Grad Coach

Sampling Methods & Strategies 101

Everything you need to know (including examples)

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to research, sooner or later you’re bound to wander into the intimidating world of sampling methods and strategies. If you find yourself on this page, chances are you’re feeling a little overwhelmed or confused. Fear not – in this post we’ll unpack sampling in straightforward language , along with loads of examples .

Overview: Sampling Methods & Strategies

  • What is sampling in a research context?
  • The two overarching approaches

Simple random sampling

Stratified random sampling, cluster sampling, systematic sampling, purposive sampling, convenience sampling, snowball sampling.

  • How to choose the right sampling method

What (exactly) is sampling?

At the simplest level, sampling (within a research context) is the process of selecting a subset of participants from a larger group . For example, if your research involved assessing US consumers’ perceptions about a particular brand of laundry detergent, you wouldn’t be able to collect data from every single person that uses laundry detergent (good luck with that!) – but you could potentially collect data from a smaller subset of this group.

In technical terms, the larger group is referred to as the population , and the subset (the group you’ll actually engage with in your research) is called the sample . Put another way, you can look at the population as a full cake and the sample as a single slice of that cake. In an ideal world, you’d want your sample to be perfectly representative of the population, as that would allow you to generalise your findings to the entire population. In other words, you’d want to cut a perfect cross-sectional slice of cake, such that the slice reflects every layer of the cake in perfect proportion.

Achieving a truly representative sample is, unfortunately, a little trickier than slicing a cake, as there are many practical challenges and obstacles to achieving this in a real-world setting. Thankfully though, you don’t always need to have a perfectly representative sample – it all depends on the specific research aims of each study – so don’t stress yourself out about that just yet!

With the concept of sampling broadly defined, let’s look at the different approaches to sampling to get a better understanding of what it all looks like in practice.

sampling techniques in thesis example

The two overarching sampling approaches

At the highest level, there are two approaches to sampling: probability sampling and non-probability sampling . Within each of these, there are a variety of sampling methods , which we’ll explore a little later.

Probability sampling involves selecting participants (or any unit of interest) on a statistically random basis , which is why it’s also called “random sampling”. In other words, the selection of each individual participant is based on a pre-determined process (not the discretion of the researcher). As a result, this approach achieves a random sample.

Probability-based sampling methods are most commonly used in quantitative research , especially when it’s important to achieve a representative sample that allows the researcher to generalise their findings.

Non-probability sampling , on the other hand, refers to sampling methods in which the selection of participants is not statistically random . In other words, the selection of individual participants is based on the discretion and judgment of the researcher, rather than on a pre-determined process.

Non-probability sampling methods are commonly used in qualitative research , where the richness and depth of the data are more important than the generalisability of the findings.

If that all sounds a little too conceptual and fluffy, don’t worry. Let’s take a look at some actual sampling methods to make it more tangible.

Need a helping hand?

sampling techniques in thesis example

Probability-based sampling methods

First, we’ll look at four common probability-based (random) sampling methods:

Importantly, this is not a comprehensive list of all the probability sampling methods – these are just four of the most common ones. So, if you’re interested in adopting a probability-based sampling approach, be sure to explore all the options.

Simple random sampling involves selecting participants in a completely random fashion , where each participant has an equal chance of being selected. Basically, this sampling method is the equivalent of pulling names out of a hat , except that you can do it digitally. For example, if you had a list of 500 people, you could use a random number generator to draw a list of 50 numbers (each number, reflecting a participant) and then use that dataset as your sample.

Thanks to its simplicity, simple random sampling is easy to implement , and as a consequence, is typically quite cheap and efficient . Given that the selection process is completely random, the results can be generalised fairly reliably. However, this also means it can hide the impact of large subgroups within the data, which can result in minority subgroups having little representation in the results – if any at all. To address this, one needs to take a slightly different approach, which we’ll look at next.

Stratified random sampling is similar to simple random sampling, but it kicks things up a notch. As the name suggests, stratified sampling involves selecting participants randomly , but from within certain pre-defined subgroups (i.e., strata) that share a common trait . For example, you might divide the population into strata based on gender, ethnicity, age range or level of education, and then select randomly from each group.

The benefit of this sampling method is that it gives you more control over the impact of large subgroups (strata) within the population. For example, if a population comprises 80% males and 20% females, you may want to “balance” this skew out by selecting a random sample from an equal number of males and females. This would, of course, reduce the representativeness of the sample, but it would allow you to identify differences between subgroups. So, depending on your research aims, the stratified approach could work well.

Free Webinar: Research Methodology 101

Next on the list is cluster sampling. As the name suggests, this sampling method involves sampling from naturally occurring, mutually exclusive clusters within a population – for example, area codes within a city or cities within a country. Once the clusters are defined, a set of clusters are randomly selected and then a set of participants are randomly selected from each cluster.

Now, you’re probably wondering, “how is cluster sampling different from stratified random sampling?”. Well, let’s look at the previous example where each cluster reflects an area code in a given city.

With cluster sampling, you would collect data from clusters of participants in a handful of area codes (let’s say 5 neighbourhoods). Conversely, with stratified random sampling, you would need to collect data from all over the city (i.e., many more neighbourhoods). You’d still achieve the same sample size either way (let’s say 200 people, for example), but with stratified sampling, you’d need to do a lot more running around, as participants would be scattered across a vast geographic area. As a result, cluster sampling is often the more practical and economical option.

If that all sounds a little mind-bending, you can use the following general rule of thumb. If a population is relatively homogeneous , cluster sampling will often be adequate. Conversely, if a population is quite heterogeneous (i.e., diverse), stratified sampling will generally be more appropriate.

The last probability sampling method we’ll look at is systematic sampling. This method simply involves selecting participants at a set interval , starting from a random point .

For example, if you have a list of students that reflects the population of a university, you could systematically sample that population by selecting participants at an interval of 8 . In other words, you would randomly select a starting point – let’s say student number 40 – followed by student 48, 56, 64, etc.

What’s important with systematic sampling is that the population list you select from needs to be randomly ordered . If there are underlying patterns in the list (for example, if the list is ordered by gender, IQ, age, etc.), this will result in a non-random sample, which would defeat the purpose of adopting this sampling method. Of course, you could safeguard against this by “shuffling” your population list using a random number generator or similar tool.

Systematic sampling simply involves selecting participants at a set interval (e.g., every 10th person), starting from a random point.

Non-probability-based sampling methods

Right, now that we’ve looked at a few probability-based sampling methods, let’s look at three non-probability methods :

Again, this is not an exhaustive list of all possible sampling methods, so be sure to explore further if you’re interested in adopting a non-probability sampling approach.

First up, we’ve got purposive sampling – also known as judgment , selective or subjective sampling. Again, the name provides some clues, as this method involves the researcher selecting participants using his or her own judgement , based on the purpose of the study (i.e., the research aims).

For example, suppose your research aims were to understand the perceptions of hyper-loyal customers of a particular retail store. In that case, you could use your judgement to engage with frequent shoppers, as well as rare or occasional shoppers, to understand what judgements drive the two behavioural extremes .

Purposive sampling is often used in studies where the aim is to gather information from a small population (especially rare or hard-to-find populations), as it allows the researcher to target specific individuals who have unique knowledge or experience . Naturally, this sampling method is quite prone to researcher bias and judgement error, and it’s unlikely to produce generalisable results, so it’s best suited to studies where the aim is to go deep rather than broad .

Purposive sampling involves the researcher selecting participants using their own judgement, based on the purpose of the study.

Next up, we have convenience sampling. As the name suggests, with this method, participants are selected based on their availability or accessibility . In other words, the sample is selected based on how convenient it is for the researcher to access it, as opposed to using a defined and objective process.

Naturally, convenience sampling provides a quick and easy way to gather data, as the sample is selected based on the individuals who are readily available or willing to participate. This makes it an attractive option if you’re particularly tight on resources and/or time. However, as you’d expect, this sampling method is unlikely to produce a representative sample and will of course be vulnerable to researcher bias , so it’s important to approach it with caution.

