both (Mawn et al., 2010 ; Rytterström et al., 2013 ), although did not follow their paradigmatic or methodological approach. In 26 studies there were no citations for a case study methodological approach.

The findings of this study have highlighted a number of issues for researchers. A considerable number of case studies reviewed were missing key elements that define qualitative case study methodology and the tradition cited. A significant number of studies did not provide a clear methodological description or justification relevant to case study. Case studies in health and social sciences did not provide sufficient information for the reader to understand case selection, and why this case was chosen above others. The context of the cases were not described in adequate detail to understand all relevant elements of the case context, which indicated that cases may have not been contextually bounded. There were inconsistencies between reported methodology, study design, and paradigmatic approach in case studies reviewed, which made it difficult to understand the study methodology and theoretical foundations. These issues have implications for methodological integrity and honesty when reporting study design, which are values of the qualitative research tradition and are ethical requirements (Wager & Kleinert, 2010a ). Poorly described methodological descriptions may lead the reader to misinterpret or discredit study findings, which limits the impact of the study, and, as a collective, hinders advancements in the broader qualitative research field.

The issues highlighted in our review build on current debates in the case study literature, and queries about the value of this methodology. Case study research can be situated within different paradigms or designed with an array of methods. In order to maintain the creativity and flexibility that is valued in this methodology, clearer descriptions of paradigm and theoretical position and methods should be provided so that study findings are not undervalued or discredited. Case study research is an interdisciplinary practice, which means that clear methodological descriptions might be more important for this approach than other methodologies that are predominantly driven by fewer disciplines (Creswell, 2013b ).

Authors frequently omit elements of methodologies and include others to strengthen study design, and we do not propose a rigid or purist ideology in this paper. On the contrary, we encourage new ideas about using case study, together with adequate reporting, which will advance the value and practice of case study. The implications of unclear methodological descriptions in the studies reviewed were that study design appeared to be inconsistent with reported methodology, and key elements required for making judgements of rigour were missing. It was not clear whether the deviations from methodological tradition were made by researchers to strengthen the study design, or because of misinterpretations. Morse ( 2011 ) recommended that innovations and deviations from practice are best made by experienced researchers, and that a novice might be unaware of the issues involved with making these changes. To perpetuate the tradition of case study research, applications in the published literature should have consistencies with traditional methodological constructions, and deviations should be described with a rationale that is inherent in study conduct and findings. Providing methodological descriptions that demonstrate a strong theoretical foundation and coherent study design will add credibility to the study, while ensuring the intrinsic meaning of case study is maintained.

The value of this review is that it contributes to discussion of whether case study is a methodology or method. We propose possible reasons why researchers might make this misinterpretation. Researchers may interchange the terms methods and methodology, and conduct research without adequate attention to epistemology and historical tradition (Carter & Little, 2007 ; Sandelowski, 2010 ). If the rich meaning that naming a qualitative methodology brings to the study is not recognized, a case study might appear to be inconsistent with the traditional approaches described by principal authors (Creswell, 2013a ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). If case studies are not methodologically and theoretically situated, then they might appear to be a case report.

Case reports are promoted by university and medical journals as a method of reporting on medical or scientific cases; guidelines for case reports are publicly available on websites ( http://www.hopkinsmedicine.org/institutional_review_board/guidelines_policies/guidelines/case_report.html ). The various case report guidelines provide a general criteria for case reports, which describes that this form of report does not meet the criteria of research, is used for retrospective analysis of up to three clinical cases, and is primarily illustrative and for educational purposes. Case reports can be published in academic journals, but do not require approval from a human research ethics committee. Traditionally, case reports describe a single case, to explain how and what occurred in a selected setting, for example, to illustrate a new phenomenon that has emerged from a larger study. A case report is not necessarily particular or the study of a case in its entirety, and the larger study would usually be guided by a different research methodology.

This description of a case report is similar to what was provided in some studies reviewed. This form of report lacks methodological grounding and qualities of research rigour. The case report has publication value in demonstrating an example and for dissemination of knowledge (Flanagan, 1999 ). However, case reports have different meaning and purpose to case study, which needs to be distinguished. Findings of our review suggest that the medical understanding of a case report has been confused with qualitative case study approaches.

In this review, a number of case studies did not have methodological descriptions that included key characteristics of case study listed in the adapted criteria, and several issues have been discussed. There have been calls for improvements in publication quality of qualitative research (Morse, 2011 ), and for improvements in peer review of submitted manuscripts (Carter & Little, 2007 ; Jasper, Vaismoradi, Bondas, & Turunen, 2013 ). The challenging nature of editor and reviewers responsibilities are acknowledged in the literature (Hames, 2013 ; Wager & Kleinert, 2010b ); however, review of case study methodology should be prioritized because of disputes on methodological value.

Authors using case study approaches are recommended to describe their theoretical framework and methods clearly, and to seek and follow specialist methodological advice when needed (Wager & Kleinert, 2010a ). Adequate page space for case study description would contribute to better publications (Gillard et al., 2011 ). Capitalizing on the ability to publish complementary resources should be considered.

Limitations of the review

There is a level of subjectivity involved in this type of review and this should be considered when interpreting study findings. Qualitative methods journals were selected because the aims and scope of these journals are to publish studies that contribute to methodological discussion and development of qualitative research. Generalist health and social science journals were excluded that might have contained good quality case studies. Journals in business or education were also excluded, although a review of case studies in international business journals has been published elsewhere (Piekkari et al., 2009 ).

The criteria used to assess the quality of the case studies were a set of qualitative indicators. A numerical or ranking system might have resulted in different results. Stake's ( 1995 ) criteria have been referenced elsewhere, and was deemed the best available (Creswell, 2013b ; Crowe et al., 2011 ). Not all qualitative studies are reported in a consistent way and some authors choose to report findings in a narrative form in comparison to a typical biomedical report style (Sandelowski & Barroso, 2002 ), if misinterpretations were made this may have affected the review.

Case study research is an increasingly popular approach among qualitative researchers, which provides methodological flexibility through the incorporation of different paradigmatic positions, study designs, and methods. However, whereas flexibility can be an advantage, a myriad of different interpretations has resulted in critics questioning the use of case study as a methodology. Using an adaptation of established criteria, we aimed to identify and assess the methodological descriptions of case studies in high impact, qualitative methods journals. Few articles were identified that applied qualitative case study approaches as described by experts in case study design. There were inconsistencies in methodology and study design, which indicated that researchers were confused whether case study was a methodology or a method. Commonly, there appeared to be confusion between case studies and case reports. Without clear understanding and application of the principles and key elements of case study methodology, there is a risk that the flexibility of the approach will result in haphazard reporting, and will limit its global application as a valuable, theoretically supported methodology that can be rigorously applied across disciplines and fields.

