Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Service update: Some parts of the Library’s website will be down for maintenance on August 11.

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Sep 6, 2024 8:59 PM
  • URL: https://guides.lib.berkeley.edu/researchmethods

research study an

What Is Research Methodology?

Private Coaching

I f you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

research study an

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

Research Methodology Bootcamp

Learn More About Methodology

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Research Limitations 101: What You Need To Know

Research Limitations 101: What You Need To Know

Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

Process Coding 101: Full Explainer With Examples

Process Coding 101: Full Explainer With Examples

Learn about process coding, a popular qualitative coding technique ideal for studies exploring processes, actions and changes over time.

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Inductive, Deductive & Abductive Coding Qualitative Coding Approaches Explained...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

research study an

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research study an

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

Participant Engagement

Participant Engagement: Strategies + Improving Interaction

Sep 12, 2024

Employee Recognition Programs

Employee Recognition Programs: A Complete Guide

Sep 11, 2024

Agile Qual for Rapid Insights

A guide to conducting agile qualitative research for rapid insights with Digsite 

Cultural Insights

Cultural Insights: What it is, Importance + How to Collect?

Sep 10, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence
  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

Research MethodologyResearch Methods
Research methodology refers to the philosophical and theoretical frameworks that guide the research process. refer to the techniques and procedures used to collect and analyze data.
It is concerned with the underlying principles and assumptions of research.It is concerned with the practical aspects of research.
It provides a rationale for why certain research methods are used.It determines the specific steps that will be taken to conduct research.
It is broader in scope and involves understanding the overall approach to research.It is narrower in scope and focuses on specific techniques and tools used in research.
It is concerned with identifying research questions, defining the research problem, and formulating hypotheses.It is concerned with collecting data, analyzing data, and interpreting results.
It is concerned with the validity and reliability of research.It is concerned with the accuracy and precision of data.
It is concerned with the ethical considerations of research.It is concerned with the practical considerations of research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Appendices

Appendices – Writing Guide, Types and Examples

Research Topic

Research Topics – Ideas and Examples

Research Report

Research Report – Example, Writing Guide and...

Dissertation

Dissertation – Format, Example and Template

Background of The Study

Background of The Study – Examples and Writing...

Research Paper

Research Paper – Structure, Examples and Writing...

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

research study an

How to... Design a research study

The design of a piece of research refers to the practical way in which the research was conducted according to a systematic attempt to generate evidence to answer the research question. The term "research methodology" is often used to mean something similar, however different writers use both terms in slightly different ways: some writers, for example, use the term "methodology" to describe the tools used for data collection, which others (more properly) refer to as methods.

On this page

What is research design, sampling techniques, quantitative approaches to research design, qualitative approaches to research design, planning your research design.

The following are some definitions of research design by researchers:

Design is the deliberately planned 'arrangement of conditions for analysis and collection of data in a manner that aims to combine relevance to the research purpose with economy of procedure'.

Selltiz C.S., Wrightsman L.S. and Cook S.W. 1981  Research Methods in Social Relations, Holt, Rinehart & Winston, London, quoted in Jankowicz, A.D.,  Business Research Methods , Thomson Learning, p.190.)

The idea behind a design is that different kinds of issues logically demand different kinds of data-gathering arrangement so that the data will be:

  • relevant to your thesis or the argument you wish to present;
  • an adequate test of your thesis (i.e. unbiased and reliable);
  • accurate in establishing causality, in situations where you wish to go beyond description to provide explanations for whatever is happening around you;
  • capable of providing findings that can be generalised to situations other than those of your immediate organisation.

(Jankowicz, A.D.,  Business Research Methods  , Thomson Learning, p. 190)

The design of the research involves consideration of the best method of collecting data to provide a relevant and accurate test of your thesis, one that can establish causality if required (see  What type of study are you undertaking? ), and one that will enable you to generalise your findings.

Design of the research should take account of the following factors, which are briefly discussed below with links to subsequent pages or other parts of the site where there is fuller information.

What is your theoretical and epistemological perspective?

Although management research is much concerned with observation of humans and their behaviour, to a certain extent the epistemological framework derives from that of science. Positivism assumes the independent existence of measurable facts in the social world, and researchers who assume this perspective will want to have a fairly exact system of measurement. On the other hand, interpretivism assumes that humans interpret events and researchers employing this method will adopt a more subjective approach.

What type of study are you undertaking?

Are you conducting an exploratory study, obtaining an initial grasp of a phenomenon, a descriptive study, providing a profile of a topic or institution:

Karin Klenke provides an exploratory study of issues of gender in management decisions in  Gender influences in decision-making processes in top management teams  ( Management Decision , Volume 41 Number 10)

Damien McLoughlin provides a descriptive study of action learning as a case study in  There can be no learning without action and no action without learning  in ( European Journal of Marketing , Volume 38 Number 3/4)

Or it can be explanatory, examining the causal relationship between variables: this can include the testing of hypotheses or examination of causes:

Martin  et al.  examined ad zipping and repetition in  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  ( Marketing Intelligence & Planning , Volume 20 Number 1) with a number of hypotheses e.g. that people are more likely to remember an ad that they have seen repeatedly.

What is your research question?

The most important issue here is that the design you use should be appropriate to your initial question. Implicit within your question will be issues of size, breadth, relationship between variables, how easy is it to measure variables etc.

The two different questions below call for very different types of design:

The example  Dimensions of library anxiety and social interdependence: implications for library services  (Jiao and Onwuegbuzie,  Library Review , Volume 51 Number 2) looks at attitudes and the relationship between variables, and uses very precise measurement instruments in the form of two questionnaires, with 43 and 22 items respectively.

In the example  Equity in Corporate Co-branding  (Judy Motion  et al. ,  European Journal of Marketing , Volume 37 Number 7),  the RQs posit a need to describe rather than to link variables, and the methodology used is one of discourse theory, which involves looking at material within the context of its use by the company.

What sample size will you base your data on?

The sample is the source of your data, and it is important to decide how you are going to select it.

See  Sampling techniques .

What research methods will you use and why?

We referred above to the distinction between methods and methodology. There are two main approaches to methodology – qualitative and quantitative.

The two main approaches to methodology
 
typically use  typically use 
are  are 
involve the researcher as ideally an  require more   and   on the part of the researcher.
may focus on cause and effect focuses on understanding of phenomena in their social, institutional, political and economic context
require a   require a 
have the   that they may force people into categories, also it cannot go into much depth about subjects and issues. have the   that they focus on a few individuals, and may therefore be difficult to generalise.

For more detail on each of the approaches,  Quantitative approaches to design  and  Qualitative approaches to design  later in this feature.

Note, you do not have to stick to one methodology (although some writers recommend that you do). Combining methodologies is a matter of seeing which part of the design of your research is better suited to which methodology.

How will you triangulate your research?

Triangulation refers to the process of ensuring that any defects in a particular methodology are compensated by use of another at appropriate points in the design. For example, if you carry out a quantitative survey and need more in depth information about particular aspects of the survey you may decide to use in-depth interviews, a qualitative method.

Here are a couple of useful articles to read which cover the issue of triangulation:

  • Combining quantitative and qualitative methodologies in logistics research  by John Mangan, Chandra Lalwani and Bernard Gardner ( International Journal of Physical Distribution & Logistics Management , Volume 34 Number 7) looks at ways of combining methodologies in a particular area of research, but much of what they say is generally applicable.
  • Quantitative and qualitative research in the built environment: application of "mixed" research approach  by Dilanthi Amaratunga, David Baldry, Marjan Sarshar and Rita Newton ( Work Study , Volume 51 Number 1) looks at the relative merits of the two research approaches, and despite reference to the built environment in the title acts as a very good introduction to quantitative and qualitative methodology and their relative research literatures. The section on triangulation comes under the heading 'The mixed (or balanced) approach'. 

What steps will you take to ensure that your research is ethical?

Ethics in research is a very important issue. You should design the research in such a way that you take account of such ethical issues as:

  • informed consent (have the participants had the nature of the research explained to them)?
  • checking whether you have permission to transcribe conversations with a tape recorder
  • always treating people with respect, consideration and concern.

How will you ensure the reliability of your research?

Reliability

This is about the replicability of your research and the accuracy of the procedures and research techniques. Will the same results be repeated if the research is repeated? Are the measurements of the research methods accurate and consistent? Could they be used in other similar contexts with equivalent results? Would the same results be achieved by another researcher using the same instruments? Is the research free from error or bias on the part of the researcher, or the participants? (E.g. do the participants say what they believe the management, or the researcher, wants? For example, in a survey done on some course material, that on a mathematical module received glowing reports – which led the researcher to wonder whether this was anything to do with the author being the Head of Department!)