Last but not least, we have the snowball sampling method. This method relies on referrals from initial participants to recruit additional participants. In other words, the initial subjects form the first (small) snowball and each additional subject recruited through referral is added to the snowball, making it larger as it rolls along .

Snowball sampling is often used in research contexts where it’s difficult to identify and access a particular population. For example, people with a rare medical condition or members of an exclusive group. It can also be useful in cases where the research topic is sensitive or taboo and people are unlikely to open up unless they’re referred by someone they trust.

Simply put, snowball sampling is ideal for research that involves reaching hard-to-access populations . But, keep in mind that, once again, it’s a sampling method that’s highly prone to researcher bias and is unlikely to produce a representative sample. So, make sure that it aligns with your research aims and questions before adopting this method.

How to choose a sampling method

Now that we’ve looked at a few popular sampling methods (both probability and non-probability based), the obvious question is, “ how do I choose the right sampling method for my study?”. When selecting a sampling method for your research project, you’ll need to consider two important factors: your research aims and your resources .

As with all research design and methodology choices, your sampling approach needs to be guided by and aligned with your research aims, objectives and research questions – in other words, your golden thread. Specifically, you need to consider whether your research aims are primarily concerned with producing generalisable findings (in which case, you’ll likely opt for a probability-based sampling method) or with achieving rich , deep insights (in which case, a non-probability-based approach could be more practical). Typically, quantitative studies lean toward the former, while qualitative studies aim for the latter, so be sure to consider your broader methodology as well.

The second factor you need to consider is your resources and, more generally, the practical constraints at play. If, for example, you have easy, free access to a large sample at your workplace or university and a healthy budget to help you attract participants, that will open up multiple options in terms of sampling methods. Conversely, if you’re cash-strapped, short on time and don’t have unfettered access to your population of interest, you may be restricted to convenience or referral-based methods.

In short, be ready for trade-offs – you won’t always be able to utilise the “perfect” sampling method for your study, and that’s okay. Much like all the other methodological choices you’ll make as part of your study, you’ll often need to compromise and accept practical trade-offs when it comes to sampling. Don’t let this get you down though – as long as your sampling choice is well explained and justified, and the limitations of your approach are clearly articulated, you’ll be on the right track.

sampling techniques in thesis example

Let’s recap…

In this post, we’ve covered the basics of sampling within the context of a typical research project.

  • Sampling refers to the process of defining a subgroup (sample) from the larger group of interest (population).
  • The two overarching approaches to sampling are probability sampling (random) and non-probability sampling .
  • Common probability-based sampling methods include simple random sampling, stratified random sampling, cluster sampling and systematic sampling.
  • Common non-probability-based sampling methods include purposive sampling, convenience sampling and snowball sampling.
  • When choosing a sampling method, you need to consider your research aims , objectives and questions, as well as your resources and other practical constraints .

If you’d like to see an example of a sampling strategy in action, be sure to check out our research methodology chapter sample .

Last but not least, if you need hands-on help with your sampling (or any other aspect of your research), take a look at our 1-on-1 coaching service , where we guide you through each step of the research process, at your own pace.

sampling techniques in thesis example

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research constructs: construct validity and reliability

Excellent and helpful. Best site to get a full understanding of Research methodology. I’m nolonger as “clueless “..😉

Takele Gezaheg Demie

Excellent and helpful for junior researcher!

Andrea

Grad Coach tutorials are excellent – I recommend them to everyone doing research. I will be working with a sample of imprisoned women and now have a much clearer idea concerning sampling. Thank you to all at Grad Coach for generously sharing your expertise with students.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Sampling Methods | Types, Techniques, & Examples

Sampling Methods | Types, Techniques, & Examples

Published on 3 May 2022 by Shona McCombes . Revised on 10 October 2022.

When you conduct research about a group of people, it’s rarely possible to collect data from every person in that group. Instead, you select a sample. The sample is the group of individuals who will actually participate in the research.

To draw valid conclusions from your results, you have to carefully decide how you will select a sample that is representative of the group as a whole. There are two types of sampling methods:

  • Probability sampling involves random selection, allowing you to make strong statistical inferences about the whole group. It minimises the risk of selection bias .
  • Non-probability sampling involves non-random selection based on convenience or other criteria, allowing you to easily collect data.

You should clearly explain how you selected your sample in the methodology section of your paper or thesis.

Table of contents

Population vs sample, probability sampling methods, non-probability sampling methods, frequently asked questions about sampling.

First, you need to understand the difference between a population and a sample , and identify the target population of your research.

  • The population is the entire group that you want to draw conclusions about.
  • The sample is the specific group of individuals that you will collect data from.

The population can be defined in terms of geographical location, age, income, and many other characteristics.

Population vs sample

It is important to carefully define your target population according to the purpose and practicalities of your project.

If the population is very large, demographically mixed, and geographically dispersed, it might be difficult to gain access to a representative sample.

Sampling frame

The sampling frame is the actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).

You are doing research on working conditions at Company X. Your population is all 1,000 employees of the company. Your sampling frame is the company’s HR database, which lists the names and contact details of every employee.

Sample size

The number of individuals you should include in your sample depends on various factors, including the size and variability of the population and your research design. There are different sample size calculators and formulas depending on what you want to achieve with statistical analysis .

Prevent plagiarism, run a free check.

Probability sampling means that every member of the population has a chance of being selected. It is mainly used in quantitative research . If you want to produce results that are representative of the whole population, probability sampling techniques are the most valid choice.

There are four main types of probability sample.

Probability sampling

1. Simple random sampling

In a simple random sample , every member of the population has an equal chance of being selected. Your sampling frame should include the whole population.

To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

You want to select a simple random sample of 100 employees of Company X. You assign a number to every employee in the company database from 1 to 1000, and use a random number generator to select 100 numbers.

2. Systematic sampling

Systematic sampling is similar to simple random sampling, but it is usually slightly easier to conduct. Every member of the population is listed with a number, but instead of randomly generating numbers, individuals are chosen at regular intervals.

All employees of the company are listed in alphabetical order. From the first 10 numbers, you randomly select a starting point: number 6. From number 6 onwards, every 10th person on the list is selected (6, 16, 26, 36, and so on), and you end up with a sample of 100 people.

If you use this technique, it is important to make sure that there is no hidden pattern in the list that might skew the sample. For example, if the HR database groups employees by team, and team members are listed in order of seniority, there is a risk that your interval might skip over people in junior roles, resulting in a sample that is skewed towards senior employees.

3. Stratified sampling

Stratified sampling involves dividing the population into subpopulations that may differ in important ways. It allows you draw more precise conclusions by ensuring that every subgroup is properly represented in the sample.

To use this sampling method, you divide the population into subgroups (called strata) based on the relevant characteristic (e.g., gender, age range, income bracket, job role).

Based on the overall proportions of the population, you calculate how many people should be sampled from each subgroup. Then you use random or systematic sampling to select a sample from each subgroup.

The company has 800 female employees and 200 male employees. You want to ensure that the sample reflects the gender balance of the company, so you sort the population into two strata based on gender. Then you use random sampling on each group, selecting 80 women and 20 men, which gives you a representative sample of 100 people.

4. Cluster sampling

Cluster sampling also involves dividing the population into subgroups, but each subgroup should have similar characteristics to the whole sample. Instead of sampling individuals from each subgroup, you randomly select entire subgroups.

If it is practically possible, you might include every individual from each sampled cluster. If the clusters themselves are large, you can also sample individuals from within each cluster using one of the techniques above. This is called multistage sampling .

This method is good for dealing with large and dispersed populations, but there is more risk of error in the sample, as there could be substantial differences between clusters. It’s difficult to guarantee that the sampled clusters are really representative of the whole population.

The company has offices in 10 cities across the country (all with roughly the same number of employees in similar roles). You don’t have the capacity to travel to every office to collect your data, so you use random sampling to select 3 offices – these are your clusters.