Conflict of interest and funding

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

  • Adamson S, Holloway M. Negotiating sensitivities and grappling with intangibles: Experiences from a study of spirituality and funerals. Qualitative Research. 2012; 12 (6):735–752. doi: 10.1177/1468794112439008. [ CrossRef ] [ Google Scholar ]
  • Ajodhia-Andrews A, Berman R. Exploring school life from the lens of a child who does not use speech to communicate. Qualitative Inquiry. 2009; 15 (5):931–951. doi: 10.1177/1077800408322789. [ CrossRef ] [ Google Scholar ]
  • Alexander B. K, Moreira C, Kumar H. S. Resisting (resistance) stories: A tri-autoethnographic exploration of father narratives across shades of difference. Qualitative Inquiry. 2012; 18 (2):121–133. doi: 10.1177/1077800411429087. [ CrossRef ] [ Google Scholar ]
  • Austin W, Park C, Goble E. From interdisciplinary to transdisciplinary research: A case study. Qualitative Health Research. 2008; 18 (4):557–564. doi: 10.1177/1049732307308514. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ayres L, Kavanaugh K, Knafl K. A. Within-case and across-case approaches to qualitative data analysis. Qualitative Health Research. 2003; 13 (6):871–883. doi: 10.1177/1049732303013006008. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barone T. L. Culturally sensitive care 1969–2000: The Indian Chicano Health Center. Qualitative Health Research. 2010; 20 (4):453–464. doi: 10.1177/1049732310361893. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bassey M. A solution to the problem of generalisation in educational research: Fuzzy prediction. Oxford Review of Education. 2001; 27 (1):5–22. doi: 10.1080/03054980123773. [ CrossRef ] [ Google Scholar ]
  • Bronken B. A, Kirkevold M, Martinsen R, Kvigne K. The aphasic storyteller: Coconstructing stories to promote psychosocial well-being after stroke. Qualitative Health Research. 2012; 22 (10):1303–1316. doi: 10.1177/1049732312450366. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Broyles L. M, Rodriguez K. L, Price P. A, Bayliss N. K, Sevick M. A. Overcoming barriers to the recruitment of nurses as participants in health care research. Qualitative Health Research. 2011; 21 (12):1705–1718. doi: 10.1177/1049732311417727. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Buckley C. A, Waring M. J. Using diagrams to support the research process: Examples from grounded theory. Qualitative Research. 2013; 13 (2):148–172. doi: 10.1177/1468794112472280. [ CrossRef ] [ Google Scholar ]
  • Buzzanell P. M, D'Enbeau S. Stories of caregiving: Intersections of academic research and women's everyday experiences. Qualitative Inquiry. 2009; 15 (7):1199–1224. doi: 10.1177/1077800409338025. [ CrossRef ] [ Google Scholar ]
  • Carter S. M, Little M. Justifying knowledge, justifying method, taking action: Epistemologies, methodologies, and methods in qualitative research. Qualitative Health Research. 2007; 17 (10):1316–1328. doi: 10.1177/1049732307306927. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cheek J, Garnham B, Quan J. What's in a number? Issues in providing evidence of impact and quality of research(ers) Qualitative Health Research. 2006; 16 (3):423–435. doi: 10.1177/1049732305285701. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Colón-Emeric C. S, Plowman D, Bailey D, Corazzini K, Utley-Smith Q, Ammarell N, et al. Regulation and mindful resident care in nursing homes. Qualitative Health Research. 2010; 20 (9):1283–1294. doi: 10.1177/1049732310369337. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Coltart C, Henwood K. On paternal subjectivity: A qualitative longitudinal and psychosocial case analysis of men's classed positions and transitions to first-time fatherhood. Qualitative Research. 2012; 12 (1):35–52. doi: 10.1177/1468794111426224. [ CrossRef ] [ Google Scholar ]
  • Creswell J. W. Five qualitative approaches to inquiry. In: Creswell J. W, editor. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013a. pp. 53–84. [ Google Scholar ]
  • Creswell J. W. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013b. [ Google Scholar ]
  • Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Medical Research Methodology. 2011; 11 (1):1–9. doi: 10.1186/1471-2288-11-100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cunsolo Willox A, Harper S. L, Edge V. L, ‘My Word’: Storytelling and Digital Media Lab, & Rigolet Inuit Community Government Storytelling in a digital age: Digital storytelling as an emerging narrative method for preserving and promoting indigenous oral wisdom. Qualitative Research. 2013; 13 (2):127–147. doi: 10.1177/1468794112446105. [ CrossRef ] [ Google Scholar ]
  • De Haene L, Grietens H, Verschueren K. Holding harm: Narrative methods in mental health research on refugee trauma. Qualitative Health Research. 2010; 20 (12):1664–1676. doi: 10.1177/1049732310376521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • D'Enbeau S, Buzzanell P. M, Duckworth J. Problematizing classed identities in fatherhood: Development of integrative case studies for analysis and praxis. Qualitative Inquiry. 2010; 16 (9):709–720. doi: 10.1177/1077800410374183. [ CrossRef ] [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S. Introduction: Disciplining the practice of qualitative research. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011a. pp. 1–6. [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011b. [ Google Scholar ]
  • Edwards R, Weller S. Shifting analytic ontology: Using I-poems in qualitative longitudinal research. Qualitative Research. 2012; 12 (2):202–217. doi: 10.1177/1468794111422040. [ CrossRef ] [ Google Scholar ]
  • Eisenhardt K. M. Building theories from case study research. The Academy of Management Review. 1989; 14 (4):532–550. doi: 10.2307/258557. [ CrossRef ] [ Google Scholar ]
  • Fincham B, Scourfield J, Langer S. The impact of working with disturbing secondary data: Reading suicide files in a coroner's office. Qualitative Health Research. 2008; 18 (6):853–862. doi: 10.1177/1049732307308945. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flanagan J. Public participation in the design of educational programmes for cancer nurses: A case report. European Journal of Cancer Care. 1999; 8 (2):107–112. doi: 10.1046/j.1365-2354.1999.00141.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Five misunderstandings about case-study research. Qualitative Inquiry. 2006; 12 (2):219–245. doi: 10.1177/1077800405284.363. [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Case study. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011. pp. 301–316. [ Google Scholar ]
  • Fourie C. L, Theron L. C. Resilience in the face of fragile X syndrome. Qualitative Health Research. 2012; 22 (10):1355–1368. doi: 10.1177/1049732312451871. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gallagher N, MacFarlane A, Murphy A. W, Freeman G. K, Glynn L. G, Bradley C. P. Service users’ and caregivers’ perspectives on continuity of care in out-of-hours primary care. Qualitative Health Research. 2013; 23 (3):407–421. doi: 10.1177/1049732312470521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gerring J. What is a case study and what is it good for? American Political Science Review. 2004; 98 (2):341–354. doi: 10.1017/S0003055404001182. [ CrossRef ] [ Google Scholar ]
  • Gillard A, Witt P. A, Watts C. E. Outcomes and processes at a camp for youth with HIV/AIDS. Qualitative Health Research. 2011; 21 (11):1508–1526. doi: 10.1177/1049732311413907. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grant M, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal. 2009; 26 :91–108. doi: 10.1111/j.1471-1842.2009.00848.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gratton M.-F, O'Donnell S. Communication technologies for focus groups with remote communities: A case study of research with First Nations in Canada. Qualitative Research. 2011; 11 (2):159–175. doi: 10.1177/1468794110394068. [ CrossRef ] [ Google Scholar ]
  • Hallberg L. Quality criteria and generalization of results from qualitative studies. International Journal of Qualitative Studies on Health and Wellbeing. 2013; 8 :1. doi: 10.3402/qhw.v8i0.20647. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hames I. Committee on Publication Ethics, 1. 2013, March. COPE Ethical guidelines for peer reviewers. Retrieved April 7, 2013, from http://publicationethics.org/resources/guidelines . [ Google Scholar ]
  • Hooghe A, Neimeyer R. A, Rober P. “Cycling around an emotional core of sadness”: Emotion regulation in a couple after the loss of a child. Qualitative Health Research. 2012; 22 (9):1220–1231. doi: 10.1177/1049732312449209. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jackson C. B, Botelho E. M, Welch L. C, Joseph J, Tennstedt S. L. Talking with others about stigmatized health conditions: Implications for managing symptoms. Qualitative Health Research. 2012; 22 (11):1468–1475. doi: 10.1177/1049732312450323. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jasper M, Vaismoradi M, Bondas T, Turunen H. Validity and reliability of the scientific review process in nursing journals—time for a rethink? Nursing Inquiry. 2013 doi: 10.1111/nin.12030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jensen J. L, Rodgers R. Cumulating the intellectual gold of case study research. Public Administration Review. 2001; 61 (2):235–246. doi: 10.1111/0033-3352.00025. [ CrossRef ] [ Google Scholar ]
  • Jorrín-Abellán I. M, Rubia-Avi B, Anguita-Martínez R, Gómez-Sánchez E, Martínez-Mones A. Bouncing between the dark and bright sides: Can technology help qualitative research? Qualitative Inquiry. 2008; 14 (7):1187–1204. doi: 10.1177/1077800408318435. [ CrossRef ] [ Google Scholar ]
  • Ledderer L. Understanding change in medical practice: The role of shared meaning in preventive treatment. Qualitative Health Research. 2011; 21 (1):27–40. doi: 10.1177/1049732310377451. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lincoln Y. S. Emerging criteria for quality in qualitative and interpretive research. Qualitative Inquiry. 1995; 1 (3):275–289. doi: 10.1177/107780049500100301. [ CrossRef ] [ Google Scholar ]
  • Luck L, Jackson D, Usher K. Case study: A bridge across the paradigms. Nursing Inquiry. 2006; 13 (2):103–109. doi: 10.1111/j.1440-1800.2006.00309.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mawn B, Siqueira E, Koren A, Slatin C, Devereaux Melillo K, Pearce C, et al. Health disparities among health care workers. Qualitative Health Research. 2010; 20 (1):68–80. doi: 10.1177/1049732309355590. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Merriam S. B. Qualitative research: A guide to design and implementation. 3rd ed. San Francisco, CA: Jossey-Bass; 2009. [ Google Scholar ]
  • Meyer C. B. A case in case study methodology. Field Methods. 2001; 13 (4):329–352. doi: 10.1177/1525822x0101300402. [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Mixing qualitative methods. Qualitative Health Research. 2009; 19 (11):1523–1524. doi: 10.1177/1049732309349360. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Molding qualitative health research. Qualitative Health Research. 2011; 21 (8):1019–1021. doi: 10.1177/1049732311404706. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M, Dimitroff L. J, Harper R, Koontz A, Kumra S, Matthew-Maich N, et al. Considering the qualitative–quantitative language divide. Qualitative Health Research. 2011; 21 (9):1302–1303. doi: 10.1177/1049732310392386. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nagar-Ron S, Motzafi-Haller P. “My life? There is not much to tell”: On voice, silence and agency in interviews with first-generation Mizrahi Jewish women immigrants to Israel. Qualitative Inquiry. 2011; 17 (7):653–663. doi: 10.1177/1077800411414007. [ CrossRef ] [ Google Scholar ]
  • Nairn K, Panelli R. Using fiction to make meaning in research with young people in rural New Zealand. Qualitative Inquiry. 2009; 15 (1):96–112. doi: 10.1177/1077800408318314. [ CrossRef ] [ Google Scholar ]
  • Nespor J. The afterlife of “teachers’ beliefs”: Qualitative methodology and the textline. Qualitative Inquiry. 2012; 18 (5):449–460. doi: 10.1177/1077800412439530. [ CrossRef ] [ Google Scholar ]
  • Piekkari R, Welch C, Paavilainen E. The case study as disciplinary convention: Evidence from international business journals. Organizational Research Methods. 2009; 12 (3):567–589. doi: 10.1177/1094428108319905. [ CrossRef ] [ Google Scholar ]
  • Ragin C. C, Becker H. S. What is a case?: Exploring the foundations of social inquiry. Cambridge: Cambridge University Press; 1992. [ Google Scholar ]
  • Roscigno C. I, Savage T. A, Kavanaugh K, Moro T. T, Kilpatrick S. J, Strassner H. T, et al. Divergent views of hope influencing communications between parents and hospital providers. Qualitative Health Research. 2012; 22 (9):1232–1246. doi: 10.1177/1049732312449210. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenberg J. P, Yates P. M. Schematic representation of case study research designs. Journal of Advanced Nursing. 2007; 60 (4):447–452. doi: 10.1111/j.1365-2648.2007.04385.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rytterström P, Unosson M, Arman M. Care culture as a meaning- making process: A study of a mistreatment investigation. Qualitative Health Research. 2013; 23 :1179–1187. doi: 10.1177/1049732312470760. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. Whatever happened to qualitative description? Research in Nursing & Health. 2000; 23 (4):334–340. doi: 10.1002/1098-240X. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. What's in a name? Qualitative description revisited. Research in Nursing & Health. 2010; 33 (1):77–84. doi: 10.1002/nur.20362. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M, Barroso J. Reading qualitative studies. International Journal of Qualitative Methods. 2002; 1 (1):74–108. [ Google Scholar ]
  • Snyder-Young D. “Here to tell her story”: Analyzing the autoethnographic performances of others. Qualitative Inquiry. 2011; 17 (10):943–951. doi: 10.1177/1077800411425149. [ CrossRef ] [ Google Scholar ]
  • Stake R. E. The case study method in social inquiry. Educational Researcher. 1978; 7 (2):5–8. [ Google Scholar ]
  • Stake R. E. The art of case study research. Thousand Oaks, CA: Sage; 1995. [ Google Scholar ]
  • Stake R. E. Case studies. In: Denzin N. K, Lincoln Y. S, editors. Strategies of qualitative inquiry. Thousand Oaks, CA: Sage; 1998. pp. 86–109. [ Google Scholar ]
  • Sumsion J. Opening up possibilities through team research: Investigating infants’ experiences of early childhood education and care. Qualitative Research. 2013; 14 (2):149–165. doi: 10.1177/1468794112468471.. [ CrossRef ] [ Google Scholar ]
  • Thomas G. Doing case study: Abduction not induction, phronesis not theory. Qualitative Inquiry. 2010; 16 (7):575–582. doi: 10.1177/1077800410372601. [ CrossRef ] [ Google Scholar ]
  • Thomas G. A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative Inquiry. 2011; 17 (6):511–521. doi: 10.1177/1077800411409884. [ CrossRef ] [ Google Scholar ]
  • Tight M. The curious case of case study: A viewpoint. International Journal of Social Research Methodology. 2010; 13 (4):329–339. doi: 10.1080/13645570903187181. [ CrossRef ] [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for authors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010a. pp. 309–316. [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for editors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010b. pp. 317–328. [ Google Scholar ]
  • Webb C, Kevern J. Focus groups as a research method: A critique of some aspects of their use in nursing research. Journal of Advanced Nursing. 2000; 33 (6):798–805. doi: 10.1046/j.1365-2648.2001.01720.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wimpenny K, Savin-Baden M. Exploring and implementing participatory action synthesis. Qualitative Inquiry. 2012; 18 (8):689–698. doi: 10.1177/1077800412452854. [ CrossRef ] [ Google Scholar ]
  • Yeh H.-Y. Boundaries, entities, and modern vegetarianism: Examining the emergence of the first vegetarian organization. Qualitative Inquiry. 2013; 19 (4):298–309. doi: 10.1177/1077800412471516. [ CrossRef ] [ Google Scholar ]
  • Yin R. K. Enhancing the quality of case studies in health services research. Health Services Research. 1999; 34 (5 Pt 2):1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Yin R. K. Case study research: Design and methods. 4th ed. Thousand Oaks, CA: Sage; 2009. [ Google Scholar ]
  • Yin R. K. Applications of case study research. 3rd ed. Thousand Oaks, CA: Sage; 2012. [ Google Scholar ]

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Descriptive Research

Try Qualtrics for free

Descriptive research: what it is and how to use it.

8 min read Understanding the who, what and where of a situation or target group is an essential part of effective research and making informed business decisions.

For example you might want to understand what percentage of CEOs have a bachelor’s degree or higher. Or you might want to understand what percentage of low income families receive government support – or what kind of support they receive.

Descriptive research is what will be used in these types of studies.

In this guide we’ll look through the main issues relating to descriptive research to give you a better understanding of what it is, and how and why you can use it.

Free eBook: 2024 global market research trends report

What is descriptive research?

Descriptive research is a research method used to try and determine the characteristics of a population or particular phenomenon.

Using descriptive research you can identify patterns in the characteristics of a group to essentially establish everything you need to understand apart from why something has happened.

Market researchers use descriptive research for a range of commercial purposes to guide key decisions.

For example you could use descriptive research to understand fashion trends in a given city when planning your clothing collection for the year. Using descriptive research you can conduct in depth analysis on the demographic makeup of your target area and use the data analysis to establish buying patterns.

Conducting descriptive research wouldn’t, however, tell you why shoppers are buying a particular type of fashion item.

Descriptive research design

Descriptive research design uses a range of both qualitative research and quantitative data (although quantitative research is the primary research method) to gather information to make accurate predictions about a particular problem or hypothesis.

As a survey method, descriptive research designs will help researchers identify characteristics in their target market or particular population.

These characteristics in the population sample can be identified, observed and measured to guide decisions.

Descriptive research characteristics

While there are a number of descriptive research methods you can deploy for data collection, descriptive research does have a number of predictable characteristics.

Here are a few of the things to consider:

Measure data trends with statistical outcomes

Descriptive research is often popular for survey research because it generates answers in a statistical form, which makes it easy for researchers to carry out a simple statistical analysis to interpret what the data is saying.

Descriptive research design is ideal for further research

Because the data collection for descriptive research produces statistical outcomes, it can also be used as secondary data for another research study.

Plus, the data collected from descriptive research can be subjected to other types of data analysis .

Uncontrolled variables

A key component of the descriptive research method is that it uses random variables that are not controlled by the researchers. This is because descriptive research aims to understand the natural behavior of the research subject.

It’s carried out in a natural environment

Descriptive research is often carried out in a natural environment. This is because researchers aim to gather data in a natural setting to avoid swaying respondents.

Data can be gathered using survey questions or online surveys.

For example, if you want to understand the fashion trends we mentioned earlier, you would set up a study in which a researcher observes people in the respondent’s natural environment to understand their habits and preferences.

Descriptive research allows for cross sectional study

Because of the nature of descriptive research design and the randomness of the sample group being observed, descriptive research is ideal for cross sectional studies – essentially the demographics of the group can vary widely and your aim is to gain insights from within the group.

This can be highly beneficial when you’re looking to understand the behaviors or preferences of a wider population.

Descriptive research advantages

There are many advantages to using descriptive research, some of them include:

Cost effectiveness

Because the elements needed for descriptive research design are not specific or highly targeted (and occur within the respondent’s natural environment) this type of study is relatively cheap to carry out.

Multiple types of data can be collected

A big advantage of this research type, is that you can use it to collect both quantitative and qualitative data. This means you can use the stats gathered to easily identify underlying patterns in your respondents’ behavior.

Descriptive research disadvantages

Potential reliability issues.

When conducting descriptive research it’s important that the initial survey questions are properly formulated.

If not, it could make the answers unreliable and risk the credibility of your study.

Potential limitations

As we’ve mentioned, descriptive research design is ideal for understanding the what, who or where of a situation or phenomenon.

However, it can’t help you understand the cause or effect of the behavior. This means you’ll need to conduct further research to get a more complete picture of a situation.

Descriptive research methods

Because descriptive research methods include a range of quantitative and qualitative research, there are several research methods you can use.

Use case studies

Case studies in descriptive research involve conducting in-depth and detailed studies in which researchers get a specific person or case to answer questions.

Case studies shouldn’t be used to generate results, rather it should be used to build or establish hypothesis that you can expand into further market research .

For example you could gather detailed data about a specific business phenomenon, and then use this deeper understanding of that specific case.

Use observational methods

This type of study uses qualitative observations to understand human behavior within a particular group.

By understanding how the different demographics respond within your sample you can identify patterns and trends.

As an observational method, descriptive research will not tell you the cause of any particular behaviors, but that could be established with further research.

Use survey research

Surveys are one of the most cost effective ways to gather descriptive data.

An online survey or questionnaire can be used in descriptive studies to gather quantitative information about a particular problem.

Survey research is ideal if you’re using descriptive research as your primary research.

Descriptive research examples

Descriptive research is used for a number of commercial purposes or when organizations need to understand the behaviors or opinions of a population.

One of the biggest examples of descriptive research that is used in every democratic country, is during elections.

Using descriptive research, researchers will use surveys to understand who voters are more likely to choose out of the parties or candidates available.

Using the data provided, researchers can analyze the data to understand what the election result will be.

In a commercial setting, retailers often use descriptive research to figure out trends in shopping and buying decisions.

By gathering information on the habits of shoppers, retailers can get a better understanding of the purchases being made.