How successfully has the research actually achieved what it set out to achieve? Can the results of the study be transferred to other situations? Does x really cause y, in other words is the researcher correct in maintaining a causal link between these two variables? Is the research design sufficiently rigorous, have alternative explanations been considered? Have the findings really be accurately interpreted? Have other events intervened which might impact on the study, e.g. a large scale redundancy programme? (For example, in an evaluation of the use of CDs for self study with a world-wide group of students, it was established that some groups had not had sufficient explanation from the tutors as to how to use the CD. This could have affected their rather negative views.)

Generalisability

Are the findings applicable in other research settings? Can a theory be developed that can apply to other populations? For example, can a particular study about dissatisfaction amongst lecturers in a particular university be applied generally? This is particularly applicable to research which has a relatively wide sample, as in a questionnaire, or which adopts a scientific technique, as with the experiment.

Transferability

Can the research be applied to other situations? Particularly relevant when applied to case studies.

In addition, each of the sections in this feature on quantitative and qualitative approaches to research design contain notes on how to ensure that the research is reliable.

Some basic definitions

In order to answer a particular research question, the researcher needs to investigate a particular area or group, to which the conclusions from the research will apply. The former may comprise a geographical location such as a city, an industry (for example the clothing industry), an organisation/group of organisations such as a particular firm/type of firm, a particular group of people defined by occupation (e.g. student, manager etc.), consumption of a particular product or service (e.g. users of a shopping mall, new library system etc.), gender etc. This group is termed the  research population .

The  unit of analysis  is the level at which the data is aggregated: for example, it could be a study of individuals as in a study of women managers, of dyads, as in a study of mentor/mentee relationships, of groups (as in studies of departments in an organisation), of organisations, or of industries.

Unless the research population is very small, we need to study a subset of it, which needs to be general enough to be applicable to the whole. This is known as a  sample , and the selection of components of the sample that will give a representative view of the whole is known as  sampling technique  . It is from this sample that you will collect your data.

In order to draw up a sample, you need first to identify the total number of people in the research population. This information may be available in a telephone directory, a list of company members, or a list of companies in the area. It is known as a  sampling frame .

In  Networking for female managers' career development  (Margaret Linehan,  Journal of Management Development , Volume 20 Number 10), he sampling technique is described as follows:

"A total of 50 senior female managers were selected for inclusion in this study. Two sources were used for targeting interviewees, the first was a listing of Fortune 500 top companies in England, Belgium, France and Germany, and, second, The Marketing Guide to Ireland. The 50 managers who participated in the study were representative of a broad range of industries and service sectors including: mining, software engineering, pharmaceutical manufacturing, financial services, car manufacturing, tourism, oil refining, medical and state-owned enterprises."

Sampling may be done either a  probability  or a  non-probability  basis. This is an important research design decision, and one which will depend on such factors as whether the theory behind the research is positivist or idealist, whether qualitative or quantitative methods are used etc. Note that the two methods are not mutually exclusive, and may be used for different purposes at different points in the research, say purposive sampling to find out key attitudes, followed by a more general, random approach.

Note that there is a very good section from an online textbook on sampling: see William Trochim's  Research Methods Knowledge Base .

Probability sampling

In  probability  sampling, each member of a given research population has an equal chance of being selected. It involves, literally, the selection of respondents at random from the sampling frame, having decided on the sample size. This type of sampling is more likely if the theoretical orientation of the research is  positivist , and the methodology used is likely to be  quantitative .

Probability sampling can be:

  • random  – the selection is completely arbitrary, and a given number of the total population is selected completely at random.
  • systematic  – every  nth element  of the population is selected. This can cause a problem if the interval of selection means that the elements share a characteristic: for example, if every fourth seat of a coach is selected it is likely that all the seats will be beside a window.
  • stratified   random  – the population is divided into segments, for example, in a University, you could divide the population into academic, administrators, and academic related (related professional staff). A random number of each group is then selected. It has the advantage of allowing you to categorise your population according to particular features. A.D. Jankowicz provides useful advice (Business Research Methods,Thomson Learning, 2000, p.197).

The concept of fit in services flexibility and research: an empirical approach  (Antonio J Verdú-Jover  et al. ,  International Journal of Service Industry Management , Volume 15 Number 5) uses stratified sampling: the study concentrates on three sectors within the EU, chemicals, electronics and vehicles, with the sample being stratified within this sector.

  • cluster  – a particular subgroup is chosen at random. The subgroup may be based on a particular geographical area, say you may decide to sample particular areas of the country.

Non probability sampling

Here, the population does not have an equal chance of being selected; instead, selection happens according to some factor such as:

  • convenience/accidental  – being present at a particular time e.g. at lunch in the canteen. This is an easy way of getting a sample, but may not be strictly accurate, because the factor you have chosen is based on your convenience rather than on a true understanding of the characteristics of the sample.

In  "Saying is one thing; doing is another": the role of observation in marketing research  ( Qualitative Market Research: An International Journal , Volume 2 Number 1), Matthews and Boote use a two-stage sampling process, with convenience sampling followed by time sampling: see their methodology.

  • "key informant technique" – i.e. people with specialist knowledge
  • using people at selected points in the organisational hierarchy 
  • snowball, with one person being approached and then suggesting others.

In "The benefits of the implementation of the ISO 9000 standard: empirical research in 288 Spanish companies", a sample was selected based on all certified companies in a particular area, because this was where the highest number of certified companies could be found.

  • quota  – the assumption is made that there are subgroups in the population, and a quota of respondents is chosen to reflect this diversity. This subgroup should be reasonably representative of the whole, but care should be taken in drawing conclusions for the whole population. For example, a quota sample taken in New York State would not be representative of the whole of the United States.

Monitoring consumer confidence in food safety: an exploratory study , de Jonge  et al . use quota sampling using age, gender, household size and region as selection variables in a food safety survey. Read about the methodology under Materials and methods.

Non probability sampling methods are more likely to be used in qualitative research, with the greater degree of collaboration with the respondents affording the opportunity of greater detail of data gathering. The researcher is more likely to be involved in the process and be adopting an  interpretivist theoretical  stance.

Calculating the sample size

In purposive sampling, this will be determined by judgement; in other more random types of sample it is calculated as a  proportion  of the sampling frame, the key criterion being to ensure that it is representative of the whole. (E.g. 10 per cent is fine for a large population, say over 1000, but for a small population you would want a larger proportion.)

If you are using stratified sampling you may need to adjust your strata and collapse into smaller strata if you find that some of your sample sizes are too small.

The response rate

It is important to keep track of the response rate against your sample frame. If you are depending on postal questionnaires, you will need to plan into your design time to follow up the questionnaires. What is considered to be a good response rate varies according to the type of survey: if you are, say, surveying managers, then a good response would be 50 per cent; for consumer surveys, the response rate is likely to be lower, say 10 to 20 per cent.

The thing that characterises quantitative research is that it is objective. The assumption is that facts exist totally independently and the researcher is a totally  objective  observer of situations, and has no power to influence them. At such, it probably starts from a positivist or empiricist position.

The research design is based on one iteration in collection of the data: the categories are isolated prior to the study, and the design is planned out and generally not changed during the study (as it may be in qualitative research).

What is my research question? What variables am I interested in exploring?

It is usual to start your research by carrying out a  literature review , which should help you formulate a research question.

Part of the task of the above is to help you determine what  variables  you are considering. What are the key variables for your research and what is the relationship between them – are you looking to  explore  issues, to  compare  two variables or to look at  cause and effect ?

The Dutch heart health community intervention "Hartslag Limburg": evaluation design and baseline data  (Gaby Ronda  et al. ,  Health Education , Volume 103 Number 6) describes a trial of a cardiovascular prevention programme which indicated the importance of its further implementation. The key variables are the types of health related behaviours which affect a person's chance of heart disease.

The following studies compare variables:

Service failures away from home: benefits in intercultural service encounters  (Clyde A Warden  et al. ,  International Journal of Service Industry Management , Volume 14 Number 4) compares service encounters (the independent variable) inside and outside Taiwan (the dependent variable) in order to look at certain aspects of 'critical incidents' in intercultural service encounters.

The concept of fit in services flexibility and research: an empirical approach  (Antonio J Verdú-Jover  et al. ,  International Journal of Service Industry Management , Volume 15 Number 5) looks at managerial flexibility in relation to different types of business, service and manufacturing.