In a non-probability sample , individuals are selected based on non-random criteria, and not every individual has a chance of being included.

This type of sample is easier and cheaper to access, but it has a higher risk of sampling bias . That means the inferences you can make about the population are weaker than with probability samples, and your conclusions may be more limited. If you use a non-probability sample, you should still aim to make it as representative of the population as possible.

Non-probability sampling techniques are often used in exploratory and qualitative research . In these types of research, the aim is not to test a hypothesis about a broad population, but to develop an initial understanding of a small or under-researched population.

Non probability sampling

1. Convenience sampling

A convenience sample simply includes the individuals who happen to be most accessible to the researcher.

This is an easy and inexpensive way to gather initial data, but there is no way to tell if the sample is representative of the population, so it can’t produce generalisable results.

You are researching opinions about student support services in your university, so after each of your classes, you ask your fellow students to complete a survey on the topic. This is a convenient way to gather data, but as you only surveyed students taking the same classes as you at the same level, the sample is not representative of all the students at your university.

2. Voluntary response sampling

Similar to a convenience sample, a voluntary response sample is mainly based on ease of access. Instead of the researcher choosing participants and directly contacting them, people volunteer themselves (e.g., by responding to a public online survey).

Voluntary response samples are always at least somewhat biased, as some people will inherently be more likely to volunteer than others.

You send out the survey to all students at your university and many students decide to complete it. This can certainly give you some insight into the topic, but the people who responded are more likely to be those who have strong opinions about the student support services, so you can’t be sure that their opinions are representative of all students.

3. Purposive sampling

Purposive sampling , also known as judgement sampling, involves the researcher using their expertise to select a sample that is most useful to the purposes of the research.

It is often used in qualitative research , where the researcher wants to gain detailed knowledge about a specific phenomenon rather than make statistical inferences, or where the population is very small and specific. An effective purposive sample must have clear criteria and rationale for inclusion.

You want to know more about the opinions and experiences of students with a disability at your university, so you purposely select a number of students with different support needs in order to gather a varied range of data on their experiences with student services.

4. Snowball sampling

If the population is hard to access, snowball sampling can be used to recruit participants via other participants. The number of people you have access to ‘snowballs’ as you get in contact with more people.

You are researching experiences of homelessness in your city. Since there is no list of all homeless people in the city, probability sampling isn’t possible. You meet one person who agrees to participate in the research, and she puts you in contact with other homeless people she knows in the area.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). Sampling Methods | Types, Techniques, & Examples. Scribbr. Retrieved 11 June 2024, from https://www.scribbr.co.uk/research-methods/sampling/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is quantitative research | definition & methods, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control.

  • Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS
  • Acknowledgements
  • Research questions & hypotheses
  • Concepts, constructs & variables
  • Research limitations
  • Getting started
  • Sampling Strategy
  • Research Quality
  • Research Ethics
  • Data Analysis

How to structure the Sampling Strategy section of your dissertation

The Sampling Strategy section of your Research Strategy chapter (usually Chapter Three: Research Strategy ) needs to be well structured. A good structure involves four steps : describing , explaining , stating and justifying . You need to: (1) describe what you are studying, including the units involved in your sample and the target population ; (2) explain the types of sampling technique available to you; (3) state and describe the sampling strategy you used; and (4) justify your choice of sampling strategy. In this article, we explain each of these four steps:

  • STEP ONE: Describe what you are studying
  • STEP TWO: Explain the types of sampling technique available to you
  • STEP THREE: State and describe the sampling strategy you used
  • STEP FOUR: Justify your choice of sampling strategy

STEP ONE Describe what you are studying

First, the reader needs to know what you studied. This should include details about the following:

The units you measured (or examined).

Your target population .

If you used a probability sampling technique to select your sample , you will also need to describe:

Your sampling frame .

If you are unsure what of any of these terms mean (i.e., unit , sampling frame , population ), you might want to read the article, Sampling: The basics , before reading on. If you feel comfortable with these terms, let's imagine we completed a dissertation on the career choices of students at the University of Oxford, England. Below we describe our units , target population and sampling frame (imagining that we used a probability sampling technique ).

Career choices of students at the University of Oxford, England We examined the career choices of all students at the University of Oxford, England. By all students we mean all undergraduate and postgraduate students, full-time and part-time, studying at the University of Oxford, England, enrolled as of 05 January 2011.

From this description , the reader learns the following:

Units: students Population: all undergraduate and postgraduate students, full-time and part-time, at the University of Oxford, England Sampling frame: all students enrolled at the University of Oxford, as of 05 January 2011 (i.e., according to Student Records, assuming this is the department that maintains a list of all students studying at the university)

Note the difference between the target population and the sampling frame, from which we select our sample (when using a probability sampling technique). They are the same in all respects apart from the fact that the sampling frame tells the reader that only those students enrolled in the university according to Student Records on a particular date (i.e., 05 January 2011) are being studied. If the list of students kept by Student Records is very different from the population of all students studying at the university, this should be made clear [see the article, Sampling: The basics, to understand more about sampling frames and potential sampling bias].

By the time you come to write up the Sampling Strategy section of your Research Strategy chapter, you should know whether the sampling frame is the same as the population. If it is not, you should highlight the difference between the two. This completes the first part of the Sampling Strategy section of your Research Strategy chapter.

STEP TWO Explain the types of sampling technique available to you

Once you know what units you are studying, as well as your population and sampling frame , the reader will often want to know what types of sampling technique you could use . We say could use rather than should use because whilst there are certain ideal choices of sampling technique, there is seldom a right or wrong answer. Instead, researchers choose sampling techniques that they feel are most appropriate to their study, based on theoretical and practical reasons.

Broadly speaking, you could choose to select your sample from (a) your sampling frame using either a probability sampling technique (e.g., simple random sampling, systematic random sampling, stratified random sampling) or (b) from your population using a non-probability sampling technique (e.g., quota sampling, purposive sampling, convenience sampling, snowball sampling). To understand the differences between these techniques, as well as their advantages and disadvantages, you may want to start by reading the articles: Probability sampling and Non-probability sampling .

When explaining the types of sampling technique that were available to you in this part of your Sampling Strategy section, you should take into account: (a) the research strategy guiding your dissertation; and (b) theoretical and practical sampling issues.

The research strategy guiding your dissertation

Theoretically , the ideal sampling technique for a piece of research (i.e., probability or non-probability sampling) differs depending on whether you are using a quantitative , qualitative or mixed methods research design .

Theoretical and practical sampling issues

Whilst there are theoretical ideals when it comes to choosing a sampling technique to use for your dissertation (i.e., probability or non-probability sampling), it is often practical issues that determine not only whether you choose one type of sampling technique over another (e.g., non-probability sampling over probability sampling ), but also the specific technique that you use (e.g., purposive sampling over quota sampling ; i.e., both are non-probability sampling techniques). Such practical issues range from whether your target population is known (i.e., whether you can get access to a list of the population) to whether you have the time and money to get access to such a list [click on the relevant article to understand the advantages and disadvantages (i.e., theoretical and practical considerations ) of the different probability sampling (e.g., simple random sampling , systematic random sampling , stratified random sampling ) and non-probability sampling techniques (e.g., quota sampling , purposive sampling , self-selection sampling , convenience sampling , snowball sampling )].

Assuming that you understand the differences between these sampling techniques, and their relative merits, let's consider what sampling choices are open to us using our example of career choices of students at the University of Oxford, England . The green text illustrates what we have already written above.

Career choices of students at the University of Oxford, England We examined the career choices of all students at the University of Oxford, England. By all students we mean all undergraduate and postgraduate students, full-time and part-time, studying at the University of Oxford, England, enrolled as of 05 January 2011. Since our research drew on a quantitative research design , the ideal would have been to use a probability sampling technique because this allows us to make statistical inferences (i.e., generalisations ) from our sample of students to all students at the university . Such a probability sampling technique would provide greater external validity for our findings. Since we wanted to compare the career choices of different strata (i.e., groups of students); more specifically, males and females , the appropriate choice of probability sampling technique would have been a stratified random sample . However, if it were not possible to use a probability sampling technique , we could have used a non-probability sampling technique . Since we wanted to compare different strata (i.e., groups of students) and achieve a sample that is as representative as possible of our population , we could have used a quota sample .