Another example that is widely used around the world, is the national census that takes place to understand the population.

The research will provide a more accurate picture of a population’s demographic makeup and help to understand changes over time in areas like population age, health and education level.

Where Qualtrics helps with descriptive research

Whatever type of research you want to carry out, there’s a survey type that will work.

Qualtrics can help you determine the appropriate method and ensure you design a study that will deliver the insights you need.

Our experts can help you with your market research needs , ensuring you get the most out of Qualtrics market research software to design, launch and analyze your data to guide better, more accurate decisions for your organization.

Related resources

Market intelligence 10 min read, marketing insights 11 min read, ethnographic research 11 min read, qualitative vs quantitative research 13 min read, qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, request demo.

Ready to learn more about Qualtrics?

Research by Quinn, co-principals and undergrads included in case study series

case study in descriptive research

Furman University’s John Quinn, a biology professor and director of environmental studies, and co-principal investigators Brannon Andersen and Courtney Quinn in the Department of Earth, Environmental and Sustainability Sciences won a grant from USDA-funded Sustainable Agriculture Research and Education (SARE) in 2016. The grant funded the study of silvopasture systems in South Carolina and neighboring states. Silvopasture is the deliberate intermingling of trees and grazing livestock on the same land. The practice is intended to strengthen a small farm’s fiscal viability while enhancing overall environmental quality.

The faculty members’ research with undergraduates was highlighted in a case study series by Insight for Action and SARE. In “Improving Silvopasture Systems in the South: Identifying Suitable Forage Crops and Enhancing Environmental Quality in Upland Forests,” SARE prepared four illustrated pages that recap the successes and challenges the team faced while working with small-production farmers in the region.

Brent Nelsen offers pre- and post-debate commentary for local news

Kylie fisher and alex aradas ’26 elevate lgbtq+ art, furman research on princess amelia, king george iii shines light on historical treatment of mental, physical illness.

Purdue University Graduate School

Markets for Diversifying Agriculture: Case Studies of the U.S Midwest

Agricultural diversification stands out as a critical strategy for addressing challenges and seizing opportunities within the agricultural landscape, especially in regions like the Midwest of the U.S. This research delves into the dynamics, opportunities, challenges, and key success drivers associated with agricultural diversification in the Midwest, focusing on three primary crops: oats, peas, and wheat. Employing a case study methodology grounded in empirical and contextual inquiry principles, the research aims to grasp the nuances of diversified agriculture. Data collection integrates primary and secondary sources, including semi-structured interviews and participation in field days. The data collection period spanned from October 2022 to February 2024. Interviews with 29 stakeholders, including farmers, industry representatives, agricultural cooperatives, and non-profits, provided insights into diversified agriculture practices.

Each case study provides in-depth insights into the opportunities, challenges, and key drivers of success associated with promoting diversified agriculture initiatives. These case studies underscore the significance of innovation, market access, sustainability, and collaboration in driving success within the industry. The cross-case analysis offers a comprehensive examination of the potential for agricultural diversification in the US Midwest. Through a comparative analysis of the three case studies, commonalities and key themes emerge, shedding light on stakeholder dynamics, business strategies, operational aspects, and scalability factors.

In summary, this research significantly contributes to the body of knowledge on agricultural diversification, offering insights that can guide future decisions, agricultural practices, and research endeavors aimed at promoting sustainability and resilience in the agricultural sector in the US Midwest.

Degree Type

  • Master of Science
  • Horticulture

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Additional committee member 2, additional committee member 3, usage metrics.

  • Sustainable agricultural development
  • Agricultural land planning

CC BY 4.0

Research Trends in STEM Clubs: A Content Analysis

  • Open access
  • Published: 25 June 2024

Cite this article

You have full access to this open access article

case study in descriptive research

  • Rabia Nur Öndeş   ORCID: orcid.org/0000-0002-9787-4382 1  

201 Accesses

Explore all metrics

To identify the research trends in studies related to STEM Clubs, 56 publications that met the inclusion and extraction criteria were identified from the online databases ERIC and WoS in this study. These studies were analysed by using the descriptive content analysis research method based on the Paper Classification Form (PCF), which includes publishing years, keywords, research methods, sample levels and sizes, data collection tools, data analysis methods, durations, purposes, and findings. The findings showed that, the keywords in the studies were used under six different categories: disciplines, technological concepts, academic community, learning experiences, core elements of education, and psychosocial factors (variables). Case studies were frequently employed, with middle school students serving as the main participants in sample groups ranging from 11–15, 16–20, and 201–250. Surveys, questionnaires, and observations were the primary methods of data collection, and descriptive analysis was commonly used for data analysis. STEM Clubs had sessions ranging from 2 to 16 weeks, with each session commonly lasting 60 to 120 min. The study purposes mainly focused on four themes: the impact of participation on various aspects such as attitudes towards STEM disciplines, career paths, STEM major selection, and academic achievement; the development and implementation of a sample STEM Club program, including challenges and limitations; the examination of students' experiences, perceptions, and factors influencing their involvement and choice of STEM majors; the identification of some aspects such as attitudinal effects and non-academic skills; and the comparison of STEM experiences between in-school and out-of-school settings. The study results mainly focused on three themes: the increase in various aspects such as academic achievement, STEM major choice, engagement in STEM clubs, identity, interest in STEM, collaboration-communication skills; the design of STEM Clubs, including sample implementations, design principles, challenges, and factors affecting their success and sustainability; and the identification of factors influencing participation, motivation, and barriers. Overall, this study provides a comprehensive understanding of STEM Clubs, leading the way for more targeted and informed future research endeavours.

Similar content being viewed by others

case study in descriptive research

Measuring the effect of sustainability programs on interest in STEM disciplines: a pre-post survey study of the student green team internship program

The eight essential elements of inclusive stem high schools.

case study in descriptive research

Effects of Out-of-School STEM Learning Environments on Student Interest: a Critical Systematic Literature Review

Avoid common mistakes on your manuscript.

Introduction

Worldwide, STEM education, which integrates the disciplines of science, technology, engineering, and math, is gaining popularity in K-12 settings due to its capacity to enhance 21st-century skills such as adaptability, problem-solving, and creative thinking (National Research Council [NRC], 2015 ). In STEM lessons, students are frequently guided by the engineering design process, which involves identifying problems or technical challenges and creating and developing solutions. Furthermore, higher achievement in STEM education has been linked to increased enrolment in post-secondary STEM fields, offering students greater opportunities to pursue careers in these domains (Merrill & Daugherty, 2010 ). However, STEM activities require dedicated time and the restructuring of integrated curricula, necessitating careful organization of lessons. Recognizing the complexity of developing 21st-century STEM proficiency, schools are not expected to tackle this challenge alone. In addition to regular STEM classes, there exists a diverse range of extended education programs, activities, and out-of-school learning environments (Baran et al., 2016 ; Kalkan & Eroglu, 2017 ; Schweingruber et al., 2014 ). In this paper, out-of-school learning environments, informal learning environments, extended education, and afterschool programs were used synonymously. It is worth noting that the literature lacks a universally accepted definition for out-of-school learning environments, leading to the use of various interchangeable terms (Donnelly et al., 2019 ). Some of these terms include informal learning environments, extended education, afterschool programs, all-day school, extracurricular activities, out-of-school time learning, extended schools, expanded learning, and leisure-time activities. These terms refer to optional programs and clubs offered by schools that exist outside of the standard academic curriculum (Baran et al., 2016 ; Cooper, 2011 ; Kalkan & Eroglu, 2017 ; Schweingruber et al., 2014 ).

Out-of-school learning, in contrast to traditional in-school learning, offers greater flexibility in terms of time and space, as it is not bound by the constraints of the school schedule, national or state standards, and standardized tests (Cooper, 2011 ). Out-of-school learning experiences typically involve collaborative engagement, the use of tools, and immersion in authentic environments, while school environments often emphasize individual performance, independent thinking, symbolic representations, and the acquisition of generalized skills and knowledge (Resnick, 1987 ). They encompass everyday activities such as family discussions, pursuing hobbies, and engaging in daily conversations, as well as designed environments like museums, science centres, and afterschool programs (Civil, 2007 ; Hein, 2009 ). On the other hand, extended education refers to intentionally structured learning and development programs and activities that are not part of regular classes. These programs are typically offered before and after school, as well as at locations outside the school (Bae, 2018 ). As a result, out-of-school learning environments encompass a wide range of experiences, including social, cultural, and technical excursions around the school, field studies at museums, zoos, nature centres, aquariums, and planetariums, project-based learning, sports activities, nature training, and club activities (Civil, 2007 ; Donnelly et al., 2019 ; Hein, 2009 ). At this point, STEM clubs are a specialized type of extracurricular activity that engage students in hands-on projects, experiments, and learning experiences related to scientific, technological, engineering, and mathematical disciplines. STEM Clubs, described as flexible learning environments unconstrained by time or location, offer an effective approach to conducting STEM studies outside of school (Blanchard et al., 2017 ; Cooper, 2011 ; Dabney et al., 2012 ).

Out-of-school learning environments, extended education or afterschool programs, hold tremendous potential for enhancing student learning and providing them with a diverse and enriching educational experience (Robelen, 2011 ). Extensive research supports the notion that these alternative educational programs not only contribute to students' academic growth but also foster their social, emotional, and intellectual development (NRC, 2015 ). Studies have consistently shown that after-school programs play a vital role in boosting students' achievement levels (Casing & Casing, 2024 ; Pastchal-Temple, 2012 ; Shernoff & Vandell, 2007 ), and contributing to positive emotional development, including improved self-esteem, positive attitudes, and enhanced social behaviour (Afterschool Alliance, 2015 ; Durlak & Weissberg, 2007 ; Lauer et al., 2006 ; Little et al., 2008 ). Moreover, engaging in various activities within these programs allows students to develop meaningful connections, expand their social networks, enhance leadership skills (Lipscomb et al., 2017 ), and cultivate cooperation, effective communication, and innovative problem-solving abilities (Mahoney et al., 2007 ).

Implementing STEM activities in out-of-school learning environments not only supports students in making career choices and fostering meaningful learning and interest in science, but also facilitates deep learning experiences (Bybee, 2001 ; Dabney et al., 2012 ; Sahin et al., 2018 ). Furthermore, STEM Clubs enhance students' emotional skills, such as a sense of belonging and peer-to-peer communication, while also fostering 21st-century skills, facilitating the acquisition of current content, and promoting career awareness and interest in STEM professions (Blanchard et al., 2017 ). In summary, engaging in STEM activities through social club activities not only addresses time constraints but also complements formal education and contributes to students' overall development. Hence, STEM Clubs, which are part of extended education, can be defined as dynamic and flexible learning environments that provide an effective approach to conducting STEM studies beyond traditional classroom settings. These clubs offer flexibility in terms of time and location, with intentionally structured programs and activities that take place outside of regular classes. They provide students with unique opportunities to explore and deepen their understanding of STEM subjects through collaborative engagement, hands-on use of tools, and immersive experiences in authentic environments (Bae, 2018 ; Blanchard, et al., 2017 ; Bybee, 2001 ; Cooper, 2011 ; Dabney et al., 2012 ). STEM Clubs have gained immense popularity worldwide, providing students with invaluable opportunities to explore and cultivate their interests and knowledge in these crucial fields (Adams et al., 2014 ; Bell et al., 2009 ). According to America After 3PM, nearly 75% of afterschool program participants, around 5,740,836 children, have access to STEM learning opportunities (Afterschool Alliance, 2015 ).

STEM Clubs as after-school programs come in various forms and provide diverse tutoring and instructional opportunities. For instance, the Boys and Girls Club of America (BGCA) operates in numerous cities across the United States, annually serving 4.73 million students (Boys and Girls Club of America, 2019 ). This program offers students the chance to engage in activities like sports, art, dance, field trips, and addresses the underrepresentation of African Americans in STEM. Another example is the Science Club for Girls (SCFG), established by concerned parents in Cambridge to address gender inequity in math, science, and technology courses and careers. SCFG brings together girls from grades K–7 through free after-school or weekend clubs, science explorations during vacations, and community science fairs, with approximately 800 to 1,000 students participating each year. The primary goal of these clubs is to increase STEM literacy and self-confidence among K–12 girls from underrepresented groups in these fields. More examples can be found in the literature, such as the St. Jude STEM Club (SJSC), where students conducted a 10-week paediatric cancer research project using accurate data (Ayers et al., 2020 ), and After School Matters, based in Chicago, offers project-based learning that enhances students' soft skills and culminates in producing a final project based on their activities (Hirsch, 2011 ).

The Purpose of The Study

The literature on STEM Clubs indicates a diverse range of such clubs located worldwide, catering to different student groups, operating on varying schedules, implementing diverse activities, and employing various strategies, methodologies, experiments, and assessments (Ayers et al., 2020 ; Blanchard et al., 2017 ; Boys and Girls Club of America, 2019 ; Hirsch, 2011 ; Sahin et al., 2018 ). However, it was previously unknown which specific sample groups were most commonly studied, which analytical methods were used frequently, and which results were primarily reported, even though the overall topic of STEM Clubs has gained significant attention. Therefore, organizing and categorizing this expansive body of literature is necessary to gain deeper insights into the current state of knowledge and practices in STEM Clubs. By systematically reviewing and synthesizing the diverse range of studies on this topic, we can develop a clearer understanding of the focus areas, methodologies, and key findings that have emerged from the existing research (Fraenkel et al., 2012 ). At this point, using a content analysis method is appropriate for this purpose because this method is particularly useful for examining trends and patterns in documents (Stemler, 2000 ). Similarly, some previous research on STEM education has conducted content analyses to examine existing studies and construct holistic patterns to understand trends (Bozkurt et al., 2019 ; Chomphuphra et al., 2019 ; Irwanto et al., 2022 ; Li et al., 2020 ; Lin et al., 2019 ; Martín-Páez et al., 2019 ; Noris et al., 2023 ). However, there is a lack of content analysis specifically focused on studies of STEM Clubs in the literature and showing the trends in this topic. Analysing research trends in STEM Clubs can help build upon existing knowledge, identify gaps, explore emerging topics, and highlight successful methodologies and strategies (Fraenkel et al., 2012 ; Noris et al., 2023 ; Stemler, 2000 ). This information can be valuable for researchers, educators, and policymakers to stay up-to-date and make informed decisions regarding curriculum design (Bozkurt et al., 2019 ; Chomphuphra et al., 2019 ; Irwanto et al., 2022 ; Li et al., 2020 ; Lin et al., 2019 ; Martín-Páez et al., 2019 ; Noris et al., 2023 ), the development of effective STEM Club programs, resource allocation, and policy formulation (Blanchard et al., 2017 ; Cooper, 2011 ; Dabney et al., 2012 ). Therefore, the identification of research trends in STEM Clubs was the aim of this study.