They can also look at cause and effect:

In  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  (Brett A.S. Martin  et al. ,  Marketing Intelligence & Planning , Volume 20 Number 1), the authors look at two variables associated with advertising, notably zipping and fast forwarding, and in their effect on a third variable, consumer behaviour - i.e. ability to remember ads. Furthermore, it looks at the interaction between the first two variables - i.e. whether they interact on one another to help increase recall.

What is the hypothesis?

It is usual with quantitative research to proceed from a particular hypothesis. The object of research would then be to test the hypothesis.

In the example quoted above,  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers , the researchers decided to explore a neglected area of the literature: the interaction between ad zipping and repetition, and came up with three hypotheses:

The influence of zipping H1 . Individuals viewing advertisements played at normal speed will exhibit higher ad recall and recognition than those who view zipped advertisements.

Ad repetition effects H2 . Individuals viewing a repeated advertisement will exhibit higher ad recall and recognition than those who see an advertisement once.

Zipping and ad repetition H3 . Individuals viewing zipped, repeated advertisements will exhibit higher ad recall and recognition than those who see a normal speed advertisement that is played once.

What are the appropriate measures to use

It is very important, when designing your research, to understand  what  you are measuring. This will call for a close examination of the issues involved: is your measure suitable to the hypothesis and research question under consideration? The type of scale you will use will dictate the statistical procedure which you can use to analyse your data, and it is important to have an understanding of the latter at the outset in order to obtain the correct level of analysis, and one that will throw the best light on your research question, and help test your hypothesis.

It is also important to understand what type of data you are trying to collect. Are you wanting to collect data that relates simply to different types of categories, for example, men and women (as in, say, differences in decision-making between men and women managers), or do you want to rank the data in some way? Choices as far as the nature of data are concerned again dictate the type of statistical analysis.

Data can be categorised as follows:

  • Nominal – Representing particular categories, e.g. men or women.
  • Ordinal – Ranked in some way such as order of passing a particular point in a shopping centre.
  • Interval – Ranked according to the interval between the data, which remains the same. Most typical of this type of data is temperature.
  • Ratio – Where it is possible to measure the difference between different types of data - for example applying a measurement.
  • Scalar – This type of data has intervals between it, which are not quantifiable.

Note that some of the above categories, especially 'interval' and 'ratio' are drawn from a scientific model which assumes exact measurement of data (temperature, length etc.). In management research, you are unlikely to want to or be able to apply such a high degree of exactitude, and are more likely to be measuring less exact criteria which do not have an exact interval between them.

Here are some examples of use of data in management research. This one illustrates the use of different categories:

The concept of fit in services flexibility and research: an empirical approach  (see above) uses an approach which itemises the different aspects which the researchers wished to measure flexibility mix, performance and the form's general data. 

This one looks at categories and also at ranked data (ordinal):

In  Remote control marketing: how ad fast-forwarding and ad repetition affect consumers  (also see above), the measure involved 2 (speed of ad presentation: normal, fast-forwarded) ×\ 2 (repetition: none, one repetition) between-subjects factorial design.

The following examples look at measures on a scale, which may relate to tangible factors such as frequency, or more intangible ones which relate to attitude or opinion:

How many holidays do you take in a year?

One __  Between 2 and 5 __  Between 5 and 10 __  More than 10 __

Tick the option which most agrees with your views.

Navigating my way around the CD was:

Very easy __  Easy __  Neither easy nor hard __  Hard __  Very hard __

The later type of data are very common in management research, and are known as scalar data. A very common measure for such data is known as the Likert scale:

Strongly agree __________ Agree __________ Neither agree nor disagree __________ Disagree __________ Strongly disagree __________

How will I analyse the data?

Quantitative data are invariably analysed by some sort of statistical means, such as a t-test, a chi test, cluster analysis etc. It is very important to decide at the planning stage what your method of analysis will be: this will in turn affect your choice of measure. Both your analysis and measure should be suitable to test your hypothesis.

You need also to consider what type of package will you need to analyse your data. It may be sufficient to enter it into an Excel spreadsheet, or you may wish to use a statistical package such as SPSS or Mintab.

What are the instruments used in quantitative research?

Or, put more simply, what methods will you use to collect your data?

In scientific research, it is possible to be reasonably precise by generating experiments in laboratory conditions. Whilst the  field experiment  has a place in management research, as does  observation , the most usual instrument for producing quantitative data is the  survey , most often carried out by means of a  questionnaire .

You will find numerous examples of questionnaires and surveys in research published by Emerald, as you will in any database of management research. Questionnaires will be discussed at a later stage but here are some key issues:

  • It is important to know exactly what questions you want answers to. A common failing is to realise, once you have got the questionnaire back, that you really need answers to a question which you never asked. Thus the questionnaire should be rigorously researched and the questions phrased as precisely as possible.
  • You are more likely to get a response if you give people a reason to respond - commercial companies sometimes offer a prize, which may not be possible or appropriate if you are a researcher in a university, but it is usual in that case to give the reason behind your research, which gives your respondent a context. Even more motivational is the ease with which the questionnaire can be filled in.
  • How many responses will I need? This concerns the eventual size of your dataset and depends upon the degree of complexity of your planned analysis, how you are treating your variables (for example, if you are wanting to show the effect of a variable, you will need a larger response size, likewise if you are showing changes in variables).

Other instruments that are used in quantitative research to generate data are experiments, historical records and documents, and observation.

Note that some authors claim that for a design to be a  true experiment , items must be randomly assigned to groups; if there is some sort of control group or multiple measures, then it may be  quasi experimental . If your survey fits neither of these descriptions, it may according to these authors be sufficient for descriptive purposes, but not if you seek to establish a causal relationship.

For more information on types of design, see William Trochim's Research Methods Knowledge Base section on  types of design .

What are the advantages and drawbacks of quantitative research?

The main advantage of quantitative research is that it is easy to determine its rigour: because of the objectivity of quantitative studies, it is easy to replicate them in another situation. For example, a well-constructed questionnaire can be used to analyse job satisfaction in two different companies; likewise, an observation studying consumer behaviour in a shopping centre can take place in two different such centres.

Quantitative methods are also good at obtaining a good deal of reliable data from a large number of sources. Their drawback is that they are heavily dependent on the reliability of the instrument: that is, in the case of the questionnaire, it is vital to ask the right questions in the right way. This in turn is dependent upon having sufficient information about a situation, which is not always possible. In addition, quantitative studies may generate a large amount of data, but the data may lack depth and fail to explain complex human processes such as attitudes to organisational change, or how how learning takes place.

For example, a quantitative study on a piece of educational software may show that on the whole people felt that they had learnt something, but may not necessarily show how they learnt, which an observation could.

For this reason, quantitative methods are often used in conjunction with qualitative methods: for example, qualitative methods of interviewing may be used as a way of finding out more about a situation in order to draw up an informed quantitative instrument; or to explore certain issues which have appeared in the quantitative study in greater depth.

Qualitative research operates from a different epistemological perspective than quantitative, which is essentially objective. It is a perspective that acknowledges the essential difference between the social world and the scientific one, recognising that people do not always observe the laws of nature, but rather comprise a whole range of feelings, observations, attitudes which are essentially subjective in nature. The theoretical framework is thus likely to be interpretivist or realist. Indeed, the researcher and the research instrument are often combined, with the former being the interviewer, or observer – as opposed to quantitative studies where the research instrument may be a survey and the subjects may never see the researcher.

In an  interview for Emerald ,  Professor Slawomir Magala , Editor of the  Journal of Organizational Change Management , has this to say about qualitative methods:

"We follow the view that the social construction of reality is personal, experienced by individuals and between individuals – in fact, the interactions which connect us are the building blocks of reality, and there is much meaning in the space between individuals."

As opposed to the statistical reliance of quantitative research, data from qualitative research is based on observation and words, and analysis is based on interpretation and pattern recognition rather than statistical analysis.

Miles and Huberman list the following as typical criteria of qualitative research:

  • Intense and prolonged contact in the field.
  • Designed to achieve a holistic or systemic picture.
  • Perception is gained from the inside based on actors' understanding.
  • Little standardised instrumentation is used.
  • Most analysis is done with words.
  • There are multiple interpretations available in the data.

Miles, M. and Huberman, A.M. (1994) Qualitative Data Analysis: An Expanded Sourcebook , Sage, London

To what types of research questions is qualitative research relevant?