From this explanation , the reader learns the following:

Types of sampling strategy available: probability and non-probability sampling Ideal choice: probability sampling Preferred choice of probability sampling technique: stratified random sample Preferred choice of non-probability sampling technique: quota sample

When you are writing up this part of the Sampling Strategy section of your Research Strategy chapter, you may be expected to include a much more comprehensive list of reasons why you prefer one type of sampling strategy (i.e., probability or non-probability) and more specifically, a particular sampling technique (e.g., stratified random sampling over quota sampling). We provide information about the advantages and disadvantages of these different sampling strategies and sampling techniques in the following articles: for probability sampling , see simple random sampling , systematic random sampling , stratified random sampling ; for non-probability sampling techniques, see quota sampling , purposive sampling , self-selection sampling , convenience sampling , snowball sampling .

STEP THREE State and describe the sampling strategy you used

Third, you need to state what sampling strategy and sampling technique you used, describing what you did.

Again, let's consider this for our example of career choices of students at the University of Oxford, England . The green text illustrates what we have already written above.

Career choices of students at the University of Oxford, England We examined the career choices of all students at the University of Oxford, England. By all students we mean all undergraduate and postgraduate students, full-time and part-time, studying at the University of Oxford, England, enrolled as of 05 January 2011. Since our research drew on a quantitative research design , the ideal would have been to use a probability sampling technique because this allows us to make statistical inferences (i.e., generalisations ) from our sample of students to all students at the university. Such a probability sampling technique would provide greater external validity for our findings. Since we wanted to compare the career choices of different strata (i.e., groups of students), including males and females , the appropriate choice of probability sampling technique would have been a stratified random sample . However, if it were not possible to use a probability sampling technique , we could have used a non-probability sampling technique . Since we wanted to compare different strata (i.e., groups of students) and achieve a sample that is as representative as possible of our population , we could have used a quota sample . In the event, we used quota sampling to select the sample of students that would be invited to take part in our dissertation research. Student Records provided us with the appropriate quotas for male and female students, which showed a 53:47 male-female ration [ NOTE: this is a fictitious figure]. We selected a sample size of 200 students, which was based on subjective judgement and practicalities of cost and time. Therefore, we sampled 106 male students (i.e., 53% of our sample size of 200 students) and 94 female students (i.e., 47% of our sample size of 200 students). For convenience, we stood outside the main library where we felt the thoroughfare (i.e., number of students passing by) would be highest.

From this statement and description , the reader learns the following:

Sampling strategy chosen: non-probability sampling Specific sampling technique used: quota sampling

Details of quota sampling: strata (i.e., groups of students) of interest are males and females ratio of males-females at the university was 53:47 sample size selected was 200 students quota sample filled based on ease of access to students at the main university library.

Again, when you are writing up this part of the Sampling Strategy section of your Research Strategy chapter, it may be appropriate to include greater description of the sampling technique you used.

STEP FOUR Justify your choice of sampling strategy

Finally, you need to justify your choice of sampling strategy. When writing up the Sampling Strategy section of your Research Strategy chapter, you may find it easier to combine the third and fourth steps (i.e., stating and describing the sampling strategy you used, as well as justifying that choice). Taking our example of the career choices of students at the University of Oxford, England , we illustrate how the two steps can be integrated. As before, the green text illustrates what we have already written above.

Career choices of students at the University of Oxford, England We examined the career choices of all students at the University of Oxford, England. By all students we mean all undergraduate and postgraduate students, full-time and part-time, studying at the University of Oxford, England, enrolled as of 05 January 2011. Since our research drew on a quantitative research design , the ideal would have been to use a probability sampling technique because this allows us to make statistical inferences (i.e., generalisations ) from our sample of students to all students at the university. Such a probability sampling technique would provide greater external validity for our findings. Since we wanted to compare the career choices of different strata (i.e., groups of students), including males and females , the appropriate choice of probability sampling technique would have been a stratified random sample . However, if it were not possible to use a probability sampling technique , we could have used a non-probability sampling technique . Since we wanted to compare different strata (i.e., groups of students) and achieve a sample that is as representative as possible of our population , we could have used a quota sample . In the event, we used quota sampling to select the sample of students that would be invited to take part in our dissertation research. We were unable to use a stratified random sampling , our preferred choice, because we could not obtain permission from Student Records to access a complete list of all students at the university. Without any other way of attaining a list of all students, we had to use quota sampling . However, Student Records did provide us with the appropriate quotas for male and female students, which showed a 53:47 male-female ration [note: this is a fictitious figure]. We selected a sample size of 200 students, which was based on subjective judgement and practicalities of cost and time. Therefore, we sampled 106 male students (i.e., 53% of our sample size of 200 students) and 94 female students (i.e., 47% of our sample size of 200 students). For convenience, we stood outside the main library where we felt the thoroughfare (i.e., number of students passing by) would be highest.

From this justification , the reader learns the following:

Main reason for rejecting the ideal sampling strategy:

Access to a list of all students (i.e., the sampling frame needed for probability sampling ) was not granted by Student Records.

No other way of attaining a list of all students was available.

When you think about justifying your choice of sampling technique when writing up the Sampling Strategy section of your Research Strategy chapter, you should consider both practical reasons (e.g., what time you have available, what access you have, etc.) and theoretical reasons (i.e., those relating to the specific sampling technique , but also your choice of research paradigm , research design and research methods ).

Educational resources and simple solutions for your research journey

Sampling Methods

What are Sampling Methods? Techniques, Types, and Examples

Every type of research includes samples from which inferences are drawn. The sample could be biological specimens or a subset of a specific group or population selected for analysis. The goal is often to conclude the entire population based on the characteristics observed in the sample. Now, the question comes to mind: how does one collect the samples? Answer: Using sampling methods. Various sampling strategies are available to researchers to define and collect samples that will form the basis of their research study.

In a study focusing on individuals experiencing anxiety, gathering data from the entire population is practically impossible due to the widespread prevalence of anxiety. Consequently, a sample is carefully selected—a subset of individuals meant to represent (or not in some cases accurately) the demographics of those experiencing anxiety. The study’s outcomes hinge significantly on the chosen sample, emphasizing the critical importance of a thoughtful and precise selection process. The conclusions drawn about the broader population rely heavily on the selected sample’s characteristics and diversity.

Table of Contents

What is sampling?

Sampling involves the strategic selection of individuals or a subset from a population, aiming to derive statistical inferences and predict the characteristics of the entire population. It offers a pragmatic and practical approach to examining the features of the whole population, which would otherwise be difficult to achieve because studying the total population is expensive, time-consuming, and often impossible. Market researchers use various sampling methods to collect samples from a large population to acquire relevant insights. The best sampling strategy for research is determined by criteria such as the purpose of the study, available resources (time and money), and research hypothesis.

For example, if a pet food manufacturer wants to investigate the positive impact of a new cat food on feline growth, studying all the cats in the country is impractical. In such cases, employing an appropriate sampling technique from the extensive dataset allows the researcher to focus on a manageable subset. This enables the researcher to study the growth-promoting effects of the new pet food. This article will delve into the standard sampling methods and explore the situations in which each is most appropriately applied.

sampling techniques in thesis example

What are sampling methods or sampling techniques?

Sampling methods or sampling techniques in research are statistical methods for selecting a sample representative of the whole population to study the population’s characteristics. Sampling methods serve as invaluable tools for researchers, enabling the collection of meaningful data and facilitating analysis to identify distinctive features of the people. Different sampling strategies can be used based on the characteristics of the population, the study purpose, and the available resources. Now that we understand why sampling methods are essential in research, we review the various sample methods in the following sections.