To identify research trends, studies commonly analysed documents by considering the dimensions of articles such as keywords, publishing years, research designs, purposes, sample levels, sample sizes, data collection tools, data analysis methods, and findings (Bozkurt et al., 2019 ; Chomphuphra et al., 2019 ; Irwanto et al., 2022 ; Li et al., 2020 ; Sozbilir et al., 2012 ). Using these dimensions as a framework is a useful and common approach in content analysis because this framework allows researchers to systematically examine the key aspects of existing studies and uncover patterns, relationships, and trends within the research data (Sozbilir et al., 2012 ). Hence, since the aim of this study is to identify and analyse research trends in STEM Clubs, it focused on publishing years, keywords, research designs, purposes, sample levels, sample sizes, data collection tools, data analysis methods, and findings of the studies on STEM Clubs.

As a conclusion, the main problem of this study is “What are the characteristics of the studies on STEM Clubs?”. The following sub-questions are addressed in this study:

What is the distribution of studies on STEM Clubs by year?

What are the frequently used keywords in studies on STEM Clubs?

What are the commonly employed research designs in studies on STEM Clubs?

What are the typical purposes explored in studies on STEM Clubs?

What are the commonly observed sample levels in studies on STEM Clubs?

What are the commonly observed sample sizes in studies on STEM Clubs?

What are the commonly utilized data collection tools in studies on STEM Clubs?

What are the commonly utilized data analysis methods in studies on STEM Clubs?

What are the typical durations reported in studies on STEM Clubs?

What are the commonly reported findings in studies on STEM Clubs?

In this study, the descriptive content analysis research method was employed, which allows for a systematic and objective examination of the content within articles, and description of the general trends and research results in a particular subject matter (Lin et al., 2014 ; Suri & Clarke, 2009 ; Sozbilir et al., 2012 ; Stemler, 2000 ). Given the aim of examining research trends in STEM Clubs, the utilization of this method was appropriate, as it provides a structured approach to identify patterns and trends (Gay et al., 2012 ). To implement the content analysis method, this study followed the three main phases proposed by Elo and Kyngäs ( 2008 ): preparation, organizing, and reporting. In the preparation phase, the unit of analysis, such as a word or theme, is selected as the starting point. So, in this study, the topic of STEM Clubs was carefully selected. During the organizing process, the researcher strives to make sense of the data and to learn "what is going on" and obtain a sense of the whole. So, in this study, during the analysis process, the content analysis framework (sample levels, sample sizes, data collection tools, research designs, etc.) was used to question the collected studies. Finally, in the reporting phase, the analyses are presented in a meaningful and coherent manner. So, the analyses were presented meaningfully with visual representations such as tables, graphs, etc. By adopting the content analysis research method and following the suggested phases, this study aimed to gain insights into research trends in STEM Clubs, identify recurring themes, and provide a comprehensive analysis of the collected data.

Search and Selection Process

The online databases ERIC and Web of Science were searched using keywords derived from a database thesaurus. These databases were chosen because of their widespread recognition and respect in the fields of education and academic research, and they offer a substantial amount of high-quality, peer-reviewed literature. The search process involved several steps. Firstly, titles, abstracts, and keywords were searched using Boolean operators for the keywords "STEM Clubs," "STEAM Clubs," "science-technology-engineering-mathematics clubs," "after school STEM program" and "extracurricular STEM activities" in the databases (criterion-1). Secondly, studies were collected beginning from November to the end of December 2023. So, the studies published until the end of December 2023 were included in the search, without a specific starting date restriction (criterion-2). Thirdly, the search was limited to scientific journal articles, book chapters, proceedings, and theses, excluding publications such as practices, letters to editors, corrections, and (guest) editorials (criterion-3). Fourthly, studies published in languages other than English were excluded, focusing exclusively on English language publications (criterion-4). Fifthly, duplicate articles found in both databases were identified and removed. Next, the author read the contents of all the studies, including those without full articles, with a particular focus on the abstract sections. After that, studies related to after school program and extracurricular activities that did not specifically involve the terms STEM or clubs were excluded, even though “extracurricular STEM activities” and “after school STEM program” were used in the search process, and there were studies related to after school program or extracurricular activities but not STEM (criterion-5). Additionally, studies conducted in formal and informal settings within STEM clubs were included, while studies conducted in settings such as museums or trips were excluded (criterion-6). Because STEM Clubs are a subset of informal STEM education settings, which also include museums and field trips, the main focus of this study is to show the trends specifically related to STEM Clubs. Moreover, studies focusing solely on technology without incorporating other STEM components were also excluded (criterion-7). Finally, 56 publications that met the inclusion and extraction criteria were identified. These publications comprised two dissertations, seven proceedings, and 47 articles from 36 different journals. By applying these criteria, the search process aimed to ensure the inclusion of relevant studies while excluding those that did not meet the specified criteria as shown in Fig.  1 .

figure 1

Flowchart of article process selection

Data Analysing Process

Two different approaches were followed in the content analysis process of this study. In the first part, deductive content analysis was used, and a priori coding was conducted as the categories were established prior to the analysis. The categorization matrix was created based on the Paper Classification Form (PCF) developed by Sozbilir et al. ( 2012 ). The coding scheme devised consisted of eight classification groups for the sections of publication years, keywords, research designs, sample levels, sample sizes, data collection tools, data analysis methods, and durations, with sub-categories for each section. For example, under the research designs section, the sub-categories included qualitative and quantitative methods, case study, design-case study, comparative-case study, ethnographic study, phenomenological study, survey study, experimental study, mixed and longitudinal study, and literature review study. These sub-categories were identified prior to the analysis. Coding was then applied to the data using spreadsheets in the Excel program, based on the categorization matrix. Frequencies for the codes and categories created were calculated and presented in the findings section with tables. Line charts were used for the publication years section, while word clouds, which visually represent word frequency, were used for the keywords section. Word clouds display the most frequently used words in different sizes and colours based on their frequencies (DePaolo & Wilkinson, 2014 ). So, in this part, the analysis was certain since the studies mostly provided related information in their contents.

In the second part, open coding and the creation of categories and abstraction phases were followed for the purposes and findings sections. Firstly, the stated purposes and findings of the studies were written as text. The written text was then carefully reviewed, and any necessary terms were written down in the margins to describe all aspects of the content. Following this open coding, the lists of categories were grouped under higher order headings, taking into consideration their similarities or dissimilarities. Each category was named using content-characteristic words. The abstraction process was repeated to the extent that was reasonable and possible. In this coding process, two individuals independently reviewed ten studies, considering the coding scheme for the first part and conducting open coding for the second part. They then compared their notes and resolved any differences that emerged during their initial checklists. Inter-rater reliability was calculated as 0.84 using Cohen's kappa analysis. Once coding reliability was ensured, the remaining articles were independently coded by the author. After completing the coding process, consensus was reached through discussions regarding any disagreements among the researchers regarding the codes, as well as the codes and categories constructed for the purpose and findings sections. At this point, there were mostly agreements in the coding process since the studies had already clearly stated their key characteristics, such as research design, sample size, sample level, and data collection tools. Additionally, when coding the studies' stated purposes and results, the researchers closely referred to the original sentences in the studies, which led to a high level of consistency in the coded content between the two raters.

Studies related to the STEM Clubs were initially conducted in 2009 (Fig.  2 ). The noticeable increase in the number of studies conducted each year is remarkable. It can be seen that the majority of the 47 articles that were examined (56 articles) were published after 2015, despite a decrease in the year 2018. Additionally, it was observed that the articles were most frequently published (8) in the years 2019 and 2022, least frequently (1) in the years 2009, 2010, and 2014, and there were no publications in 2012.

figure 2

Number of articles by years

Word clouds were utilized to present the most frequently used keywords in the articles, as shown in Fig.  3 . However, due to the lack of reported keywords in the ERIC database, only 30 articles were included for these analyses. The keywords that exist in these studies were represented in a word cloud in Fig.  3 . The most frequently appearing keywords, such as "STEM," "education" and "learning" were identified. Additionally, by using a content analysis method, these keywords were categorized into six different groups: disciplines, technological concepts, academic community, learning experiences, core elements of education, and psychosocial factors (variables) in Table  1 .

figure 3

Word cloud of the keywords used in articles

The purposes of the identified studies identified were classified into six main themes: “effects of participation in STEM Clubs on” (25), “evolution of a sample program for STEM Clubs and its implementation” (25), “examination of” (11), “identification of” (3), “comparison of in-school and out-school STEM experiences” (2) and “others” (6). Table 2 presents the distribution of the articles’ purposes based on the classification regarding these themes. Therefore, it can be seen that purposes of “effects of participation in STEM Clubs on,” and “evolution of a sample program for STEM Clubs and its implementation” were given the highest and equal consideration, while the purposes related to "identification of" (3) and "comparison of in-school and out-of-school STEM experiences" (2) were given the least consideration among them.

Within the theme of "effects of participation in STEM Clubs on" there are 11 categories. The aims of the studies in this section are to examine the effect of participation in STEM Clubs on various aspects such as attitudes towards STEM disciplines or career paths, STEM major choice/career aspiration, achievement in math, science, STEM disciplines, or content knowledge, perception of scientists, strategies used, value of clubs, STEM career paths, enjoyment of physics, use of complex and scientific language, interest in STEM, creativity, critical thinking about STEM texts, images of mathematics, or climate-change beliefs/literacy. It is evident that the majority of research in this section focuses on the effects of participation in STEM Clubs on STEM major choice/career aspiration (5), achievement (4), perception of something (4), and interest in STEM (3).

Within the theme of "evolution of a sample program for STEM Clubs and its implementation" there are three categories: development of program/curriculum/activity (14), identification of program's challenges and limitations (3), and implementation of program/activity (8). The studies in this section aim to develop a sample program for STEM Clubs and describe its implementation. It can be seen that the most preferred purpose among them is the development of program/curriculum/activity (14), while the least preferred purpose is the identification of program's challenges and limitations (3). In addition, studies that focus on the development of the program, curriculum, or activity were classified under the "general" category (10). Sub-categories were created for studies specifically expressing the development of the program with a focus on a particular area, such as the maker movement or Arduino-assisted robotics and coding. Similarly, studies that explicitly mentioned the development of the program based on presented ideas and experiences formed another sub-category. Furthermore, the category related to the implementation of program/activity was divided into eight sub-categories, each indicating the specific centre of implementation, such as problem-based learning-centred and representation of blacks-centred.

The theme of "examination of" refers to studies that aim to examine certain aspects, such as the experiences and perceptions of students (7) and the factors influencing specific subjects (4). Studies focusing on examining the experiences and perceptions of students were labelled as "general" (4), while studies exploring their experiences and perceptions regarding specific content, such as influences and challenges to participation in STEM clubs (2) and assessment (1), were labelled accordingly. Additionally, studies that focused on examining factors affecting the choice of STEM majors (2), participation in STEM clubs (1), and motivation to develop interest in STEM (1) were categorized in line with their respective focuses. As shown in Table  2 , it is evident that studies focusing on examining the experiences and perceptions of students (7) were more frequently conducted compared to studies focusing on examining the factors affecting specific subjects (4).

The theme of "identification of" refers to studies that aim to identify certain aspects, such as the types of attitudinal effects (1), types of changes in affect toward engineering (1), and non-academic skills (1). Additionally, the theme of "comparison of in-school and out-of-school STEM experiences" (2) refers to studies that aim to compare STEM experiences within school and outside of school. Lastly, studies that did not fit into the aforementioned categories were included in the "others" theme (6) as no clear connection could be identified among them.

Research Designs

The research designs employed in the examined articles were identified as follows: qualitative methods (36), including case study (20), design-case study (6), comparative-case study (4), ethnographic study (2), phenomenological study (2), and survey study (2); quantitative methods (7), including survey study (4) and experimental study (3); mixed methods and longitudinal studies (10); and literature review (3), as illustrated in Table  3 . It can be observed that among these methods, case study was the most commonly utilized. Furthermore, it is evident that quantitative methods (7) and literature reviews (3) were employed less frequently compared to qualitative (36) and mixed methods (10). Additionally, survey studies were utilized in both quantitative and qualitative studies.

Sample Levels

The frequencies and percentages of sample levels in the examined articles are presented in Table  4 . The studies involved participants at different educational levels, including elementary school (8), middle school (23), high school (14), pre-service teachers or undergraduate students (6), teachers (4), parents (3), and others (1). It is apparent that middle school students (23) were the most commonly utilized sample among them, while high school students (14) were more frequently chosen compared to elementary school students (8). It should be noted that while grade levels were specified for both elementary and middle school students, separate grade levels were not identified for high school students in these studies. Additionally, studies that involved mixed groups were labelled as 3-5th and 6-8th grades. However, when the mixed groups included participants from different educational levels such as elementary, middle, or high school, teachers, parents, etc., they were counted as separate levels. Furthermore, the studies conducted with participants such as pre-service teachers, undergraduates, teachers, and parents were less frequently employed compared to K-12 students.