Qualitative research is best suited to the types of questions which require exploration of data  in depth  over a not particularly large sample. For example, it would be too time consuming to ask questions such as "Please describe in detail your reaction to colour x" to a large number of people, it would be more appropriate to simply ask "Do you like colour x" and give people a "yes/no" option. By asking the former question to a smaller number of people, you would get a more detailed result.

Qualitative research is also best suited to  exploratory  and  comparative  studies; to a more limited extent, it can also be used for  "cause-effect"  type questions, providing these are fairly limited in scope.

One of the strengths of qualitative research is that it allows the researcher to gain an in-depth perspective, and to grapple with complexity and ambiguity. This is what makes it suitable to analysis of  particular  groups or situations, or unusual events.

What is the relationship of qualitative research to hypotheses?

Qualitative research is usually inductive: that is, researchers gather data, and then formulate a hypothesis which can be applied to other situations.

In fact, one of the strengths of qualitative research is that it can proceed from a relatively small understanding of a particular situation, and generate new questions during the course of data collection as opposed to needing to have all the questions set out beforehand. Indeed, it is good practice in quantitative research to go into a situation as free from preconceptions as possible.

How will you analyse the data?

There is not the same need with qualitative research to determine the measure and the method of analysis at an early stage of the research process, mainly because there are no standard ways of analysing data as there are for quantitative research: it is usual to go with whatever is appropriate for the research question. However, because qualitative data usually involves a large amount of transcription (e.g. of taped interviews, videos of focus groups etc.) it is a good idea to have a plan of how this should be done, and to allow time for the transcription process.

There are a couple of attested methods of qualitative data analysis:  content analysis , which involves looking at emerging patterns, and  grounded analysis , which involves going through a number of guided stages and which is closely linked to  grounded theory .

What are the main instruments of qualitative research?

Or put another way, what are the main methods used to collect data? These can be organised according to their methodology (note, the following is not an exhaustive list, for which you should consult a good book on qualitative research):

Ethnographic methods

As the name suggests, this methodology derives from anthropology and involves observing people as a participant within their social and cultural system. Most common methods of data collection are:

  • Interviewing, which means discussions with people either on the phone, by email or in person when the purpose is to collect data which is by its nature unquantifiable and more difficult to analyse by statistical means, but which provides in-depth information. The interview can be either:  Structured , which means that the interviewer has a set number of questions.  Semi-structured , which means that the interviewer has a number of questions or a purpose, but the interview can still go off in unanticipated directions.
  • Focus groups, which is where a group of people are assembled at one time to give their reaction to a product, or to discuss an issue. There is usually some sort of facilitation which involves either guided discussion or some sort of product demonstration.
  • Participant observation – the researcher observes behaviour of people in the organisation, their language, actions, behaviour etc.

For some examples of participant observation, see Methods of empirical research ,  and for examples of interview technique, see  Techniques of data collection and analysis .

Historical analysis

This is literally, the analysis of historical documents of a particular company, industry etc. It is important to understand exactly what your focus is, and also which historical school or theoretical perspective you are drawing on.

Grounded theory

This is an essentially inductive approach, and is applied when the understanding of a particular phenomenen is sought. A feature is that the design of the research has several iterations: there is initial exploration followed by a theory which is then tested.

In  Grounded theory methodology and practitioner reflexivity in TQM research  ( International Journal of Quality & Reliability Management  , Volume 18 Number 2), Leonard and McAdam use grounded theory to explore TQM, on the grounds that quantitative methods "fail to give deep insights and rich data into TQM in practice within organizations", and that it is much more appropriate to listen to the individual experiences of participants. 

Action research

This is a highly participative form of research where the research is carried out in collaboration with those involved in a particular process, which is often concerned with some sort of change.

Narrative methods

This is when the researcher listens to the stories of people in the organisation and triangulates them against official documents.

Discourse theory

This methodology draws on a theory which allows language to have a meaning that is not set but is negotiated through social context.

Helen Francis in  The power of "talk" in HRM-based change  ( Personnel Review , Volume 31 Number 4) describes her use of discourse theory as follows:

"The approach to discourse analysis drew upon Fairclough's seminal work in which discourse is treated as a form of social practice and meaning is something that is essentially fluid and negotiated rather than being authored individually (Fairclough, 1992, 1995).

"For Fairclough (1992, 1995) the analysis of discursive events is three dimensional and includes simultaneously a piece of text, an instance of discursive practice, and an instance of social practice. Text refers to written and spoken language in use, while "discursive practices" allude to the processes by which texts are produced and interpreted. The social practice dimension refers to the institutional and organisational factors surrounding the discursive event and how they might shape the nature of the discursive practice.

"For the purposes of this research, the method of analysis included a description of the language text and how it was produced or interpreted amongst managers and their subordinates. Particular emphasis was placed on investigating the import of metaphors that are characteristic of HRM, and the introduction of HRM-based techniques adopted by change leaders in their attempt to privilege certain themes and issues over others."

Fairclough, N., 1992,  Discourse and Social Change , Polity Press, Cambridge.

Fairclough, N., 1995,  Critical Discourse Analysis: Papers in the Critical Study of Language , Longman, London.

Discourse theory can be applied to the written as well as the spoken word and can be used to analyse marketing literature as in the following example:

Equity in corporate co-branding: the case of Adidas and the all-blacks  by Judy Motion  et al.  ( European Journal of Marketing , Volume 37 Number 7), where discourse theory is used to analyse branding messages.

How rigorous is qualitative research?

It is often considered harder to demonstrate the rigour of qualitative research, simply because it may be harder to replicate the conditions of the study, and apply the data in other similar circumstances. The rigour may partly lie in the ability to generate a theory which can be applied in other situations, and which takes our understanding of a particular area further.

Rigour in qualitative research is greatly aided by:

  • confirmability - which does not necessarily mean that someone else would adopt the same conclusion, but rather there is a clear audit trail between your data and your interpretation; and that interpretations are based on a wide range of data (for example, from several interviews rather than just one). (This is related to  triangulation , see below.)
  • authenticity - are you drawing on a sufficiently wide range of rich data, do the interpretations ring true, have you considered rival interpretations, do your informants agree with your interpretation?

In  Cultural assumptions in career management: practice implications from Germany;  (Hansen and Willcox,  Career Development International , Volume 2 Number 4), the main method used is ethnographic interviews, and findings are verified by comparing data from the two samples.

Reliability is also enhanced if you can triangulate your data from a number of different sources or methods of data collection, at different times and from different participants.

Dennis Cahill, in  When to use qualitative methods: a new approach  ( Marketing Intelligence & Planning , Volume 14 Number 6), has this to say about the reliability of qualitative research:

"While there are times when qualitative techniques are inappropriate to the research goal, or appropriate only in certain portions of a research project, quantitative techniques do not have universal applicability, either. Although these techniques may be used to measure "reality" rather precisely, they often suffer from a lack of good descriptive material of the type which brings the information to life. This lack is particularly felt in corporate applications where implementation of the results is sought. Therefore, whether one has any interest in the specific research described above, if one is involved in implementation of research results – something we all should be involved in – the use of qualitative research at midpoint is a technique with which we should become familiar.

"It is at this point that some qualitative follow up – interviews or focus groups for example – can serve to flesh out the results, making it possible for people at the firm to understand and internalize those results."

Can qualitative research be used in with quantitative research?

Whereas some researchers only use either qualitative or quantitative methodologies, the two are frequently combined, as when for example qualitative methods are used exploratatively in order to obtain further information prior to developing a quantitative research instrument. In other cases, qualitative methods are used to complement quantitative methods and obtain a greater degree of descriptive richness:

In  When to use qualitative methods: a new approach , Dennis Cahill describes how qualitative methods were used after an extensive questionnaire used to carry out research for a new publication dedicated to the needs of the real estate market. The analysis for the questionnaire produced a five-segment typology (winners, authentics, heartlanders, wannabes and maintainers), which was tested by means of an EYE-TRAC test, when a selected sample was videotaped looking at a magazine of houses for sale.

Once you have established the key features of your design, you need to create an outline project plan which will include a budget and a timetable. In order to do this you need to think first about the activities of your data collection: how much data are you collecting, where etc. (See the section on  Sampling techniques .) You also need to consider your time period for data collection.

Over what time period will you collect your data?

This refers to two types of issues:

Type of study

Should the research be a 'snapshot', examining a particular phenomenon at a particular time, or should it be  longitutinal , examining an issue over a time period? If the latter, the object will be to explore changes over the period.

A longitudinal study of corporate social reporting in Singapore  (Eric W K Tsang,  Accounting, Auditing & Accountability Journal , Volume 11 Number 5) examines social reporting in that country from 1986 to 1995.