Types of sampling methods  

sampling techniques in thesis example

Before we go into the specifics of each sampling method, it’s vital to understand terms like sample, sample frame, and sample space. In probability theory, the sample space comprises all possible outcomes of a random experiment, while the sample frame is the list or source guiding sample selection in statistical research. The  sample  represents the group of individuals participating in the study, forming the basis for the research findings. Selecting the correct sample is critical to ensuring the validity and reliability of any research; the sample should be representative of the population. 

There are two most common sampling methods: 

  • Probability sampling: A sampling method in which each unit or element in the population has an equal chance of being selected in the final sample. This is called random sampling, emphasizing the random and non-zero probability nature of selecting samples. Such a sampling technique ensures a more representative and unbiased sample, enabling robust inferences about the entire population. 
  • Non-probability sampling:  Another sampling method is non-probability sampling, which involves collecting data conveniently through a non-random selection based on predefined criteria. This offers a straightforward way to gather data, although the resulting sample may or may not accurately represent the entire population. 

  Irrespective of the research method you opt for, it is essential to explicitly state the chosen sampling technique in the methodology section of your research article. Now, we will explore the different characteristics of both sampling methods, along with various subtypes falling under these categories. 

What is probability sampling?  

The probability sampling method is based on the probability theory, which means that the sample selection criteria involve some random selection. The probability sampling method provides an equal opportunity for all elements or units within the entire sample space to be chosen. While it can be labor-intensive and expensive, the advantage lies in its ability to offer a more accurate representation of the population, thereby enhancing confidence in the inferences drawn in the research.   

Types of probability sampling  

Various probability sampling methods exist, such as simple random sampling, systematic sampling, stratified sampling, and clustered sampling. Here, we provide detailed discussions and illustrative examples for each of these sampling methods: 

Simple Random Sampling

  • Simple random sampling:  In simple random sampling, each individual has an equal probability of being chosen, and each selection is independent of the others. Because the choice is entirely based on chance, this is also known as the method of chance selection. In the simple random sampling method, the sample frame comprises the entire population. 

For example,  A fitness sports brand is launching a new protein drink and aims to select 20 individuals from a 200-person fitness center to try it. Employing a simple random sampling approach, each of the 200 people is assigned a unique identifier. Of these, 20 individuals are then chosen by generating random numbers between 1 and 200, either manually or through a computer program. Matching these numbers with the individuals creates a randomly selected group of 20 people. This method minimizes sampling bias and ensures a representative subset of the entire population under study. 

Systematic Random Sampling

  • Systematic sampling:  The systematic sampling approach involves selecting units or elements at regular intervals from an ordered list of the population. Because the starting point of this sampling method is chosen at random, it is more convenient than essential random sampling. For a better understanding, consider the following example.  

For example, considering the previous model, individuals at the fitness facility are arranged alphabetically. The manufacturer then initiates the process by randomly selecting a starting point from the first ten positions, let’s say 8. Starting from the 8th position, every tenth person on the list is then chosen (e.g., 8, 18, 28, 38, and so forth) until a sample of 20 individuals is obtained.  

Stratified Sampling

  • Stratified sampling: Stratified sampling divides the population into subgroups (strata), and random samples are drawn from each stratum in proportion to its size in the population. Stratified sampling provides improved representation because each subgroup that differs in significant ways is included in the final sample. 

For example, Expanding on the previous simple random sampling example, suppose the manufacturer aims for a more comprehensive representation of genders in a sample of 200 people, consisting of 90 males, 80 females, and 30 others. The manufacturer categorizes the population into three gender strata (Male, Female, and Others). Within each group, random sampling is employed to select nine males, eight females, and three individuals from the others category, resulting in a well-rounded and representative sample of 200 individuals. 

  • Clustered sampling: In this sampling method, the population is divided into clusters, and then a random sample of clusters is included in the final sample. Clustered sampling, distinct from stratified sampling, involves subgroups (clusters) that exhibit characteristics similar to the whole sample. In the case of small clusters, all members can be included in the final sample, whereas for larger clusters, individuals within each cluster may be sampled using the sampling above methods. This approach is referred to as multistage sampling. This sampling method is well-suited for large and widely distributed populations; however, there is a potential risk of sample error because ensuring that the sampled clusters truly represent the entire population can be challenging. 

Clustered Sampling

For example, Researchers conducting a nationwide health study can select specific geographic clusters, like cities or regions, instead of trying to survey the entire population individually. Within each chosen cluster, they sample individuals, providing a representative subset without the logistical challenges of attempting a nationwide survey. 

Use s of probability sampling  

Probability sampling methods find widespread use across diverse research disciplines because of their ability to yield representative and unbiased samples. The advantages of employing probability sampling include the following: 

  • Representativeness  

Probability sampling assures that every element in the population has a non-zero chance of being included in the sample, ensuring representativeness of the entire population and decreasing research bias to minimal to non-existent levels. The researcher can acquire higher-quality data via probability sampling, increasing confidence in the conclusions. 

  • Statistical inference  

Statistical methods, like confidence intervals and hypothesis testing, depend on probability sampling to generalize findings from a sample to the broader population. Probability sampling methods ensure unbiased representation, allowing inferences about the population based on the characteristics of the sample. 

  • Precision and reliability  

The use of probability sampling improves the precision and reliability of study results. Because the probability of selecting any single element/individual is known, the chance variations that may occur in non-probability sampling methods are reduced, resulting in more dependable and precise estimations. 

  • Generalizability  

Probability sampling enables the researcher to generalize study findings to the entire population from which they were derived. The results produced through probability sampling methods are more likely to be applicable to the larger population, laying the foundation for making broad predictions or recommendations. 

  • Minimization of Selection Bias  

By ensuring that each member of the population has an equal chance of being selected in the sample, probability sampling lowers the possibility of selection bias. This reduces the impact of systematic errors that may occur in non-probability sampling methods, where data may be skewed toward a specific demographic due to inadequate representation of each segment of the population. 

What is non-probability sampling?  

Non-probability sampling methods involve selecting individuals based on non-random criteria, often relying on the researcher’s judgment or predefined criteria. While it is easier and more economical, it tends to introduce sampling bias, resulting in weaker inferences compared to probability sampling techniques in research. 

Types of Non-probability Sampling   

Non-probability sampling methods are further classified as convenience sampling, consecutive sampling, quota sampling, purposive or judgmental sampling, and snowball sampling. Let’s explore these types of sampling methods in detail. 

  • Convenience sampling:  In convenience sampling, individuals are recruited directly from the population based on the accessibility and proximity to the researcher. It is a simple, inexpensive, and practical method of sample selection, yet convenience sampling suffers from both sampling and selection bias due to a lack of appropriate population representation. 

Convenience sampling

For example, imagine you’re a researcher investigating smartphone usage patterns in your city. The most convenient way to select participants is by approaching people in a shopping mall on a weekday afternoon. However, this convenience sampling method may not be an accurate representation of the city’s overall smartphone usage patterns as the sample is limited to individuals present at the mall during weekdays, excluding those who visit on other days or never visit the mall.

  • Consecutive sampling: Participants in consecutive sampling (or sequential sampling) are chosen based on their availability and desire to participate in the study as they become available. This strategy entails sequentially recruiting individuals who fulfill the researcher’s requirements. 

For example, In researching the prevalence of stroke in a hospital, instead of randomly selecting patients from the entire population, the researcher can opt to include all eligible patients admitted over three months. Participants are then consecutively recruited upon admission during that timeframe, forming the study sample. 

  • Quota sampling:  The selection of individuals in quota sampling is based on non-random selection criteria in which only participants with certain traits or proportions that are representative of the population are included. Quota sampling involves setting predetermined quotas for specific subgroups based on key demographics or other relevant characteristics. This sampling method employs dividing the population into mutually exclusive subgroups and then selecting sample units until the set quota is reached.  