Sample Sizes

The frequencies of sample sizes in the examined articles are presented in Table  5 . It was observed that in 15 studies, the number of sample sizes was not provided. The intervals for the sample size were not equally separated; instead, they were arranged with intervals of 5, 10, 50, and 100. This choice was made to allow for a more detailed analysis of smaller samples, as smaller intervals can provide a more granular examination of data instead of cumulative amounts. The analysis reveals that the studies primarily prioritized sample groups with 11–15 (f:8) participants, followed by groups of 16–20 (f:4) and 201–250 (f:4). Additionally, it is evident that sample sizes of 6–10, 21–25, 41–50, 50–100, and more than 2000 (f:1) were the least commonly studied.

Data Collection Tools

The frequencies and percentages of data collection tools in the examined articles are presented in Table  6 . The analysis reveals that the studies primarily employed survey or questionnaires (31.6%) and observations (30.5%) as data collection methods, followed by interviews (15.8%), documents (13.7%), tests (4.2%), and field notes (4.2%). Regarding survey/questionnaires, Likert-type scales (f:23) were more commonly employed compared to open-ended questions (f:7). Tests were predominantly used as achievement tests (f:2) and assessments (f:2), representing the least preferred data collection tools. Furthermore, the table illustrates that multiple data collection tools were frequently employed, as the total number of tools (95) is nearly twice the number of studies (56).

Data Analysing Methods

The frequencies and percentages of data analysing methods in the examined articles are presented in Table  7 . The table reveals that the studies predominantly employed descriptive analysis (f:33, 41.25%), followed by inferential statistics (f:16, 20%), descriptive statistics (f:15, 18.75%), content analysis (f:14, 17.5%), and the constant-comparative method (f:2, 2.5%). It is notable that qualitative methods (f:49, 61.25%) were preferred more frequently than quantitative methods (f:31, 38.75%) in the examined studies related to STEM Clubs. Within the qualitative methods, descriptive analysis (f:33) was utilized nearly twice as often as content analysis (f:14), while within the quantitative methods, descriptive statistics (f:15) and inferential statistics (f:16), including t-tests, ANOVA, regression, and other methods, were used with comparable frequency.

The durations of STEM Clubs in the examined studies are presented in Table  8 . Based on the analysis, there are more studies (f:37) that do not state the duration of STEM Clubs than studies (f:19) that do provide information on the durations. Additionally, among the studies that do state the durations, there is no common period of time for STEM Clubs, as they were implemented for varying numbers of weeks and sessions, with session durations ranging from several minutes. Therefore, it can be observed that STEM Clubs were conducted over the course of 3 semesters (academic year and summer), 5 months, 2 to 16 weeks, with session durations ranging from 60 to 120 min. Furthermore, the durations of "3 semesters," "10 weeks with 90-min sessions per week," and "unknown weeks with 60-min sessions per week" were used more than once in the studies.

The content analysis of the findings of the identified examined articles are presented by their frequencies in Table  9 . Although the studies cover a diverse range of topics, the analysis indicates that the results can be broadly classified into three themes, namely, the "development of or increase in certain aspects" (f:68), "design of STEM Clubs" (f:17), and "identification of various aspects" (f:16). Based on the analysis, the findings in the studies are associated with the development of certain aspects such as skills or the increase in specific outcomes like academic achievement. Furthermore, the studies explore the design of STEM Clubs through the description of specific cases, such as sample implementations and challenges. Additionally, the studies focus on the identification of various aspects, such as factors and perceptions.

It is evident from the findings that the studies predominantly yield results related to the development of or increase in certain aspects (f:68). Within this theme, the most commonly observed result is the development of STEM or academic achievement or STEM competency (f:11). This is followed by an increase in STEM major choice or career aspiration (f:9), an increase in engagement or participation in STEM clubs (f:5), the development of identity including STEM, science, engineering, under-representative groups (f:5), the development of interest in STEM (f:4), an increase in enjoyment (f:4), and the development of collaboration, leadership, or communication skills (f:4). Furthermore, it can be observed that there are some results, such as the development of critical thinking, perseverance and the teachers’ profession, that were yielded less frequently (f:1). The results of 16 studies were found with a frequency of 1.

Within the design of STEM Clubs, the sample implementation or design model for different purposes such as the usage of robotic program or students with disabilities (f:7), design principles or ideas for STEM clubs, activities or curriculum (f:4), challenges or factors effecting STEM Clubs success and sustainability (f:3) were presented as a result. Additionally, the comparison was made between in-school and out-of-school learning environments (f:3), highlighting the contradictions of STEM clubs and science classes, as well as the differences in STEM activities and continues-discontinues learning experiences in mathematics. Within the identification of various aspects, the most commonly gathered result was the identification of factors affecting participation or motivation to STEM clubs (f:5). This was followed by the identification of barriers to participation (f:2). The identification of other aspects, such as parents' roles and perspectives on STEM, was comparatively less frequent.

Considering the wide variety of STEM Clubs found in different regions around the world, this study aimed to investigate the current state of research on STEM Clubs. It is not surprising to observe an increase in the number of studies conducted on STEM Clubs over the years. This can be attributed to the overall growth in research on STEM education (Zhan et al., 2022 ), as STEM education often includes activities and after-school programs as integral components (Blanchard et al., 2017 ). Identifying relevant keywords and incorporating them into a search strategy is crucial for conducting a comprehensive and rigorous systematic review (Corrin et al., 2022 ). To gain a broader understanding of keyword usage in the context of STEM Clubs, a word cloud analysis was performed (McNaught & Lam, 2010 ). Additionally, based on the content analysis method, six different categories for keywords were immerged: disciplines, technological concepts, academic community, learning experiences, core elements of education, and psychosocial factors (variables). The analysis revealed that the keyword "STEM" was used most frequently in the studies examined. This may be because authors want their studies to be easily found and widely searchable by others, so they use "STEM" as a general term for their studies (Corrin et al., 2022 ). Similarly, the frequent use of keywords like "education" and "learning" from the "core elements of education" category could be attributed to authors' desire to use broad, searchable terms to make their studies more discoverable (Corrin et al., 2022 ). Additionally, it was observed that from the STEM components, only "science" and "engineering" were used as keywords, while "mathematics" and "technology" were not present. This finding aligns with claims in the literature that mathematics is often underemphasized in STEM integration (Fitzallen, 2015 ; Maass et al., 2019 ; Stohlmann, 2018 ). Although the specific term "technology" did not appear in the word cloud, technology-related keywords such as "arduino," "robots," "coding," and "innovative" were present. Furthermore, the analysis revealed that authors preferred to use keywords related to their sample populations, such as "middle (school students)," "elementary (students)," "high school students," or "teachers." Additionally, keywords describing learning experiences, such as "extracurricular," "informal," "afterschool," "out-of-school," "social," "clubs," and "practice" were commonly used. This preference may stem from the fact that STEM clubs are often part of informal learning environments, out-of-school programs, or afterschool activities, and these concepts are closely related to each other (Baran et al., 2016 ; Cooper, 2011 ; Kalkan & Eroglu, 2017 ; Schweingruber et al., 2014 ). Moreover, the analysis showed that keywords related to psychosocial factors (variables), such as "disabilities," "skills," "interest," "attainment," "enactment," "expectancy-value," "self-efficacy," "engagement," "motivation," "career," "gender," "cognitive," and "identity" were also prevalent. This suggests that the articles investigated the effects of STEM club practices on these psychosocial variables. To sum up, by using these keywords, researchers can gain valuable insights and effectively search for relevant articles related to STEM clubs, enabling them to locate appropriate resources for their research (Corrin et al., 2022 ).

The popularity of case studies as a research design, based on the analysis, can be attributed to the fact that studies on STEM Clubs were conducted in diverse learning environments, highlighting sample implementation designs (Adams et al., 2014 ; Bell et al., 2009 ; Robelen, 2011 ). At this point, case studies offer the opportunity to present practical applications and real-world examples (Hamilton & Corbett-Whittier, 2012 ), which is highly valuable in the context of STEM Clubs. Additionally, the observation that quantitative methods were not as commonly utilized as qualitative methods in studies related to STEM Clubs contrasts with the predominant reliance on quantitative methods in STEM education research (Aslam et al., 2022 ; Irwanto et al., 2022 ; Lin et al., 2019 ). This suggests a lack of quantitative studies specifically focused on STEM Clubs, indicating a need for more research in this area employing quantitative approaches. Therefore, it is important to prioritize and conduct additional quantitative studies to further enhance our understanding of STEM Clubs and their impact. In studies on STEM Club, there is a higher frequency of research involving K-12 students, particularly middle school students, parallel to some studies on literature (Aslam et al., 2022 ), compared to other groups such as pre-service teachers, undergraduate students, teachers, and parents. This can be attributed to the fact that STEM Clubs are designed for K-12 students, and middle school is a crucial period for introducing them to STEM concepts and careers. Middle school students are developmentally ready for hands-on and inquiry-based learning, commonly used in STEM education. Additionally, time constraints, especially for high school students preparing for university, may limit their involvement in extensive STEM activities. Furthermore, STEM Clubs were primarily employed with sample groups ranging from 11–15, 16–20, and 201–250 participants. The preference for 11–20 participants, rather than less than 10, may be attributed to the collaborative nature of STEM activities, which often require a larger team for effective teamwork and group dynamics (Magaji et al., 2022 ). Utilizing small groups as samples can result in the case study research design being the most frequently employed approach due to its compatibility with smaller sample sizes. On the other hand, the inclusion of larger groups (201–250) is suitable for survey studies, as this number can represent the total student population attending STEM Clubs throughout a semester with multiple sessions (Boys & Girls Club of America, 2019 ).

According to studies on STEM Clubs, surveys or questionnaires and observations were predominantly used as data collection methods. This preference can be attributed to the fact that surveys or questionnaires allow researchers to gather data on diverse aspects, including students' attitudes, perceptions, and experiences related to STEM Clubs, facilitating generalization and comparison (McLafferty, 2016 ). Furthermore, observations were frequently employed because they can offer a deeper understanding of the lived experiences and actual practices within STEM Clubs (Baker, 2006 ). Along with data collection tools, descriptive analysis was predominantly utilized in studies on STEM Clubs, with quantitative methods including descriptive statistics and inferential statistics being used to a similar extent. The preference for descriptive analysis may arise from its effectiveness in describing activities, experiences, and practices within STEM Clubs. Given the predominance of case study research in the analysed studies, it is not surprising to observe a high frequency of descriptive statistics in the findings. On the other hand, the extensive use of quantitative analysing methods can be attributed to the need for statistical analysis of surveys and questionnaires (Young, 2015 ). Consequently, future studies on STEM Clubs could benefit from considering the use of tests and field notes as additional data collection tools, along with surveys, observations and interviews. Additionally, the development of tests specifically designed to assess aspects related to STEM could provide valuable insights (Capraro & Corlu, 2013 ; Grangeat et al., 2021 ). Moreover, increasing the utilization of content analysis and constant comparative analysis methods could further enhance the depth and richness of data analysis in STEM Club research (White & Marsh, 2006 ). In the studies on STEM Clubs, the duration and scheduling of the clubs varied considerably. While there was no common period of time for STEM Clubs, they were implemented for different numbers of weeks and sessions, with session durations ranging from several minutes to 60 to 120 min. However, it was observed that STEM Clubs were predominantly conducted over the course of three semesters, including the academic year and summer, or for durations of 2 to 16 weeks. This scheduling pattern can be attributed to the fact that STEM Clubs were often implemented as after-school programs, and they were designed to align with the academic semesters and summer school periods to effectively reach students. Additionally, the number of weeks in these studies may have been arranged according to the duration of academic semesters, although some studies were conducted for less than a semester (Gutierrez, 2016 ). The most common use of multiple sessions with a time range of 60 to 120 min can be attributed to the nature of the activities involved in STEM Clubs. These activities often require more time than regular class hours, and splitting them into separate sessions allows students to effectively concentrate on their work and engage in more in-depth learning experiences (Vennix et al., 2017 ).

The purposes of the studies on STEM Clubs were mostly related to effects of participation in STEM Clubs on various aspects such as attitudes towards STEM disciplines or career paths, STEM major choice/career aspiration, achievement etc., evolution of a sample program for STEM Clubs and its implementation including the development of program/activity, identification of program's challenges and limitations, and implementation of it, followed by the examination of certain aspects such as the experiences and perceptions of students and the factors influencing specific subjects, identification of such as the types of attitudinal effects and non-academic skills, and comparison of in-school and out-school STEM experiences. Therefore, the results of the studies parallel to the purposes were mostly related to development of or increase in certain aspects such as STEM or academic achievement or STEM competency STEM major choice or career aspiration engagement or participation in STEM Clubs, identity, interest in STEM, enjoyment, collaboration, communication skills, critical thinking, the design of STEM Clubs including the sample implementation or design model for different purposes such as the usage of robotic program or students with disabilities, design principles or ideas for STEM clubs or activities, challenges or factors effecting STEM Clubs success and sustainability, and the comparison between in-school and out-of-school learning environments. Also, they are related to the identification of various aspects such as factors affecting participation or motivation to STEM clubs, barriers to participation. At this point, it is evident that these identified categories align with the findings of studies in the literature. These studies claim that after-school programs, such as STEM Clubs, have positive impacts on students' achievement levels (NRC, 2015 ; Kazu & Kurtoglu Yalcin, 2021 ; Shernoff & Vandell, 2007 ), communication, and innovative problem-solving abilities (Mahoney et al., 2007 ), leadership skills (Lipscomb et al., 2017 ), career decision-making (Bybee, 2001 ; Dabney et al., 2012 ; Sahin et al., 2018 ; Tai et al., 2006 ), creativity (Wan et al., 2023 ), 21st-century skills (Hirsch, 2011 ; Zeng et al., 2018 ), interest in STEM professions (Blanchard et al., 2017 ; Chittum et al., 2017 ; Wang et al., 2011 ), and knowledge in STEM fields (Adams et al., 2014 ; Bell et al., 2009 ). Furthermore, it can be inferred that the studies on STEM Clubs paid significant attention to the design descriptions of programs or activities (Nation et al., 2019 ). This may be because there is a need for studies that focus on designing program models for different cases (Calabrese Barton & Tan, 2018 ; Estrada et al., 2016 ). These studies can serve as examples and provide guidance for the development of STEM clubs in various settings. By creating sample models, researchers can contribute to the improvement and expansion of STEM clubs across different environments (Cakir & Guven, 2019 ; Estrada et al., 2016 ).