Methodology

Sometimes, you may have 'one shot' at the collection of your data - in other words, you plan your sample, your method of data collection, and then analyse the result. This is more likely to be the case if your research approach is more quantitative.

However, other types of research approach involve stages in the collection of data. For example, in  grounded theory  research, data is collected and analysed and then the process is repeated as more is discovered about the subject. Likewise in  action research , there is a cyclical process of data collection, reflection and more collection and analysis.

If you adopt an approach where you  combine quantitative and qualitative methods , then this methodology will dictate that you do a series of studies, whether qualitative followed by quantitative, or vice versa, or qualitative/quantitative/qualitative.

Grounded theory methodology and practitioner reflexivity in TQM research  (Leonard and McAdam,  International Journal of Quality & Reliability Management , Volume 18 Number 2) adopts a three-stage approach to the collection of data.

Doing the plan

The following are some of the costs which need to be considered:

  • Travel to interview people.
  • Postal surveys, including follow-up.
  • The design and printing of the questionnaire, especially if there is use of Optical Mark Reader (OMR) and Optical Character Recognition (OCR) technology.
  • Programming to "read" the above.
  • Programming the data into meaningful results.
  • Transcription of any tape recorded interviews.
  • Cost of design of any internet survey.
  • Employment of a research assistant.

Timetabling

Make a list of the key stages of your research. Does it have several phases, for example, a questionnaire, then interviews?

How long will each phase take? Take account of factors such as:

  • Sourcing your sampling frame
  • Determining the sample
  • Approaching interview subjects
  • Preparations for interviews
  • Writing questionnaires
  • Response time for questionnaires (include a follow-up stage)
  • Analysing the responses
  • Writing the report

When doing a schedule, it's tempting to make it as short as possible in the belief that you actually can achieve more in the time than you think. However, it's very important to be as accurate as possible in your scheduling.

Planning is particularly important if you are working to a specific budget and timetable as for example if you are doing a PhD, or if you are working on a funded research project, which has a specific amount of money available and probably also specific deadlines.

The human costs of the research-assessment culture

  • Rachel Brazil 0

Rachel Brazil is a freelance journalist in London, UK.

You can also search for this author in PubMed   Google Scholar

Illustration: Stephan Schmitz

You have full access to this article via your institution.

The term ‘REF-able’ is now in common usage in UK universities. “Everyone’s constantly thinking of research in terms of ‘REF-able’ outputs, in terms of ‘REF-able’ impact,” says Richard Watermeyer, a sociologist at the University of Bristol, UK. He is referring to the UK Research Excellence Framework (REF), which is meant to happen every seven years and is one of the most intensive systems of academic evaluation in any country. “Its influence is ubiquitous — you can’t escape it,” says Watermeyer. But he and other scholars around the world are concerned about the effects of an extreme audit culture in higher education, one in which researchers’ productivity is continually measured and, in the case of the REF, directly tied to research funding for institutions. Critics say that such systems are having a detrimental effect on staff and, in some cases, are damaging researchers’ mental health and departmental collegiality.

Unlike other research benchmarking systems, the REF results directly affect the distribution of around £2 billion (US$2.6 billion) annually, creating high stakes for institutions. UK universities receive a significant proportion of their government funding in this way (in addition to the research grants awarded to individual academics).

research study an

Research assessment toolkit

Since its inception, the REF methodology has been through several iterations. The rules about which individuals’ work must be highlighted have changed, but there has always been a focus on peer-review panels to assess outputs. Since 2014, a team in each university department has been tasked with selecting a dossier of research outputs and case studies that must demonstrate societal impact. These submissions can receive anything from a four-star rating (for the most important, world-leading research) to just one star (the least significant work, of only national interest). Most departments aim to include three- or four-star submissions, often described as ‘REF-able’.

But the process is time-consuming and does not come cheap. The most recent REF, in 2021, was estimated to have cost £471 million. Tanita Casci, director of the Research Strategy & Policy Unit at the University of Oxford, UK, acknowledges that it’s resource-intensive, but says that it’s still a very efficient way of distributing funds, compared with the cost of allocating money through individual grant proposals. “I don’t think the alternative is better,” she concludes. The next exercise has been pushed back a year, until 2029, with planned changes to include a larger emphasis on assessment of institutional research culture.

Tanita Casci

Tanita Casci says the UK REF assessment is an efficient way to distribute funding. Credit: University of Oxford

Many UK academics see the REF as adding to an already highly competitive and stressful environment. A 2021 survey of more than 3,000 researchers (see go.nature.com/47umnjd ) found that they generally felt that the burdens of the REF outweighed the benefits. They also thought that it had decreased academics’ ability to follow their own intellectual interests and disincentivized the pursuit of riskier, more-speculative work with unpredictable outcomes.

Some other countries have joined the assessment train — with the notable exception of the United States, where the federal government does not typically award universities general-purpose research funding. But no nation has chosen to copy the REF exactly. Some, such as the Netherlands, have instead developed a model that challenges departments to set their own strategic goals and provide evidence that they have achieved them.

Whatever the system, few assessments loom as large in the academic consciousness as the REF. “You will encounter some institutions where, if you mention the REF, there’s a sort of groan and people talk about how stressed it’s making them,” says Petra Boynton, a research consultant and former health-care researcher at University College London.

Strain on team spirit

Staff collating a department’s REF submission, selecting the research outputs and case studies to illustrate impact, can find themselves in an uncomfortable position, says Watermeyer. He was involved in his own department’s 2014 submission and has published a study of the REF’s emotional toll 1 . It’s a job that most academics take on “with trepidation”, he says. It can change how they interact with colleagues and how colleagues view and interact with them.

“You’re trying to make robust, dispassionate, critical determinations of the quality of research. Yet at the back of your mind, you are inescapably aware of the implications of the judgements that you’re making in terms of people’s research identities, their careers,” says Watermeyer. In his experience, people can get quite defensive. That scrutiny of close colleagues’ work “can be really disruptive and damaging to relationships”.

research study an

UK research assessment is being reformed — but the changes miss the mark

Watermeyer often found himself not only adjudicating on work but also acting as a counsellor. “You have to attend to the emotional labour that’s involved; you’re responsible for people’s welfare and well-being,” and no training is provided, he says. A colleague might think that their work has met expectations, only to find that assessors disagree. “I’ve been in situations where there are tears,” Watermeyer recalls. “People break down.”

For university support staff, the REF also looms large. Sometimes, more staff must be hired near the submission deadline to cope with the workload. “It is an unbelievable pressure cooker,” particularly at small institutions, says Julie Bayley, former director of research-impact development at the University of Lincoln, UK. Bayley was responsible for overseeing 50 case studies to demonstrate the impact of Lincoln’s research, and describes this as akin to preparing evidence for a legal case. “You are having to prove, to a good level of scrutiny, that this claim is true,” Bayley says. This usually involves collecting testimonial letters from organizations or individuals who can vouch for the research impact, something she sometimes did on behalf of researchers who feared straining the external relationships they had developed.

Boynton says there can be an upside. “There’s something really exciting about putting together [a case study] that shows you did something amazing,” she says. But she also acknowledges that those whose research is not put forward can feel as if their work doesn’t matter or is not respected, and that can be demoralizing.

The clamour about achieving four stars can skew attitudes about research achievements. Bayley recounts a senior academic tearfully showing her an e-mail from his supervisor that read, “It’s all well and good that you’ve changed national UK policy, but unless you change European policy, it doesn’t count.” She says her own previous research on teenage pregnancy met with similar responses because it involved meeting real needs at the grass-roots level, rather than focusing on national policy. “That’s the bit I find most heartbreaking. Four-star is glory for the university, but four-star is not impact for society,” says Bayley.

The picking and choosing between individual researchers has implications for departments. “That places some people on the ‘star player competition winner’ side and, particularly where resources are limited, that means those people get more support” from their departments, explains Bayley. She has witnessed others being asked to pick up the teaching workload of researchers who are selected to produce impact case studies for a REF submission. Boynton agrees: “It’s not a collegiate, collective thing — it’s divisive.”

Hidden contributions

Research assessment can also affect work that universities often consider ‘non-REF-able’. Simon Hettrick, a research software engineer at the University of Southampton, UK, was in this position in 2021. He collaborates with researchers to produce crucial software for their work. But, he says, universities find it hard to look beyond academic papers as the metric for success even though there are 21 categories of research output that can be considered, including software, patents, conference proceedings and digital and visual media.