Quota sampling

For example, In a survey on a college campus to assess student interest in a new policy, the researcher should establish quotas aligned with the distribution of student majors, ensuring representation from various academic disciplines. If the campus has 20% biology majors, 30% engineering majors, 20% business majors, and 30% liberal arts majors, participants should be recruited to mirror these proportions. 

  • Purposive or judgmental sampling: In purposive sampling, the researcher leverages expertise to select a sample relevant to the study’s specific questions. This sampling method is commonly applied in qualitative research, mainly when aiming to understand a particular phenomenon, and is suitable for smaller population sizes. 

Purposive Sampling

For example, imagine a researcher who wants to study public policy issues for a focus group. The researcher might purposely select participants with expertise in economics, law, and public administration to take advantage of their knowledge and ensure a depth of understanding.  

  • Snowball sampling:  This sampling method is used when accessing the population is challenging. It involves collecting the sample through a chain-referral process, where each recruited candidate aids in finding others. These candidates share common traits, representing the targeted population. This method is often used in qualitative research, particularly when studying phenomena related to stigmatized or hidden populations. 

Snowball Sampling

For example, In a study focusing on understanding the experiences and challenges of individuals in hidden or stigmatized communities (e.g., LGBTQ+ individuals in specific cultural contexts), the snowball sampling technique can be employed. The researcher initiates contact with one community member, who then assists in identifying additional candidates until the desired sample size is achieved.

Uses of non-probability sampling  

Non-probability sampling approaches are employed in qualitative or exploratory research where the goal is to investigate underlying population traits rather than generalizability. Non-probability sampling methods are also helpful for the following purposes: 

  • Generating a hypothesis  

In the initial stages of exploratory research, non-probability methods such as purposive or convenience allow researchers to quickly gather information and generate hypothesis that helps build a future research plan.  

  • Qualitative research  

Qualitative research is usually focused on understanding the depth and complexity of human experiences, behaviors, and perspectives. Non-probability methods like purposive or snowball sampling are commonly used to select participants with specific traits that are relevant to the research question.  

  • Convenience and pragmatism  

Non-probability sampling methods are valuable when resource and time are limited or when preliminary data is required to test the pilot study. For example, conducting a survey at a local shopping mall to gather opinions on a consumer product due to the ease of access to potential participants.  

Probability vs Non-probability Sampling Methods  

     
Selection of participants  Random selection of participants from the population using randomization methods  Non-random selection of participants from the population based on convenience or criteria 
Representativeness  Likely to yield a representative sample of the whole population allowing for generalizations  May not yield a representative sample of the whole population; poor generalizability 
Precision and accuracy  Provides more precise and accurate estimates of population characteristics  May have less precision and accuracy due to non-random selection  
Bias   Minimizes selection bias  May introduce selection bias if criteria are subjective and not well-defined 
Statistical inference  Suited for statistical inference and hypothesis testing and for making generalization to the population  Less suited for statistical inference and hypothesis testing on the population 
Application  Useful for quantitative research where generalizability is crucial   Commonly used in qualitative and exploratory research where in-depth insights are the goal 

Frequently asked questions  

  • What is multistage sampling ? Multistage sampling is a form of probability sampling approach that involves the progressive selection of samples in stages, going from larger clusters to a small number of participants, making it suited for large-scale research with enormous population lists.  
  • What are the methods of probability sampling? Probability sampling methods are simple random sampling, stratified random sampling, systematic sampling, cluster sampling, and multistage sampling.
  • How to decide which type of sampling method to use? Choose a sampling method based on the goals, population, and resources. Probability for statistics and non-probability for efficiency or qualitative insights can be considered . Also, consider the population characteristics, size, and alignment with study objectives.
  • What are the methods of non-probability sampling? Non-probability sampling methods are convenience sampling, consecutive sampling, purposive sampling, snowball sampling, and quota sampling.
  • Why are sampling methods used in research? Sampling methods in research are employed to efficiently gather representative data from a subset of a larger population, enabling valid conclusions and generalizations while minimizing costs and time.  

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

literature search

Should you use ChatGPT for Literature Search?

Confidence interval

What is Confidence Interval and How to Calculate it (with Examples)

Sampling Techniques for Thesis Writing

Joy campbell.

Sampling techniques for research are used to represent the targeted population.

Sampling starts by defining the target population. If the entire population is available for research, it is referred to as a census study. A sampling is obtained when it is impossible to test or survey everyone in the group being researched. The decision of who will be included in the sampling is called the sampling technique. The results obtained through these samplings are the basis of a generalized conclusion that represents the entire population. There are two methods of sampling, probability and non-probability.

Explore this article

  • Probability
  • Simple Random Sampling
  • Stratified Random Sampling
  • Systematic Random Sampling
  • Cluster Random Sampling
  • Multi-Stage Sampling
  • Non-probability Sampling
  • Accidental Sampling
  • Purposive Sampling

1 Probability

Probability sampling is a random method of selection in a targeted population. To conduct randomized samples, you need to make sure everyone in the population is given an equal chance to be chosen.

2 Simple Random Sampling

The simplest sampling technique is the simple random sampling, which is a lottery method of randomly picking from the targeted population. For instance, if a thesis is about malnourished students in a school, your sample size is 50 and there are 200 malnourished students, put all 200 names in a hat and pick out 50.

3 Stratified Random Sampling

Stratified or proportional sampling aims to find a population for the entire population and for subgroups within the population. Taking the example on the previous technique, in the population of 200, there are 100 fifth-grade students, 50 second-grade students and 50 third-grade students. Since the sample size is 50 -- 25 percent of the population -- you need to take 25 percent from each of the three grade levels. As a result, you would have 25 fifth-graders and 12.5 second-graders and 12.5 third-graders. After determining the number of samples per grade, proceed to the lottery method.

4 Systematic Random Sampling

Given that the total population is 100 and you need a sample of 20, divide the population with the sample size -- 100/20 = 5. Since the product is 5, choose an integer between 1 and 5. Let’s take the integer as 2. Divide the total population (100) by the integer (2) and you get 50. Create a list of the names of the subjects alphabetically in two columns, because the integer is 2. Write the names vertically. Following the chosen integer once more, make two counts continuously. Every row that lands on the count of two is included in the sample.

5 Cluster Random Sampling

Stratified and systematic random sampling becomes a problem for large sample sizes, such as an entire country. Cluster random sampling limits the population by creating subgroups within the population. For example, the states on the West Coast could be one group and states in the east could be another.

6 Multi-Stage Sampling

Most research requires a more complex sampling method, and applying a combination of simple, stratified, systematic and cluster random samplings called multi-stage sampling addresses this need.

7 Non-probability Sampling

Non-probability sampling does not involve random sampling. Although researchers consider random sampling to be more reliable, it is not always the sensible or practical technique to use. Non-probability sample techniques are accidental sampling or purposive sampling.

8 Accidental Sampling

An example of accidental sampling is the news media interviewing people on the street. This technique is used to get a quick public opinion. Another example of accidental sampling is when college professors use students or medical researchers use available clients as a matter of convenience. These types of sampling do not represent the population as a whole.

9 Purposive Sampling

In this method, the researcher chooses the sample on his or her own because there are a limited number of possible subjects. For instance, if your study is about botanists and there are only 10 botanists in the scope area, you can automatically choose the 10 as your sample.

  • 1 Research Methods Knowledge Base: Probability Sampling

About the Author

Based in southern Florida, Joy Campbell has been professionally writing since 2009. She is the author of "Journal of Ideas: Volume One." Campbell holds a Master of Education with a concentration in instructional technology from the University of South Florida.

Related Articles

Advantages & Disadvantages of Systematic Sampling

Advantages & Disadvantages of Systematic Sampling

How Long Does the PERT College Test Usually Take?

How Long Does the PERT College Test Usually Take?

What Is the Advantage of Doing Experiments in Large Samples?

What Is the Advantage of Doing Experiments in Large...