In conclusion, as the studies on the trends in STEM education (Bozkurt et al., 2019 ; Chomphuphra et al., 2019 ; Irwanto et al., 2022 ; Li et al., 2020 ; Lin et al., 2019 ; Martín-Páez et al., 2019 ; Noris et al., 2023 ), the analysis of prevailing research trends specifically in STEM Clubs, which are implemented in diverse environments with varying methods and purposes, can provide a comprehensive understanding of these clubs as a whole.

It can also serve as a valuable resource for guiding future investigations in this field. By identifying common approaches and identifying gaps in methods and results, a holistic perspective on STEM Clubs can be achieved, leading to a more informed and targeted direction for future research endeavours.

Recommendations

Future research on STEM Clubs should consider the trends identified in the study and address methodological gaps. For instance, there is a lack of research in this area that employs quantitative approaches. Therefore, it is important for future studies to incorporate quantitative methods to enhance the understanding of STEM Clubs and their impact. This includes exploring underrepresented populations, investigating the long-term impacts of STEM Clubs, and examining the effectiveness of specific pedagogical approaches or interventions within these clubs. Researchers should conduct an analysis to identify common approaches used in STEM Clubs across different settings. This analysis can help uncover effective strategies, best practices, and successful models that can be replicated or adapted in various contexts. By undertaking these efforts, researchers can contribute to a more comprehensive understanding of STEM Clubs, leading to advancements in the field of STEM education.

Limitations

It is important to consider the limitations of the study when interpreting its findings. The study's findings are based on the literature selected from two databases, which may introduce biases and limitations. Additionally, the study's findings are constrained by the timeframe of the literature review, and new studies may have emerged since the cut-off date, potentially impacting the representation and generalizability of the research trends identified. Another limitation lies in the construction of categories during the coding process. The coding scheme used may not have fully captured or represented all relevant terms or concepts. Some relevant terms may have been inadequately represented or identified using different words or phrases, potentially introducing limitations to the analysis. While efforts were made to ensure validity and reliability, there is still a possibility of unintended biases or inconsistencies in the categorization process.

Data Availability

The datasets (documents, excel analysis) utilized in this article are available upon request from the corresponding author.

Adams, J. D., Gupta, P., & Cotumaccio, A. (2014). A museum program enhances girls’ STEM interest, motivation and persistence. Afterschool Matters, 12 , 14–20.

Google Scholar  

Afterschool Alliance (2015).  Full STEM ahead: Afterschool programs step up as key partners in STEM education . Retrieved November 2023 from http://www.afterschoolalliance.org/AA3PM/

Aslam, S., Saleem, A., Kennedy, T. J., Kumar, T., Parveen, K., Akram, H., & Zhang, B. (2022). Identifying the research and trends in STEM education in Pakistan: A systematic literature review. SAGE Open, 12 (3), 21582440221118544.

Article   Google Scholar  

Ayers, K. A., Wade-Jaimes, K., Wang, L., Pennella, R. A., & Pounds, S. B. (2020). The St. Jude STEM clubs: An after-school STEM club for upper elementary school students in Memphis, TN. Journal of STEM Outreach, 3 (1), 1–26. https://doi.org/10.15695/jstem/v3i1.13

Bae, S. H. (2018). Concepts, models, and research of extended education. International Journal for Research on Extended Education, 6 (2), 153–165.

Baker, L. (2006). Observation: A complex research method. Library Trends, 55 (1), 171–189.

Baran, E., Bilici, S. C., Mesutoglu, C., & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4 (1), 9–19. https://doi.org/10.18404/ijemst.71338

Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning science in informal environments: People, places and pursuits . National Research Council of the National Academies.

Blanchard, M. R., Hoyle, K. S., & Gutierrez, K. S. (2017). How to start a STEM club. Science Scope, 41 (3), 88–94.

Boys and Girls Club of America (2019). Annual report . Retrieved November 2023 from https://www.bgca.org/about-us/annual-report

Bozkurt, A., Ucar, H., Durak, G., & Idin, S. (2019). The current state of the art in STEM research: A systematic review study. Cypriot Journal of Educational Science,  14 (3), 374–383. https://doi.org/10.18844/cjes.v14i3.3447

Bybee, R. W. (2001). Achieving scientific literacy: Strategies for ensuring that free choice science education complements national formal science education efforts. In J. H. Falk (Ed.), Free choice education: How we learn science outside of school (pp. 44–63). Teachers College Press.

Cakir, N. K., & Guven, G. (2019). Arduino-assisted robotic and coding applications in science teaching: Pulsimeter activity in compliance with the 5E learning model. Science Activities, 56 (2), 42–51.

Calabrese Barton, A., & Tan, E. (2018). A longitudinal study of equity-oriented STEM-rich making among youth from historically marginalized communities. American Educational Research Journal, 55 (4), 761–800.

Capraro, R. M., & Corlu, M. S. (2013). Changing views on assessment for STEM project-based learning. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.),  STEM project-based learning (pp. 109–118). Brill.

Chapter   Google Scholar  

Casing, P. I., & Casing, L. M. R. (2024). Fostering students’ mathematics achievement through after-school program in the 21st century. Online Submission, 12 (3), 118–122.

Chittum, J. R., Jones, B. D., Akalin, S., & Schram, A. B. (2017). The effects of an afterschool STEM program on students’ motivation and engagement. International Journal of STEM Education, 4 , 1–16.

Chomphuphra, P., Chaipidech, P., & Yuenyong, C. (2019). Trends and research issues of STEM education: A review of academic publications from 2007 to 2017. Journal of Physics: Conference Series, 1340 (1), 012069.

Civil, M. (2007). Building on community knowledge: An avenue to equity in mathematics education. In N. S. Nasir & P. Cobb (Eds.), Improving access to mathematics: Diversity and equity in the classroom (pp. 105–117). Teachers College.

Cooper, S. (2011). An exploration of the potential for mathematical experiences in informal learning environments. Visitor Studies, 14 (1), 48–65. https://doi.org/10.1080/10645578.2011.557628

Corrin, L., Thompson, K., Hwang, G. J., & Lodge, J. M. (2022). The importance of choosing the right keywords for educational technology publications. Australasian Journal of Educational Technology, 38 (2), 1–8.

Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with a career interest in STEM. International Journal of Science Education, Part B, 2 (1), 63–79. https://doi.org/10.1080/21548455.2011.629455

DePaolo, C. A., & Wilkinson, K. (2014). Get your head into the clouds: Using word clouds for analyzing qualitative assessment data. TechTrends, 58 , 38–44. https://doi.org/10.1007/s11528-014-0750-9

Donnelly, M., ažetić, P., Sandoval-Hernandez, A., Kumar, K., & Whewall, S. (2019). An unequal playing field-extra-curricular activities, soft skills and social mobility . Social Mobility Commission.

Durlak, J. A., & Weissberg, R. P. (2007). The impact of after-school programs that promote personal and social skills. Collaborative for Academic, Social, and Emotional Learning (CASEL). Retrieved from www.casel.org

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62 (1), 107–115.

Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Gutiérrez, C. G., Hurtado, S., John, G. H., Matsui, J., McGee, R., Okpodu, C. M, Robinson, T. J., Summers, M. F., Werner-Washburne, M., & Zavala, M. (2016). Improving underrepresented minority student persistence in STEM. CBE—Life Sciences Education , 15 (3), es5.

Fitzallen, N. (2015). STEM Education: What does mathematics have to offer? In M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins. Proceedings of The 38th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 237–244). MERGA.

Fraenkel, J., Wallen, N., & Hyun, H. (2012). How to design and evaluate research in education (10th ed.). McGraw-Hill Education.

Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). Educational research: competencies for analysis and applications (10th ed.). Pearson.

Grangeat, M., Harrison, C., & Dolin, J. (2021). Exploring assessment in STEM inquiry learning classrooms. International Journal of Science Education, 43 (3), 345–361.

Gutierrez, K. S. (2016). Investigating the climate change beliefs, knowledge, behaviors, and cultural worldviews of rural middle school students and their families during an out-of-school intervention: A mixed-methods study (Publication No. 11320) [Doctoral dissertation, North Carolina State University]. NC State University Libraries.

Hamilton, L., & Corbett-Whittier, C. (2012). Using case study in education research . Sage.

Hein, G. (2009). Learning science in informal environments: People, places, and pursuits. Museums & Social Issues, 4 (1), 113–124.

Hirsch, B. (2011). Learning and development in after-school programs. Phi Delta Kappan, 92 (5), 66–69. https://doi.org/10.1177/2F003172171109200516

Irwanto, I., Saputro, A. D., Widiyanti, W., Ramadhan, M. F., & Lukman, I. R. (2022). Research trends in STEM education from 2011 to 2020: A systematic review of publications in selected journals. International Journal of Interactive Mobile Technologies (iJIM), 16 (5), 19–32.

Kalkan, C., & Eroglu, S. (2017). Designing sample activities based on STEM materials for gifted/talented students in support education rooms. Journal of Gifted Education and Creativity , 4 (2), 36–46. Retrieved November 2023 from  https://dergipark.org.tr/tr/pub/jgedc/issue/38702/449432

Kazu, I. Y., & Kurtoglu Yalcin, C. (2021). The effect of STEM education on academic performance: A meta-analysis study. Turkish Online Journal of Educational Technology-TOJET, 20 (4), 101–116.

Lauer, P. A., Akiba, M., Wilkerson, S. B., Apthorp, H. S., Snow, D., & Martin-Glenn, M. L. (2006). Out-of-school-time programs: A meta-analysis of effects for at-risk students. Review of Educa- Tional Research, 76 (2), 275–313.

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7 (1), 1–16.

Lin, T. C., Lin, T. J., & Tsai, C. C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36 (8), 1346–1372.

Lin, T. J., Lin, T. C., Potvin, P., & Tsai, C. C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Lipscomb, S., Haimson, J., Liu, A. Y., Burghardt, J., Johnson, D. R., & Thurlow, M. L. (2017). Preparing for life after high school: The characteristics and experiences of youth in special education. Findings from the National Longitudinal Transition Study 2012. Volume 2: Comparisons across disability groups: Full report (Report No. NCEE 2017–4018). U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance.

Little, P., Wimer, C., & Weiss, H. B. (2008). After school programs in the 21st century: Their poten- tial and what it takes to achieve it. Issues and Opportunities in out-of-School Time Evaluation, 10 , 1–12.

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM, 51 , 869–884. https://doi.org/10.1007/s11858-019-01100-5

Magaji, A., Ade-Ojo, G., & Bijlhout, D. (2022). The impact of after school science club on the learning progress and attainment of students. International Journal of Instruction, 15 (3), 171–190.

Mahoney, J. L., Parente, M. E., & Lord, H. (2007). After-school program engagement: Links to child competence and program quality and content. The Elementary School Journal, 107 (4), 385–404.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103 (4), 799–822.

McLafferty, S. (2016). Conducting questionnaire surveys. Key Methods in Geography, 3 , 129–142.

McNaught, C., & Lam, P. (2010). Using Wordle as a supplementary research tool. Qualitative Report, 15 (3), 630–643.

Merrill, C., & Daugherty, J. (2010). STEM education and leadership: A mathematics and science partnership approach. Journal of Technology Education, 21 (2), 21–34.

Nation, J. M., Harlow, D., Arya, D. J., & Longtin, M. (2019). Being and becoming scientists: Design-based STEM programming for girls. Afterschool Matters, 29 , 36–44.

National Research Council, Division of Behavioral, Board on Science Education, & Committee on Successful Out-of-School STEM Learning (2015). Identifying and supporting productive STEM programs in out-of-school settings . National Academies Press.

Noris, M., Saputro, S., & Ulimaz, A. (2023). STEM research trends from 2013 to 2022: A systematic literature review. International Journal of Technology in Education (IJTE), 6 (2), 224–237. https://doi.org/10.46328/ijte.390

Pastchal-Temple, A. S. (2012). The effect of regular participation in an after-school program on student achievement, attendance, and behavior (Publication No. 4368) [Doctoral dissertation, Mississippi State University]. Mississippi State University Libraries.

Resnick, L. B. (1987). Education and learning to think . National Academy Press.

Robelen, E. (2011). New STEM schools target underrepresented groups. Education Week, 31 (1), 18–19.

Sahin, A., Ekmekci, A., & Waxman, H. C. (2018). Collective effects of individual, behavioral, and contextual factors on high school students’ future STEM career plans. International Journal of Science and Mathematics Education, 16 , 69–89.

Schweingruber, H., Pearson, G., & Honey, M. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . National Academies Press.

Shernoff, D. J., & Vandell, D. L. (2007). Engagement in after school program activities: Quality of experience from the perspective of participants. Journal of Youth Adolescence, 36 , 891–903.

Stemler, S. (2000). An overview of content analysis. Practical Assessment, Research & Evaluation, 7 (17), 1–6. https://doi.org/10.7275/z6fm-2e34

Stohlmann, M. (2018). A vision for future work to focus on the “m” in integrated STEM. School Science and Mathematics, 118 (7), 310–319. https://doi.org/10.1111/ssm.12301

Sozbilir, M., Kutu, H., & Yasar, M. D. (2012). Science education research in Turkey: A content analysis of selected features of papers published. In J. Dillon & D. Jorde (Eds.), The world of science education: Handbook of research in Europe (pp. 1–35). Sense publishers.