In the 2021 REF, publications made up about 98.5% of submissions. Hettrick says that although other submissions are encouraged, universities tend not to select the alternatives, presumably out of habit or for fear they might not be judged as favourably.

Simon Hettrick

Simon Hettrick says evaluations should include more contributions such as software. Credit: Simon Hettrick

The result is that those in roles similar to Hettrick’s feel demotivated. “You’re working really hard, without the recognition for that input you’re making,” he says. To counter this, Hettrick and others launched an initiative called The hidden REF that ran a 2021 competition to spotlight important work unrecognized by the REF, garnering 120 submissions from more than 60 universities. The competition is being run again this year .

In April, Hettrick and his colleagues wrote a manifesto asking universities to ensure that at least 5% of their submissions for the 2029 REF are ‘non-traditional outputs’. “That has been met with some consternation,” he says.

Regarding career advancement, REF submissions should not feed into someone’s prospects, according to Casci, who says that universities make strong efforts to separate REF assessments from decisions about individuals’ career progression. But “it’s a grey area” in Watermeyer’s experience; “it might not be reflected within formal promotional criteria, but I think it’s the accepted unspoken reality”. He thinks that academic researchers lacking ‘REF-able’ three- or four-star outputs are unlikely to be hired by any “serious research institution” — severely limiting their career prospects and mobility.

Watermeyer says the consequences for these individuals will vary. Some institutions try to boost the ratings of early-career academics by putting them on capacity-building programmes, including buddying schemes to foster collaborations with more ‘REF-able’ colleagues. But, for more senior staff, the downside could be a performance review. “People might be ‘encouraged’ to reconsider their research role, if they find themselves unable to satisfy the three-star criteria,” he says.

There’s a similar imperative for a researcher’s work to be used as an impact case study. “If your work is not selected for that competition, you lose the currency for your own progression,” says Bayley.

The REF also exacerbates inequalities that already exist in research, says Emily Yarrow, an organizational-behaviour researcher at Newcastle University Business School, UK. “There are still gendered impacts and gendered effects of the REF, and still a disproportionate negative impact on those who take time out of their careers, for example, for caring responsibilities, maternity leave.” A 2014 analysis she co-authored of REF impact case studies in the fields of business and management showed that women were under-represented: just 25% of studies with an identifiable lead author were led by women 2 . Boynton also points out that there are clear inequalities in the resources available to institutions to prepare for the REF, causing many researchers to feel that the system is unfair.

Emily Yarrow

Emily Yarrow found that women were under-represented in research-evaluation case studies. Credit: Toby Long

Although not all the problems researchers face can be attributed to the REF, it certainly contributes to what some have called an epidemic of poor mental health among UK higher-education staff. A 2019 report (see go.nature.com/3xsb78x ) highlighted the REF as causing administrative overload for some and evoking a heightened, ever-present fear of ‘failure’ for others.

UK research councils have acknowledged the criticisms and have promised changes to the 2029 REF. Steven Hill, chair of the 2021 REF Steering Group at Research England in Bristol, UK, which manages the REF exercise, says these changes will “rebalance the exercise’s definition of research excellence, to focus more on the environment needed for all talented people to thrive”. Hill also says they will implement changes to break “the link between individuals and submissions” because there will no longer be a minimum or maximum number of submissions for each researcher. The steering group aims to provide more support in terms of how REF guidance is applied by institutions, to dispel misconceptions about requirements. “Some institutions frame their performance criteria in REF terms and place greater requirements on staff than are actually required by REF,” Hill says.

Other ways forward

Similar to the REF, the China Discipline Evaluation (CDE) occurs every four to five years. Yiran Zhou, a higher-education researcher at the University of Cambridge, UK, has studied attitudes to the CDE 3 and says there are pressures in China to produce the equivalent of ‘REF-able’ research and similar concerns about the impact on academics. China relies much more on conventional quantitative publication metrics, but researchers Zhou interviewed criticized the time wasted in producing CDE impact case studies. Those tasked with organizing this often had to bargain with colleagues to collect the evidence they needed. “Then, they owe personal favours to them, like teaching for one or two hours,” says Zhou.

Increased competition has become a concern among Chinese universities, and Zhou says the government has decided not to publicize the results of the most recent CDE, only informing the individual universities. And, Zhou says, some of those she spoke to favoured dropping the assessment altogether.

research study an

Mammoth UK research assessment concludes as leaders eye radical shake up

In 2022, Australia did just that. Ahead of the country’s 2023 Excellence in Research for Australia (ERA) assessment, the government announced that it would stop the time-consuming process and start a transition to examine other “modern data-driven approaches, informed by expert review”. In October 2023, the Australian Research Council revealed a blueprint for a new assessment system and was investigating methods for smarter harvesting of evaluation data. It also noted that any data used would be “curated”, possibly with the help of artificial intelligence.

Some European countries are moving away from the type of competitive process exemplified by the REF. “For the Netherlands, we hope to move from evaluation to development” of careers and departmental strategies, says Kim Huijpen, programme manager for Recognition and Reward for the Universities of the Netherlands, based in The Hague, and a former chair of the working group of the Strategy Evaluation Protocol (SEP), the research evaluation process for Dutch universities. In the SEP, institutions organize subject-based research-unit evaluations every six years, but the outcome is not linked to government funding.

The SEP is a benchmarking process. Each research group selects indicators and other types of evidence related to its strategy and these, along with a site visit, provide the basis for review by a committee of peers and stakeholders. The protocol for 2021–27 has removed the previous system of grading. “We wanted to get away from this kind of ranking exercise,” explains Huijpen. “There’s a lot of freedom to deepen the conversation on quality, the societal relevance and the impact of the work — and it’s not very strict in how you should do this.”

The Research Council of Norway also runs subject-based assessments every decade, including institutional-level metrics and case studies, to broadly survey a field. “From what I hear from colleagues, the Norwegian assessment is much milder than the REF. Although it’s similar in what is looked at, it doesn’t feel the same,” says Alexander Refsum Jensenius, a music researcher at the University of Oslo. That’s probably because there is no direct link between the assessment and funding.

Refsum Jensenius has been involved in the Norwegian Career Assessment Matrix , a toolbox developed in 2021 by Universities Norway, the cooperative body of 32 accredited universities. It isn’t used to assess departments, but it demonstrates a fresh, broader approach.

What differentiates it from many other assessments is that in addition to providing evidence, there is scope for a researcher to outline the motivations for their research directions and make their own value judgements on achievements. “You cannot only have endless lists of whatever you have been doing, but you also need to reflect on it and perhaps suggest that some of these things have more value to you,” says Refsum Jensenius. For example, researchers might add context to their publication list by highlighting that opportunities to publish their work are limited by its interdisciplinary nature. There is also an element of continuing professional development to identify a researcher’s skills that need strengthening. Refsum Jensenius says this approach has been welcomed in the Norwegian system. “The toolbox is starting to be adopted by many institutions, including the University of Oslo, for hiring and promoting people.”

For many UK researchers, this more nurturing, reflective method of assessment might feel a million miles away from the REF, but that’s not to say that the REF process does not address ways to improve an institution’s research environment. Currently, one of the three pillars of assessment involves ‘people, culture and environment’, which includes open science, research integrity, career development and equity, diversity and inclusion (EDI) concerns. Since 2022, there have been discussions on how to better measure and incentivize good practice in these areas for the next REF.

Bayley thinks the REF can already take some credit for an increased emphasis on EDI issues at UK universities. “I will not pretend for a second it’s sorted, but EDI is now so commonly a standing item on agendas that it’s far more present than it ever was.”

But she is less sure that the REF has improved research culture overall. For example, she says after the 2014 REF, when the rules changed to require that contributions from all permanent research staff be submitted, she saw indications that some universities were gaming the system in a way that disadvantaged early-career researchers. Junior staff members were left on precarious temporary contracts, and she has seen examples of institutions freezing staff numbers to avoid the need to submit more impact case studies. “I’ve seen that many times across many universities, which means the early-career entry points for research roles are reduced.”

“The REF is a double-edged sword,” concludes Bayley. The administrative burden and pressures it brings are much too high, but it does provide a way to allocate money that gives smaller institutions more of a chance, she says. After the 2021 REF, even though top universities still dominated, many received less of the pot than previously, whereas some newer, less prestigious universities performed strongly. The biggest increase was at Northumbria University in Newcastle, where ‘quality-related’ funding rose from £7 million to £18 million.