How to Tabulate Survey Results

How to Tabulate Survey Results

The Disadvantages of Public Opinion Polling

The Disadvantages of Public Opinion Polling

Psychology PhD Qualifying Exam Sample Questions

Psychology PhD Qualifying Exam Sample Questions

Problems in Research: Quantitative & Qualitative Methods

Problems in Research: Quantitative & Qualitative Methods

How to Obtain a Representative Sample

How to Obtain a Representative Sample

How to Choose Random Sampling in Excel

How to Choose Random Sampling in Excel

How to Collect Data From a Science Project

How to Collect Data From a Science Project

What is a Dissertation?

What is a Dissertation?

How to Create a Tally Chart

How to Create a Tally Chart

How to Calculate Graduation Rate

How to Calculate Graduation Rate

Topics for Fourth-Grade Research Papers

Topics for Fourth-Grade Research Papers

Importance of Sampling in Statistical Analysis

Importance of Sampling in Statistical Analysis

How to Write About an Ethical Dilemma

How to Write About an Ethical Dilemma

What Do SSAT Scores Mean?

What Do SSAT Scores Mean?

How to Determine Quorum

How to Determine Quorum

How to Write Up a Science Experiment in 3rd Grade

How to Write Up a Science Experiment in 3rd Grade

Advantages & Disadvantages of Multi-Stage Sampling

Advantages & Disadvantages of Multi-Stage Sampling

Regardless of how old we are, we never stop learning. Classroom is the educational resource for people of all ages. Whether you’re studying times tables or applying to college, Classroom has the answers.

  • Accessibility
  • Terms of Use
  • Privacy Policy
  • Copyright Policy
  • Manage Preferences

© 2020 Leaf Group Ltd. / Leaf Group Media, All Rights Reserved. Based on the Word Net lexical database for the English Language. See disclaimer .

Logo for JCU Open eBooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

3.4 Sampling Techniques in Quantitative Research

Target population.

The target population includes the people the researcher is interested in conducting the research and generalizing the findings on. 40 For example, if certain researchers are interested in vaccine-preventable diseases in children five years and younger in Australia. The target population will be all children aged 0–5 years residing in Australia. The actual population is a subset of the target population from which the sample is drawn, e.g. children aged 0–5 years living in the capital cities in Australia. The sample is the people chosen for the study from the actual population (Figure 3.9). The sampling process involves choosing people, and it is distinct from the sample. 40 In quantitative research, the sample must accurately reflect the target population, be free from bias in terms of selection, and be large enough to validate or reject the study hypothesis with statistical confidence and minimise random error. 2

sampling techniques in thesis example

Sampling techniques

Sampling in quantitative research is a critical component that involves selecting a representative subset of individuals or cases from a larger population and often employs sampling techniques based on probability theory. 41 The goal of sampling is to obtain a sample that is large enough and representative of the target population. Examples of probability sampling techniques include simple random sampling, stratified random sampling, systematic random sampling and cluster sampling ( shown below ). 2 The key feature of probability techniques is that they involve randomization. There are two main characteristics of probability sampling. All individuals of a population are accessible to the researcher (theoretically), and there is an equal chance that each person in the population will be chosen to be part of the study sample. 41 While quantitative research often uses sampling techniques based on probability theory, some non-probability techniques may occasionally be utilised in healthcare research. 42 Non-probability sampling methods are commonly used in qualitative research. These include purposive, convenience, theoretical and snowballing and have been discussed in detail in chapter 4.

Sample size calculation

In order to enable comparisons with some level of established statistical confidence, quantitative research needs an acceptable sample size. 2 The sample size is the most crucial factor for reliability (reproducibility) in quantitative research. It is important for a study to be powered – the likelihood of identifying a difference if it exists in reality. 2 Small sample-sized studies are more likely to be underpowered, and results from small samples are more likely to be prone to random error. 2 The formula for sample size calculation varies with the study design and the research hypothesis. 2 There are numerous formulae for sample size calculations, but such details are beyond the scope of this book. For further readings, please consult the biostatistics textbook by Hirsch RP, 2021. 43 However, we will introduce a simple formula for calculating sample size for cross-sectional studies with prevalence as the outcome. 2

sampling techniques in thesis example

z   is the statistical confidence; therefore,  z = 1.96 translates to 95% confidence; z = 1.68 translates to 90% confidence

p = Expected prevalence (of health condition of interest)

d = Describes intended precision; d = 0.1 means that the estimate falls +/-10 percentage points of true prevalence with the considered confidence. (e.g. for a prevalence of 40% (0.4), if d=.1, then the estimate will fall between 30% and 50% (0.3 to 0.5).

Example: A district medical officer seeks to estimate the proportion of children in the district receiving appropriate childhood vaccinations. Assuming a simple random sample of a community is to be selected, how many children must be studied if the resulting estimate is to fall within 10% of the true proportion with 95% confidence? It is expected that approximately 50% of the children receive vaccinations

sampling techniques in thesis example

z = 1.96 (95% confidence)

d = 10% = 10/ 100 = 0.1 (estimate to fall within 10%)

p = 50% = 50/ 100 = 0.5

Now we can enter the values into the formula

sampling techniques in thesis example

Given that people cannot be reported in decimal points, it is important to round up to the nearest whole number.

An Introduction to Research Methods for Undergraduate Health Profession Students Copyright © 2023 by Faith Alele and Bunmi Malau-Aduli is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Simple Random Sampling | Definition, Steps & Examples

Simple Random Sampling | Definition, Steps & Examples

Published on August 28, 2020 by Lauren Thomas . Revised on December 18, 2023.

A simple random sample is a randomly selected subset of a population. In this sampling method, each member of the population has an exactly equal chance of being selected.

This method is the most straightforward of all the probability sampling methods , since it only involves a single random selection and requires little advance knowledge about the population. Because it uses randomization, any research performed on this sample should have high internal and external validity, and be at a lower risk for research biases like sampling bias and selection bias .

Systematic Sampling

Table of contents

When to use simple random sampling, how to perform simple random sampling, other interesting articles, frequently asked questions about simple random sampling.

Simple random sampling is used to make statistical inferences about a population. It helps ensure high internal validity : randomization is the best method to reduce the impact of potential confounding variables .

In addition, with a large enough sample size, a simple random sample has high external validity : it represents the characteristics of the larger population.

However, simple random sampling can be challenging to implement in practice. To use this method, there are some prerequisites:

  • You have a complete list of every member of the population .
  • You can contact or access each member of the population if they are selected.
  • You have the time and resources to collect data from the necessary sample size.

Simple random sampling works best if you have a lot of time and resources to conduct your study, or if you are studying a limited population that can easily be sampled.

In some cases, it might be more appropriate to use a different type of probability sampling:

  • Systematic sampling involves choosing your sample based on a regular interval, rather than a fully random selection. It can also be used when you don’t have a complete list of the population.
  • Stratified sampling is appropriate when you want to ensure that specific characteristics are proportionally represented in the sample. You split your population into strata (for example, divided by gender or race), and then randomly select from each of these subgroups.
  • Cluster sampling is appropriate when you are unable to sample from the entire population. You divide the sample into clusters that approximately reflect the whole population, and then choose your sample from a random selection of these clusters.

Prevent plagiarism. Run a free check.

There are 4 key steps to select a simple random sample.

Step 1: Define the population

Start by deciding on the population that you want to study.

It’s important to ensure that you have access to every individual member of the population, so that you can collect data from all those who are selected for the sample.

Step 2: Decide on the sample size

Next, you need to decide how large your sample size will be. Although larger samples provide more statistical certainty, they also cost more and require far more work.

There are several potential ways to decide upon the size of your sample, but one of the simplest involves using a formula with your desired confidence interval and confidence level , estimated size of the population you are working with, and the standard deviation of whatever you want to measure in your population.

The most common confidence interval and levels used are 0.05 and 0.95, respectively. Since you may not know the standard deviation of the population you are studying, you should choose a number high enough to account for a variety of possibilities (such as 0.5).

You can then use a sample size calculator to estimate the necessary sample size.