Suri, H., & Clarke, D. (2009). Advancements in research systhesis methods: From a methodologically inclusive perspective. Review of Educational Research, 79 (1), 395–430.

Tai, R. H., Qi Liu, C., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312 (5777), 1143–1144.

Vennix, J., Den Brok, P., & Taconis, R. (2017). Perceptions of STEM-based outreach learning activities in secondary education. Learning Environments Research, 20 , 21–46.

Wan, Z. H., So, W. M. W., & Zhan, Y. (2023). Investigating the effects of design-based STEM learning on primary students’ STEM creativity and epistemic beliefs. International Journal of Science and Mathematics Education, 21 (Suppl. 1), 87–108.

Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1 (2), 1–13.

White, M. D., & Marsh, E. E. (2006). Content analysis: A flexible methodology. Library Trends, 55 (1), 22–45.

Young, T. J. (2015). Questionnaires and surveys. In Z. Hua (Ed.), Research methods in intercultural communication: A practical guide (pp. 163–180). John Wiley & Sons. https://doi.org/10.1002/9781119166283.ch11

Zeng, Z., Yao, J., Gu, H., & Przybylski, R. (2018). A meta-analysis on the effects of STEM education on students’ abilities. Science Insights Education Frontiers, 1 (1), 3–16.

Zhan, Z., Shen, W., Xu, Z., Niu, S., & You, G. (2022). A bibliometric analysis of the global landscape on STEM education (2004–2021): Towards global distribution, subject integration, and research trends. Asia Pacific Journal of Innovation and Entrepreneurship, 16 (2), 171–203.

Download references

Open access funding provided by the Scientific and Technological Research Council of Türkiye (TÜBİTAK). There was no external funding received for the research conducted in this article.

Author information

Authors and affiliations.

Department of Industrial Engineering, Istanbul Aydin University, Istanbul, Turkey

Rabia Nur Öndeş

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Rabia Nur Öndeş .

Ethics declarations

Ethical approval and consent.

This is a review study and no ethical approval is required.

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

No potential conflict of interest was reported by the author.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Öndeş, R.N. Research Trends in STEM Clubs: A Content Analysis. Int J of Sci and Math Educ (2024). https://doi.org/10.1007/s10763-024-10477-z

Download citation

Received : 19 January 2024

Accepted : 10 June 2024

Published : 25 June 2024

DOI : https://doi.org/10.1007/s10763-024-10477-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research Trends
  • Content Analysis
  • After-school Program
  • Extracurricular Activities
  • Find a journal
  • Publish with us
  • Track your research

About Stanford GSB

  • The Leadership
  • Dean’s Updates
  • School News & History
  • Commencement
  • Business, Government & Society
  • Centers & Institutes
  • Center for Entrepreneurial Studies
  • Center for Social Innovation
  • Stanford Seed

About the Experience

  • Learning at Stanford GSB
  • Experiential Learning
  • Guest Speakers
  • Entrepreneurship
  • Social Innovation
  • Communication
  • Life at Stanford GSB
  • Collaborative Environment
  • Activities & Organizations
  • Student Services
  • Housing Options
  • International Students

Full-Time Degree Programs

  • Why Stanford MBA
  • Academic Experience
  • Financial Aid
  • Why Stanford MSx
  • Research Fellows Program
  • See All Programs

Non-Degree & Certificate Programs

  • Executive Education
  • Stanford Executive Program
  • Programs for Organizations
  • The Difference
  • Online Programs
  • Stanford LEAD
  • Seed Transformation Program
  • Aspire Program
  • Seed Spark Program
  • Faculty Profiles
  • Academic Areas
  • Awards & Honors
  • Conferences

Faculty Research

  • Publications
  • Working Papers
  • Case Studies

Research Hub

  • Research Labs & Initiatives
  • Business Library
  • Data, Analytics & Research Computing
  • Behavioral Lab

Research Labs

  • Cities, Housing & Society Lab
  • Golub Capital Social Impact Lab

Research Initiatives

  • Corporate Governance Research Initiative
  • Corporations and Society Initiative
  • Policy and Innovation Initiative
  • Rapid Decarbonization Initiative
  • Stanford Latino Entrepreneurship Initiative
  • Value Chain Innovation Initiative
  • Venture Capital Initiative
  • Career & Success
  • Climate & Sustainability
  • Corporate Governance
  • Culture & Society
  • Finance & Investing
  • Government & Politics
  • Leadership & Management
  • Markets and Trade
  • Operations & Logistics
  • Opportunity & Access
  • Technology & AI
  • Opinion & Analysis
  • Email Newsletter

Welcome, Alumni

  • Communities
  • Digital Communities & Tools
  • Regional Chapters
  • Women’s Programs
  • Identity Chapters
  • Find Your Reunion
  • Career Resources
  • Job Search Resources
  • Career & Life Transitions
  • Programs & Webinars
  • Career Video Library
  • Alumni Education
  • Research Resources
  • Volunteering
  • Alumni News
  • Class Notes
  • Alumni Voices
  • Contact Alumni Relations
  • Upcoming Events

Admission Events & Information Sessions

  • MBA Program
  • MSx Program
  • PhD Program
  • Alumni Events
  • All Other Events
  • Operations, Information & Technology
  • Organizational Behavior
  • Political Economy
  • Classical Liberalism
  • The Eddie Lunch
  • Accounting Summer Camp
  • Videos, Code & Data
  • California Econometrics Conference
  • California Quantitative Marketing PhD Conference
  • California School Conference
  • China India Insights Conference
  • Homo economicus, Evolving
  • Political Economics (2023–24)
  • Scaling Geologic Storage of CO2 (2023–24)
  • A Resilient Pacific: Building Connections, Envisioning Solutions
  • Adaptation and Innovation
  • Changing Climate
  • Civil Society
  • Climate Impact Summit
  • Climate Science
  • Corporate Carbon Disclosures
  • Earth’s Seafloor
  • Environmental Justice
  • Operations and Information Technology
  • Organizations
  • Sustainability Reporting and Control
  • Taking the Pulse of the Planet
  • Urban Infrastructure
  • Watershed Restoration
  • Junior Faculty Workshop on Financial Regulation and Banking
  • Ken Singleton Celebration
  • Marketing Camp
  • Quantitative Marketing PhD Alumni Conference
  • Presentations
  • Theory and Inference in Accounting Research
  • Stanford Closer Look Series
  • Quick Guides
  • Core Concepts
  • Journal Articles
  • Glossary of Terms
  • Faculty & Staff
  • Researchers & Students
  • Research Approach
  • Charitable Giving
  • Financial Health
  • Government Services
  • Workers & Careers
  • Short Course
  • Adaptive & Iterative Experimentation
  • Incentive Design
  • Social Sciences & Behavioral Nudges
  • Bandit Experiment Application
  • Conferences & Events
  • Get Involved
  • Reading Materials
  • Teaching & Curriculum
  • Energy Entrepreneurship
  • Faculty & Affiliates
  • SOLE Report
  • Responsible Supply Chains
  • Current Study Usage
  • Pre-Registration Information
  • Participate in a Study

Long Term Hold

case study in descriptive research

  • Priorities for the GSB's Future
  • See the Current DEI Report
  • Supporting Data
  • Research & Insights
  • Share Your Thoughts
  • Search Fund Primer
  • Affiliated Faculty
  • Faculty Advisors
  • Louis W. Foster Resource Center
  • Defining Social Innovation
  • Impact Compass
  • Global Health Innovation Insights
  • Faculty Affiliates
  • Student Awards & Certificates
  • Changemakers
  • Dean Jonathan Levin
  • Dean Garth Saloner
  • Dean Robert Joss
  • Dean Michael Spence
  • Dean Robert Jaedicke
  • Dean Rene McPherson
  • Dean Arjay Miller
  • Dean Ernest Arbuckle
  • Dean Jacob Hugh Jackson
  • Dean Willard Hotchkiss
  • Faculty in Memoriam
  • Stanford GSB Firsts
  • Class of 2024 Candidates
  • Certificate & Award Recipients
  • Dean’s Remarks
  • Keynote Address
  • Teaching Approach
  • Analysis and Measurement of Impact
  • The Corporate Entrepreneur: Startup in a Grown-Up Enterprise
  • Data-Driven Impact
  • Designing Experiments for Impact
  • Digital Marketing
  • The Founder’s Right Hand
  • Marketing for Measurable Change
  • Product Management
  • Public Policy Lab: Financial Challenges Facing US Cities
  • Public Policy Lab: Homelessness in California
  • Lab Features
  • Curricular Integration
  • View From The Top
  • Formation of New Ventures
  • Managing Growing Enterprises
  • Startup Garage
  • Explore Beyond the Classroom
  • Stanford Venture Studio
  • Summer Program
  • Workshops & Events
  • The Five Lenses of Entrepreneurship
  • Leadership Labs
  • Executive Challenge
  • Arbuckle Leadership Fellows Program
  • Selection Process
  • Training Schedule
  • Time Commitment
  • Learning Expectations
  • Post-Training Opportunities
  • Who Should Apply
  • Introductory T-Groups
  • Leadership for Society Program
  • Certificate
  • 2024 Awardees
  • 2023 Awardees
  • 2022 Awardees
  • 2021 Awardees
  • 2020 Awardees
  • 2019 Awardees
  • 2018 Awardees
  • Social Management Immersion Fund
  • Stanford Impact Founder Fellowships and Prizes
  • Stanford Impact Leader Prizes
  • Social Entrepreneurship
  • Stanford GSB Impact Fund
  • Economic Development
  • Energy & Environment
  • Stanford GSB Residences
  • Environmental Leadership
  • Stanford GSB Artwork
  • A Closer Look
  • California & the Bay Area
  • Voices of Stanford GSB
  • Business & Beneficial Technology
  • Business & Sustainability
  • Business & Free Markets
  • Business, Government, and Society Forum
  • Second Year
  • Global Experiences
  • JD/MBA Joint Degree
  • MA Education/MBA Joint Degree
  • MD/MBA Dual Degree
  • MPP/MBA Joint Degree
  • MS Computer Science/MBA Joint Degree
  • MS Electrical Engineering/MBA Joint Degree
  • MS Environment and Resources (E-IPER)/MBA Joint Degree
  • Academic Calendar
  • Clubs & Activities
  • LGBTQ+ Students
  • Military Veterans
  • Minorities & People of Color
  • Partners & Families
  • Students with Disabilities
  • Student Support
  • Residential Life
  • Student Voices
  • MBA Alumni Voices
  • A Week in the Life
  • Career Support
  • Employment Outcomes
  • Cost of Attendance
  • Knight-Hennessy Scholars Program
  • Yellow Ribbon Program
  • BOLD Fellows Fund
  • Application Process
  • Loan Forgiveness
  • Contact the Financial Aid Office
  • Evaluation Criteria
  • GMAT & GRE
  • English Language Proficiency
  • Personal Information, Activities & Awards
  • Professional Experience
  • Letters of Recommendation
  • Optional Short Answer Questions
  • Application Fee
  • Reapplication
  • Deferred Enrollment
  • Joint & Dual Degrees
  • Entering Class Profile
  • Event Schedule
  • Ambassadors
  • New & Noteworthy
  • Ask a Question
  • See Why Stanford MSx
  • Is MSx Right for You?
  • MSx Stories
  • Leadership Development
  • How You Will Learn
  • Admission Events
  • Personal Information
  • GMAT, GRE & EA
  • English Proficiency Tests
  • Career Change
  • Career Advancement
  • Daycare, Schools & Camps
  • U.S. Citizens and Permanent Residents
  • Requirements
  • Requirements: Behavioral
  • Requirements: Quantitative
  • Requirements: Macro
  • Requirements: Micro
  • Annual Evaluations
  • Field Examination
  • Research Activities
  • Research Papers
  • Dissertation
  • Oral Examination
  • Current Students
  • Education & CV
  • International Applicants
  • Statement of Purpose
  • Reapplicants
  • Application Fee Waiver
  • Deadline & Decisions
  • Job Market Candidates
  • Academic Placements
  • Stay in Touch
  • Faculty Mentors
  • Current Fellows
  • Standard Track
  • Fellowship & Benefits
  • Group Enrollment
  • Program Formats
  • Developing a Program
  • Diversity & Inclusion
  • Strategic Transformation
  • Program Experience
  • Contact Client Services
  • Campus Experience
  • Live Online Experience
  • Silicon Valley & Bay Area
  • Digital Credentials
  • Faculty Spotlights
  • Participant Spotlights
  • Eligibility
  • International Participants
  • Stanford Ignite
  • Frequently Asked Questions
  • Founding Donors
  • Location Information
  • Participant Profile
  • Network Membership
  • Program Impact
  • Collaborators
  • Entrepreneur Profiles
  • Company Spotlights
  • Seed Transformation Network
  • Responsibilities
  • Current Coaches
  • How to Apply
  • Meet the Consultants
  • Meet the Interns
  • Intern Profiles
  • Collaborate
  • Research Library
  • News & Insights
  • Program Contacts
  • Databases & Datasets
  • Research Guides
  • Consultations
  • Research Workshops
  • Career Research
  • Research Data Services
  • Course Reserves
  • Course Research Guides
  • Material Loan Periods
  • Fines & Other Charges
  • Document Delivery
  • Interlibrary Loan
  • Equipment Checkout
  • Print & Scan
  • MBA & MSx Students
  • PhD Students
  • Other Stanford Students
  • Faculty Assistants
  • Research Assistants
  • Stanford GSB Alumni
  • Telling Our Story
  • Staff Directory
  • Site Registration
  • Alumni Directory
  • Alumni Email
  • Privacy Settings & My Profile
  • Success Stories
  • The Story of Circles
  • Support Women’s Circles
  • Stanford Women on Boards Initiative
  • Alumnae Spotlights
  • Insights & Research
  • Industry & Professional
  • Entrepreneurial Commitment Group
  • Recent Alumni
  • Half-Century Club
  • Fall Reunions
  • Spring Reunions
  • MBA 25th Reunion
  • Half-Century Club Reunion
  • Faculty Lectures
  • Ernest C. Arbuckle Award
  • Alison Elliott Exceptional Achievement Award
  • ENCORE Award
  • Excellence in Leadership Award
  • John W. Gardner Volunteer Leadership Award
  • Robert K. Jaedicke Faculty Award
  • Jack McDonald Military Service Appreciation Award
  • Jerry I. Porras Latino Leadership Award
  • Tapestry Award
  • Student & Alumni Events
  • Executive Recruiters
  • Interviewing
  • Land the Perfect Job with LinkedIn
  • Negotiating
  • Elevator Pitch
  • Email Best Practices
  • Resumes & Cover Letters
  • Self-Assessment
  • Whitney Birdwell Ball
  • Margaret Brooks
  • Bryn Panee Burkhart
  • Margaret Chan
  • Ricki Frankel
  • Peter Gandolfo
  • Cindy W. Greig
  • Natalie Guillen
  • Carly Janson
  • Sloan Klein
  • Sherri Appel Lassila
  • Stuart Meyer
  • Tanisha Parrish
  • Virginia Roberson
  • Philippe Taieb
  • Michael Takagawa
  • Terra Winston
  • Johanna Wise
  • Debbie Wolter
  • Rebecca Zucker
  • Complimentary Coaching
  • Changing Careers
  • Work-Life Integration
  • Career Breaks
  • Flexible Work
  • Encore Careers
  • Join a Board
  • D&B Hoovers
  • Data Axle (ReferenceUSA)
  • EBSCO Business Source
  • Global Newsstream
  • Market Share Reporter
  • ProQuest One Business
  • Student Clubs
  • Entrepreneurial Students
  • Stanford GSB Trust
  • Alumni Community
  • How to Volunteer
  • Springboard Sessions
  • Consulting Projects
  • 2020 – 2029
  • 2010 – 2019
  • 2000 – 2009
  • 1990 – 1999
  • 1980 – 1989
  • 1970 – 1979
  • 1960 – 1969
  • 1950 – 1959
  • 1940 – 1949
  • Service Areas
  • ACT History
  • ACT Awards Celebration
  • ACT Governance Structure
  • Building Leadership for ACT
  • Individual Leadership Positions
  • Leadership Role Overview
  • Purpose of the ACT Management Board
  • Contact ACT
  • Business & Nonprofit Communities
  • Reunion Volunteers
  • Ways to Give
  • Fiscal Year Report
  • Business School Fund Leadership Council
  • Planned Giving Options
  • Planned Giving Benefits
  • Planned Gifts and Reunions
  • Legacy Partners
  • Giving News & Stories
  • Giving Deadlines
  • Development Staff
  • Submit Class Notes
  • Class Secretaries
  • Board of Directors
  • Health Care
  • Sustainability
  • Class Takeaways
  • All Else Equal: Making Better Decisions
  • If/Then: Business, Leadership, Society
  • Grit & Growth
  • Think Fast, Talk Smart
  • Spring 2022
  • Spring 2021
  • Autumn 2020
  • Summer 2020
  • Winter 2020
  • In the Media
  • For Journalists
  • DCI Fellows
  • Other Auditors
  • Academic Calendar & Deadlines
  • Course Materials
  • Entrepreneurial Resources
  • Campus Drive Grove
  • Campus Drive Lawn
  • CEMEX Auditorium
  • King Community Court
  • Seawell Family Boardroom
  • Stanford GSB Bowl
  • Stanford Investors Common
  • Town Square
  • Vidalakis Courtyard
  • Vidalakis Dining Hall
  • Catering Services
  • Policies & Guidelines
  • Reservations
  • Contact Faculty Recruiting
  • Lecturer Positions
  • Postdoctoral Positions
  • Accommodations
  • CMC-Managed Interviews
  • Recruiter-Managed Interviews
  • Virtual Interviews
  • Campus & Virtual
  • Search for Candidates
  • Think Globally
  • Recruiting Calendar
  • Recruiting Policies
  • Full-Time Employment
  • Summer Employment
  • Entrepreneurial Summer Program
  • Global Management Immersion Experience
  • Social-Purpose Summer Internships
  • Process Overview
  • Project Types
  • Client Eligibility Criteria
  • Client Screening
  • ACT Leadership
  • Social Innovation & Nonprofit Management Resources
  • Develop Your Organization’s Talent
  • Centers & Initiatives
  • Student Fellowships