For Watermeyer, the whole process is counterproductive, wasting precious resources and creating a competitive, rather than a collaborative, culture that might not tolerate the most creative thinkers. He would like to see it abolished. Hettrick is in two minds, because “the realist in me says it is necessary to explain to the taxpayer what we’re doing with their money”. He says the task now is to do the assessment more cheaply and more effectively.

Other research communities might not agree. As Huijpen points out, “there’s quite a lot of assessments in academic life, there are a lot of moments within a career where you are assessed, when you apply for funding, when you apply for a job”. From her perspective, it’s time to opt for less ranking and more reflection.

Nature 633 , 481-484 (2024)

doi: https://doi.org/10.1038/d41586-024-02922-4

Watermeyer, R., Derrick, G. E. & Batalla, M. B. Res. Eval. 31 , 498–506 (2022).

Article   Google Scholar  

Davies, J., Yarrow, E. & Syed, J. Gend. Work Organ. 27 , 129–148 (2020).

Zhou, Y. High. Educ. 88 , 1019–1035 (2024).

Download references

Related Articles

research study an

  • Research management
  • Institutions
  • Peer review

The grassroots organizations continuing the fight for Ukrainian science

The grassroots organizations continuing the fight for Ukrainian science

Career Feature 11 SEP 24

How a struggling biotech company became a university ‘spin-in’

How a struggling biotech company became a university ‘spin-in’

Career Q&A 10 SEP 24

Massive Attack’s science-led drive to lower music’s carbon footprint

Massive Attack’s science-led drive to lower music’s carbon footprint

Career Feature 04 SEP 24

Why I’m committed to breaking the bias in large language models

Why I’m committed to breaking the bias in large language models

Career Guide 04 SEP 24

Binning out-of-date chemicals? Somebody think about the carbon!

Correspondence 27 AUG 24

No more hunting for replication studies: crowdsourced database makes them easy to find

No more hunting for replication studies: crowdsourced database makes them easy to find

Nature Index 27 AUG 24

Can South Korea regain its edge in innovation?

Can South Korea regain its edge in innovation?

Nature Index 21 AUG 24

What will it take to open South Korean research to the world?

What will it take to open South Korean research to the world?

How South Korea can support female research leaders

How South Korea can support female research leaders

Faculty Positions at SUSTech School of Medicine

SUSTech School of Medicine offers equal opportunities and welcome applicants from the world with all ethnic backgrounds.

Shenzhen, Guangdong, China

Southern University of Science and Technology, School of Medicine

research study an

Postdoctoral Fellowships Worldwide

IBSA Foundation for scientific research offers 6 fellowships offers of € 32.000 to young researchers under 40 years.

The call is open to people from research institutes and universities from all over the world.

IBSA Foundation for scientific research

research study an

Staff Scientist - Immunology

Staff Scientist- Immunology

Houston, Texas (US)

Baylor College of Medicine (BCM)

research study an

Institute for Systems Genetics, Tenure Track Faculty Positions

The Institute for Systems Genetics at NYU Langone Health has tenure track faculty positions (assistant professor level) at the new SynBioMed Center.

New York City, New York (US)

NYU Langone Health

research study an

Faculty Position

The Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taiwan, is seeking candidates to fill multiple tenure-track faculty position

Taipei (TW)

Institute of Cellular and Organismic Biology, Academia Sinica

research study an

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

This week: the arXiv Accessibility Forum

Help | Advanced Search

Computer Science > Computation and Language

Title: can llms generate novel research ideas a large-scale human study with 100+ nlp researchers.

Abstract: Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire research process. We address this by establishing an experimental design that evaluates research idea generation while controlling for confounders and performs the first head-to-head comparison between expert NLP researchers and an LLM ideation agent. By recruiting over 100 NLP researchers to write novel ideas and blind reviews of both LLM and human ideas, we obtain the first statistically significant conclusion on current LLM capabilities for research ideation: we find LLM-generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged slightly weaker on feasibility. Studying our agent baselines closely, we identify open problems in building and evaluating research agents, including failures of LLM self-evaluation and their lack of diversity in generation. Finally, we acknowledge that human judgements of novelty can be difficult, even by experts, and propose an end-to-end study design which recruits researchers to execute these ideas into full projects, enabling us to study whether these novelty and feasibility judgements result in meaningful differences in research outcome.
Comments: main paper is 20 pages
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY); Human-Computer Interaction (cs.HC); Machine Learning (cs.LG)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite (pending registration)

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-.

Cover of InformedHealth.org

InformedHealth.org [Internet].

In brief: what types of studies are there.

Last Update: September 8, 2016 ; Next update: 2024.

There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked.

When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following questions may be asked:

  • What is the cause of the condition?
  • What is the natural course of the disease if left untreated?
  • What will change because of the treatment?
  • How many other people have the same condition?
  • How do other people cope with it?

Each of these questions can best be answered by a different type of study.

In order to get reliable results, a study has to be carefully planned right from the start. One thing that is especially important to consider is which type of study is best suited to the research question. A study protocol should be written and complete documentation of the study's process should also be done. This is vital in order for other scientists to be able to reproduce and check the results afterwards.

The main types of studies are randomized controlled trials (RCTs), cohort studies, case-control studies and qualitative studies.

  • Randomized controlled trials

If you want to know how effective a treatment or diagnostic test is, randomized trials provide the most reliable answers. Because the effect of the treatment is often compared with "no treatment" (or a different treatment), they can also show what happens if you opt to not have the treatment or diagnostic test.

When planning this type of study, a research question is stipulated first. This involves deciding what exactly should be tested and in what group of people. In order to be able to reliably assess how effective the treatment is, the following things also need to be determined before the study is started:

  • How long the study should last
  • How many participants are needed
  • How the effect of the treatment should be measured

For instance, a medication used to treat menopause symptoms needs to be tested on a different group of people than a flu medicine. And a study on treatment for a stuffy nose may be much shorter than a study on a drug taken to prevent strokes .

“Randomized” means divided into groups by chance. In RCTs participants are randomly assigned to one of two or more groups. Then one group receives the new drug A, for example, while the other group receives the conventional drug B or a placebo (dummy drug). Things like the appearance and taste of the drug and the placebo should be as similar as possible. Ideally, the assignment to the various groups is done "double blinded," meaning that neither the participants nor their doctors know who is in which group.

The assignment to groups has to be random in order to make sure that only the effects of the medications are compared, and no other factors influence the results. If doctors decided themselves which patients should receive which treatment, they might – for instance – give the more promising drug to patients who have better chances of recovery. This would distort the results. Random allocation ensures that differences between the results of the two groups at the end of the study are actually due to the treatment and not something else.

Randomized controlled trials provide the best results when trying to find out if there is a cause-and-effect relationship. RCTs can answer questions such as these:

  • Is the new drug A better than the standard treatment for medical condition X?
  • Does regular physical activity speed up recovery after a slipped disk when compared to passive waiting?
  • Cohort studies

A cohort is a group of people who are observed frequently over a period of many years – for instance, to determine how often a certain disease occurs. In a cohort study, two (or more) groups that are exposed to different things are compared with each other: For example, one group might smoke while the other doesn't. Or one group may be exposed to a hazardous substance at work, while the comparison group isn't. The researchers then observe how the health of the people in both groups develops over the course of several years, whether they become ill, and how many of them pass away. Cohort studies often include people who are healthy at the start of the study. Cohort studies can have a prospective (forward-looking) design or a retrospective (backward-looking) design. In a prospective study, the result that the researchers are interested in (such as a specific illness) has not yet occurred by the time the study starts. But the outcomes that they want to measure and other possible influential factors can be precisely defined beforehand. In a retrospective study, the result (the illness) has already occurred before the study starts, and the researchers look at the patient's history to find risk factors.

Cohort studies are especially useful if you want to find out how common a medical condition is and which factors increase the risk of developing it. They can answer questions such as:

  • How does high blood pressure affect heart health?
  • Does smoking increase your risk of lung cancer?

For example, one famous long-term cohort study observed a group of 40,000 British doctors, many of whom smoked. It tracked how many doctors died over the years, and what they died of. The study showed that smoking caused a lot of deaths, and that people who smoked more were more likely to get ill and die.

  • Case-control studies

Case-control studies compare people who have a certain medical condition with people who do not have the medical condition, but who are otherwise as similar as possible, for example in terms of their sex and age. Then the two groups are interviewed, or their medical files are analyzed, to find anything that might be risk factors for the disease. So case-control studies are generally retrospective.