Step 3: Randomly select your sample

This can be done in one of two ways: the lottery or random number method.

In the lottery method , you choose the sample at random by “drawing from a hat” or by using a computer program that will simulate the same action.

In the random number method , you assign every individual a number. By using a random number generator or random number tables, you then randomly pick a subset of the population. You can also use the random number function (RAND) in Microsoft Excel to generate random numbers.

Step 4: Collect data from your sample

Finally, you should collect data from your sample.

To ensure the validity of your findings, you need to make sure every individual selected actually participates in your study. If some drop out or do not participate for reasons associated with the question that you’re studying, this could bias your findings.

For example, if young participants are systematically less likely to participate in your study, your findings might not be valid due to the underrepresentation of this group.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2023, December 18). Simple Random Sampling | Definition, Steps & Examples. Scribbr. Retrieved June 11, 2024, from https://www.scribbr.com/methodology/simple-random-sampling/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, sampling methods | types, techniques & examples, stratified sampling | definition, guide & examples, sampling bias and how to avoid it | types & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Medical Technology
  • snowball sampling

Types of sampling in research

  • January 2019
  • Journal of the Practice of Cardiovascular Sciences 5(3):157
  • CC BY-NC-SA

Pooja Bhardwaj at All India Institute of Medical Sciences

  • All India Institute of Medical Sciences

Abstract and Figures

Population for sampling. Figure 2: Types of sampling.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Maletsie Tseli Molapo

  • Sumeshni Govender

Jose Lameh

  • Alexandra Dubray
  • Marija Jankovic

Cristian Castro

  • Shanjay Kumar Mukharjee

Marzia Farhana Ananna

  • Matimu Tsundzukani Nkuna
  • Teuku Muhammad Ridha Kuswalabirama
  • Arry Widodo

Sazi Gcabashe

  • Rachmat Chusnul Choeron
  • Ika Nofiana
  • Thabang R. Aphane
  • Chiedza L. Muchopa

Mohamed Elfil

  • Evid Base Nurs

Allison Shorten

  • Pamela M Ling
  • Y.S. Lincoln
  • P Guidelines
  • M S Choices
  • Joseph F Hair
  • J Black Barry
  • E Babin Rolph
  • M N Saunders
  • A Thornhill
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

COMMENTS

  1. Sampling Methods

    Sampling methods are crucial for conducting reliable research. In this article, you will learn about the types, techniques and examples of sampling methods, and how to choose the best one for your study. Scribbr also offers free tools and guides for other aspects of academic writing, such as citation, bibliography, and fallacy.

  2. Sampling Methods

    This is often used to ensure that the sample is representative of the population as a whole. Cluster Sampling: In this method, the population is divided into clusters or groups, and then a random sample of clusters is selected. Then, all members of the selected clusters are included in the sample. Multi-Stage Sampling: This method combines two ...

  3. Sampling Techniques. Sample Types and Sample Size

    In our ex ample, the interval ( k) would be determined by. dividing the populatio n size (46,552 MPs in the world) by the desired sample size (n), the number of MPs to include in t he sample (for ...

  4. Sampling Methods & Strategies 101 (With Examples)

    First, we'll look at four common probability-based (random) sampling methods: Simple random sampling. Stratified random sampling. Cluster sampling. Systematic sampling. Importantly, this is not a comprehensive list of all the probability sampling methods - these are just four of the most common ones.

  5. Sampling Methods

    1. Simple random sampling. In a simple random sample, every member of the population has an equal chance of being selected. Your sampling frame should include the whole population. To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

  6. Sampling Strategy: A dissertation guide

    Choosing your sampling strategy and sampling technique. Once you understand these basic principles and key terms of sampling, you need to start thinking about the overall sampling strategy that you will use to collect the data needed for your dissertation. This sampling strategy, in turn, influences the choice of sampling technique that you use to select your sample, whether this is a ...

  7. How to write a great Sampling Strategy section

    The sampling strategy that you select in your dissertation should naturally flow from your chosen research design and research methods, as well as taking into account issues of research ethics. To set the sampling strategy that you will use in your dissertation, you need to follow three steps: (a) understand the key terms and basic principles ...

  8. Systematic Sampling

    Step 1: Define your population. Like other methods of sampling, you must decide upon the population that you are studying. In systematic sampling, you have two choices for data collection: You can select your sample ahead of time from a list and then approach the selected subjects to collect data, or.

  9. PDF Sampling Strategies in Qualitative Research

    When not sampling the total population, random sampling relies on large samples and attempts to minimize sample errors. You can then begin to claim statistical representatives. As Gobo notes: There is no evidence that the sampling assumptions underlying the natural sciences (i.e. that cases are interchangeable because they are . equal

  10. PDF Sampling Techniques & Determination of Sample

    n = N / [1 + N ( e )2] Where n is the sample size, N is the population size, and e is the level of precision. When this formula is applied to the above sample, we get. n = N / [1 + N ( e )2] Rao (1985) presented some another calculation for sample size under different circumstances in simple manner.

  11. How to structure the Sampling Strategy section

    A good structure involves four steps: describing, explaining, stating and justifying. You need to: (1) describe what you are studying, including the units involved in your sample and the target population; (2) explain the types of sampling technique available to you; (3) state and describe the sampling strategy you used; and (4) justify your ...

  12. What are Sampling Methods? Techniques, Types, and Examples

    There are two most common sampling methods: Probability sampling: A sampling method in which each unit or element in the population has an equal chance of being selected in the final sample. This is called random sampling, emphasizing the random and non-zero probability nature of selecting samples.

  13. Sampling Techniques for Thesis Writing

    Sampling Techniques for Thesis Writing. Sampling starts by defining the target population. If the entire population is available for research, it is referred to as a census study. ... Non-probability sample techniques are accidental sampling or purposive sampling. 8 Accidental Sampling. An example of accidental sampling is the news media ...

  14. 3.4 Sampling Techniques in Quantitative Research

    Sampling techniques . Sampling in quantitative research is a critical component that involves selecting a representative subset of individuals or cases from a larger population and often employs sampling techniques based on probability theory. 41 The goal of sampling is to obtain a sample that is large enough and representative of the target ...

  15. PDF 3 Methodology

    Sampling Technique Procedures Materials Variables Statistical Treatment (If your research adopts a mixed-methods approach, then you will also find that model useful for the quantitative chapters). However, for students writing up an exclusively qualitative thesis, the shape of the methodology chapter is less clear-cut:

  16. Simple Random Sampling

    Revised on December 18, 2023. A simple random sample is a randomly selected subset of a population. In this sampling method, each member of the population has an exactly equal chance of being selected. This method is the most straightforward of all the probability sampling methods, since it only involves a single random selection and requires ...

  17. (PDF) Research Sampling and Sample Size Determination: A practical

    The aim of this paper is to sensitize our researchers on the importance of proper sampling and sample size determination. The various types of probability and non-probability sampling techniques ...

  18. Purposive Sampling

    Examples of Purposive Sampling. Here are some examples of how purposive sampling might be used in research: Studying the experiences of cancer survivors: A researcher might use maximum variation sampling to select a diverse group of cancer survivors, with the aim of capturing a range of experiences and perspectives on the impact of cancer on ...

  19. PDF C H A P T E R RESEARCH METHODOLOGY

    elements making up this sample are those that are actually studied. The sample of the population of this study stood at 300 music teachers and 13 music educators gave a total of 313 respondents. 3.5 SAMPLING TECHNIQUES A stratified random sampling procedure was used for selecting the participants in this study.

  20. Sampling Methods in Research Methodology; How to Choose a Sampling

    Cluster sampling is advantageous for those researcher s. whose subjects are fragmented over large geographical areas as it saves time and money. (Davis, 2005). The stages to cluster sa mpling can ...

  21. (PDF) Types of sampling in research

    other sample methods, this sampling method is best as it . depends on the researcher's knowledge and experience. Another example of this type of sampling is if a researcher . ... Thesis. Apr 2024;