Wealthy Affiliate

Niche Case Study (Ep #9): Creating a Content Plan

case study in descriptive research

Creating a Content Plan is an essential step in the keyword research process because it will help us come up with a huge list of awesome keywords with which we can get rankings and traffic.

And in this video, I'm going to show you how it's done!

Also, here's the link to the Content Plan I created in the video (which you can swipe).

Want to see more from this case study?

==> Go here for the full list of Niche Case Study videos

Login

Recent Comments

New message...

case study in descriptive research

Great organizational advice, thanks Tim. Cheers, Jenni.

case study in descriptive research

Thank you , Tim

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

atmosphere-logo

Article Menu

case study in descriptive research

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Deep learning for flash drought detection: a case study in northeastern brazil.

case study in descriptive research

Share and Cite

Barbosa, H.A.; Buriti, C.O.; Kumar, T.V.L. Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil. Atmosphere 2024 , 15 , 761. https://doi.org/10.3390/atmos15070761

Barbosa HA, Buriti CO, Kumar TVL. Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil. Atmosphere . 2024; 15(7):761. https://doi.org/10.3390/atmos15070761

Barbosa, Humberto A., Catarina O. Buriti, and T. V. Lakshmi Kumar. 2024. "Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil" Atmosphere 15, no. 7: 761. https://doi.org/10.3390/atmos15070761

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. what is descriptive case study design

    case study in descriptive research

  2. Descriptive Research Case Study Ppt Powerpoint Presentation

    case study in descriptive research

  3. Descriptive Research

    case study in descriptive research

  4. What is Descriptive Research? Examples & Detailed Case Study

    case study in descriptive research

  5. descriptive research and case study

    case study in descriptive research

  6. descriptive study vs case study

    case study in descriptive research

VIDEO

  1. II.2 Research 101 (11) Qualitative/Descriptive Research

  2. Descriptive Study designs: Case report, case series, Ecological and cross-sectional study designs

  3. Descriptive Research definition, types, and its use in education

  4. Research Design Part 3 Cont

  5. Types of Research Design

  6. Data analysis and interpretation of descriptive research study

COMMENTS

  1. Descriptive Research

    Descriptive research is usually defined as a type of quantitative research, though qualitative research can also be used for descriptive purposes. ... Case studies. A case study can be used to describe the characteristics of a specific subject (such as a person, group, event or organization). Instead of gathering a large volume of data to ...

  2. Case Study

    Descriptive Case Study. A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon. For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic ...

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  4. Descriptive Research Design

    Case Study. This involves an in-depth examination of a single individual, group, or situation to gain a detailed understanding of its characteristics or dynamics. ... As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies ...

  5. How to Use Case Studies in Research: Guide and Examples

    1. Select a case. Once you identify the problem at hand and come up with questions, identify the case you will focus on. The study can provide insights into the subject at hand, challenge existing assumptions, propose a course of action, and/or open up new areas for further research. 2.

  6. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  7. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  8. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  9. LibGuides: Research Writing and Analysis: Case Study

    A Case study is: An in-depth research design that primarily uses a qualitative methodology but sometimes includes quantitative methodology. Used to examine an identifiable problem confirmed through research. Used to investigate an individual, group of people, organization, or event. Used to mostly answer "how" and "why" questions.

  10. Designing research with case study methods

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. Robert Yin, methodologist most associated with case study research, differentiates between descriptive, exploratory and explanatory case studies:

  11. Case Study vs. Descriptive Approach to Research

    The case study approach allows for in-depth analysis of specific cases, providing rich and detailed information. On the other hand, the descriptive approach provides a broader overview of populations, allowing for generalizations and statistical analysis. Both approaches have their merits and limitations, and researchers should choose the most ...

  12. Guide: Designing and Conducting Case Studies

    Designing and Conducting Case Studies. This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of ...

  13. Descriptive Research Designs: Types, Examples & Methods

    Case Study Method. A case study is a sample group (an individual, a group of people, organizations, events, etc.) whose characteristics are used to describe the characteristics of a larger group in which the case study is a subgroup. ... It aims to provide an accurate and objective representation of the subject of study. Descriptive research ...

  14. PDF Case Study Design Essentials: Definition, Research Questions, Propositions

    Definition of the Case Study. "An empirical inquiry that investigates a contemporary phenomenon (e.g., a "case") within its real-life context; when the boundaries between phenomenon and context are not clearly evident" (Yin, 2014, p.16) "A case study is an in-depth description and analysis of a bounded system" (Merriam, 2015, p.37).

  15. (PDF) Case Study Research

    The case study method is a research strategy that aims to gain an in-depth understanding of a specific phenomenon by collecting and analyzing specific data within its true context (Rebolj, 2013 ...

  16. Descriptive Research: Characteristics, Methods + Examples

    Data collection: A researcher can conduct descriptive research using specific methods like observational method, case study method, and survey method. Between these three, all primary data collection methods are covered, which provides a lot of information. This can be used for future research or even for developing a hypothesis for your research object.

  17. Case Study Methodology of Qualitative Research: Key Attributes and

    1. Case study is a research strategy, and not just a method/technique/process of data collection. 2. A case study involves a detailed study of the concerned unit of analysis within its natural setting. A de-contextualised study has no relevance in a case study research. 3. Since an in-depth study is conducted, a case study research allows the

  18. Descriptive Research: Design, Methods, Examples, and FAQs

    There are three basic approaches for gathering data in descriptive research: observational, case study, and survey. Survey. You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview. Surveys remain the dominant research tool for descriptive research design.

  19. Descriptive Research and Case Studies

    The single-case experimental design (sometimes called single-participant research designs), is particularly useful for studies of treatment effectiveness. In single-case experimental designs, the same research participant serves as the subject in both the experimental and control conditions. One of the most common forms of the single-case experimental design is the A-B-A-B design, or reversal ...

  20. PDF Comparing the Five Approaches

    interviews in phenomenology, multiple forms in case study research to provide the in-depth case picture). At the data analysis stage, the differences are most pronounced. Not only is the distinction one of specificity of the analysis phase (e.g., grounded the-ory most specific, narrative research less defined) but the number of steps to be under-

  21. Methodology or method? A critical review of qualitative case study

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995).Qualitative case study research, as described by Stake (), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" in a bricoleur design ...

  22. Descriptive research: What it is and how to use it

    Case studies in descriptive research involve conducting in-depth and detailed studies in which researchers get a specific person or case to answer questions. Case studies shouldn't be used to generate results, rather it should be used to build or establish hypothesis that you can expand into further market research .

  23. PDF Case Study -a descriptive research methodology

    case is an example of something. A choice of what to study. A case is a specific, unique, bound system. (Stake 2005) Case studies focus on activities, functionings and local meaning within specific case(s) (Stake 2005) The study of complex phenomena in their context, in particular when the boundaries between the phenomenon and the context are ...

  24. Research by Quinn, co-principals and undergrads included in case study

    A four-page case study published by SARE recaps an agroforestry research project led by John Quinn, Brannon Andersen and Courtney Quinn. Undergrads also worked on the study, which was funded by a SARE grant in 2016. ... The faculty members' research with undergraduates was highlighted in a case study series by Insight for Action and SARE. In ...

  25. Markets for Diversifying Agriculture: Case Studies of the U.S Midwest

    This research delves into the dynamics, opportunities, challenges, and key success drivers associated with agricultural diversification in the Midwest, focusing on three primary crops: oats, peas, and wheat. Employing a case study methodology grounded in empirical and contextual inquiry principles, the research aims to grasp the nuances of ...

  26. Research Trends in STEM Clubs: A Content Analysis

    To identify the research trends in studies related to STEM Clubs, 56 publications that met the inclusion and extraction criteria were identified from the online databases ERIC and WoS in this study. These studies were analysed by using the descriptive content analysis research method based on the Paper Classification Form (PCF), which includes publishing years, keywords, research methods ...

  27. Long Term Hold

    Case Studies Research Labs & Initiatives Behavioral Lab DARC Faculty & Research Case Studies Long Term Hold. Long Term Hold. By Peter Kelly, Sara Heston. 2024 | Case No. E870 Long Term Hold | Length 2 pgs. Entrepreneurship. This note provides the most up to date insights on Long Term Hold. This material is available for download at no charge. ...

  28. Niche Case Study (Ep #9): Creating a Content Plan

    Creating a Content Plan is an essential step in the keyword research process because it will help us come up with a huge list of awesome keywords with which we can get rankings and traffic.And in this video, I'm going. ... ==> Go here for the full list of Niche Case Study videos. 15 ...

  29. Fostering Sustainability Through Workplace Spirituality: A Qualitative

    Workplace spirituality was explored through this qualitative study in three case study social sector organizations in Pakistan and it was inferred how these organizations carried sustainable organizational practice. The interviews and focus group discussions were carried out with the organizational members.

  30. Deep Learning for Flash Drought Detection: A Case Study in Northeastern

    Flash droughts (FDs) pose significant challenges for accurate detection due to their short duration. Conventional drought monitoring methods have difficultly capturing this rapidly intensifying phenomenon accurately. Machine learning models are increasingly useful for detecting droughts after training the models with data. Northeastern Brazil (NEB) has been a hot spot for FD events with ...