Case-control studies are one way to gain knowledge about rare diseases. They are also not as expensive or time-consuming as RCTs or cohort studies. But it is often difficult to tell which people are the most similar to each other and should therefore be compared with each other. Because the researchers usually ask about past events, they are dependent on the participants’ memories. But the people they interview might no longer remember whether they were, for instance, exposed to certain risk factors in the past.

Still, case-control studies can help to investigate the causes of a specific disease, and answer questions like these:

  • Do HPV infections increase the risk of cervical cancer ?
  • Is the risk of sudden infant death syndrome (“cot death”) increased by parents smoking at home?

Cohort studies and case-control studies are types of "observational studies."

  • Cross-sectional studies

Many people will be familiar with this kind of study. The classic type of cross-sectional study is the survey: A representative group of people – usually a random sample – are interviewed or examined in order to find out their opinions or facts. Because this data is collected only once, cross-sectional studies are relatively quick and inexpensive. They can provide information on things like the prevalence of a particular disease (how common it is). But they can't tell us anything about the cause of a disease or what the best treatment might be.

Cross-sectional studies can answer questions such as these:

  • How tall are German men and women at age 20?
  • How many people have cancer screening?
  • Qualitative studies

This type of study helps us understand, for instance, what it is like for people to live with a certain disease. Unlike other kinds of research, qualitative research does not rely on numbers and data. Instead, it is based on information collected by talking to people who have a particular medical condition and people close to them. Written documents and observations are used too. The information that is obtained is then analyzed and interpreted using a number of methods.

Qualitative studies can answer questions such as these:

  • How do women experience a Cesarean section?
  • What aspects of treatment are especially important to men who have prostate cancer ?
  • How reliable are the different types of studies?

Each type of study has its advantages and disadvantages. It is always important to find out the following: Did the researchers select a study type that will actually allow them to find the answers they are looking for? You can’t use a survey to find out what is causing a particular disease, for instance.

It is really only possible to draw reliable conclusions about cause and effect by using randomized controlled trials. Other types of studies usually only allow us to establish correlations (relationships where it isn’t clear whether one thing is causing the other). For instance, data from a cohort study may show that people who eat more red meat develop bowel cancer more often than people who don't. This might suggest that eating red meat can increase your risk of getting bowel cancer. But people who eat a lot of red meat might also smoke more, drink more alcohol, or tend to be overweight. The influence of these and other possible risk factors can only be determined by comparing two equal-sized groups made up of randomly assigned participants.

That is why randomized controlled trials are usually the only suitable way to find out how effective a treatment is. Systematic reviews, which summarize multiple RCTs , are even better. In order to be good-quality, though, all studies and systematic reviews need to be designed properly and eliminate as many potential sources of error as possible.

  • German Network for Evidence-based Medicine. Glossar: Qualitative Forschung.  Berlin: DNEbM; 2011. 
  • Greenhalgh T. Einführung in die Evidence-based Medicine: kritische Beurteilung klinischer Studien als Basis einer rationalen Medizin. Bern: Huber; 2003. 
  • Institute for Quality and Efficiency in Health Care (IQWiG, Germany). General methods . Version 5.0. Cologne: IQWiG; 2017.
  • Klug SJ, Bender R, Blettner M, Lange S. Wichtige epidemiologische Studientypen. Dtsch Med Wochenschr 2007; 132:e45-e47. [ PubMed : 17530597 ]
  • Schäfer T. Kritische Bewertung von Studien zur Ätiologie. In: Kunz R, Ollenschläger G, Raspe H, Jonitz G, Donner-Banzhoff N (eds.). Lehrbuch evidenzbasierte Medizin in Klinik und Praxis. Cologne: Deutscher Ärzte-Verlag; 2007.

IQWiG health information is written with the aim of helping people understand the advantages and disadvantages of the main treatment options and health care services.

Because IQWiG is a German institute, some of the information provided here is specific to the German health care system. The suitability of any of the described options in an individual case can be determined by talking to a doctor. informedhealth.org can provide support for talks with doctors and other medical professionals, but cannot replace them. We do not offer individual consultations.

Our information is based on the results of good-quality studies. It is written by a team of health care professionals, scientists and editors, and reviewed by external experts. You can find a detailed description of how our health information is produced and updated in our methods.

  • Cite this Page InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: What types of studies are there? [Updated 2016 Sep 8].

In this Page

Informed health links, related information.

  • PubMed Links to PubMed

Recent Activity

  • In brief: What types of studies are there? - InformedHealth.org In brief: What types of studies are there? - InformedHealth.org

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

White Protestants and Catholics support Trump, but voters in other U.S. religious groups prefer Harris

Heading into the fall campaign for president, U.S. religious groups that traditionally have leaned Republican are backing former President Donald Trump by wide margins, while religious groups that traditionally have favored Democratic candidates are mostly supporting Vice President Kamala Harris.

The latest Pew Research Center survey , conducted Aug. 26-Sept. 2, 2024, finds that majorities of registered voters in three key religious groups say they would vote for Trump or lean toward doing so if the election were today:

A diverging bar chart showing that most White Christians support Trump for president; majorities in several other religious groups back Harris.

  • 82% of White evangelical Protestants
  • 61% of White Catholics
  • 58% of White nonevangelical Protestants

Harris currently has the backing of roughly two-thirds or more registered voters in various other religious groups:

  • 86% of Black Protestants
  • 85% of atheists
  • 78% of agnostics
  • 65% of Hispanic Catholics
  • 65% of Jewish voters

The survey includes responses from Muslims, Buddhists, Hindus and people from many other religious backgrounds. However, it does not include enough respondents from these smaller religious groups to be able to report on them separately.

Pew Research Center conducted this analysis to understand religious differences in U.S. voters’ views of the 2024 presidential election campaign.

For this analysis, we surveyed 9,720 adults – including 8,044 registered voters – from Aug. 26 to Sept. 2, 2024. Everyone who took part in this survey is a member of the Center’s American Trends Panel (ATP), a group of people recruited through national, random sampling of residential addresses who have agreed to take surveys regularly. This kind of recruitment gives nearly all U.S. adults a chance of selection. Surveys were conducted either online or by telephone with a live interviewer. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other factors.  Read more about the ATP’s methodology .

Here are the questions used for this analysis , the topline and the  survey methodology . Here are details about sample sizes and margins of error for groups analyzed in this analysis.

Harris has improved on Biden’s performance with some religious groups

The new survey marks the first time that the Center has asked about voters’ preferences between Trump and Harris – without asking about any third-party candidates – since President Joe Biden withdrew as the Democratic nominee and independent Robert F. Kennedy Jr. suspended his campaign .

Harris currently garners more support from Black Protestants and Hispanic Catholics than Biden did in April , when 77% of Black Protestants and 49% of Hispanic Catholics backed him.

Otherwise, the religious dynamics of the U.S. presidential campaign look about as they did in the spring.

Support for Trump varies by church attendance

A diverging bar chart showing that support for Trump is higher among White evangelicals and White Catholics who attend church regularly.

Among White evangelicals, support for Trump is higher among those who attend church regularly – that is, at least once or twice a month – than among those who don’t. Support for Trump is also marginally higher among White Catholics who attend Mass at least monthly than among White Catholics who attend Mass less often.

By contrast, among White Protestants who are not evangelical, support for Trump is somewhat lower among regular churchgoers than among those who don’t attend church regularly.

There are no such differences in support for Harris among Black Protestants: 86% of both regular churchgoers and those who don’t often go to church support her.

How U.S. religious groups view key issues in the election

We also asked respondents how important a variety of issues will be to their vote in the presidential election.

Certain issues are highly important to voters regardless of religious group. For instance, at least six-in-ten registered voters in every religious group say the economy will be very important in their voting decision. And half or more in almost every religious group say the same about health care, Supreme Court appointments and foreign policy.

White evangelical Protestant voters stand out for the high level of importance they attach to immigration. Roughly eight-in-ten White evangelicals (79%) say immigration will be very important in their voting decision – higher than any other group. A large majority of White Catholics (72%) also say immigration will be a key factor in their decision.

Abortion, in turn, is rated as a very important issue by more atheists (a group that mostly supports legal abortion ) than by people with other religious identities. Roughly three-quarters of atheists (77%) say abortion will be very important in deciding who to vote for. Around six-in-ten agnostics (62%), Jewish voters (59%) and Black Protestants (57%) also say abortion will be very important in deciding how to vote this fall. Fewer Catholics (44%) and White Protestants (including 48% of evangelicals and 43% of nonevangelicals) say the same.

These differences across religious groups reflect broader partisan patterns. White evangelicals and White Catholics mostly identify with or lean toward the Republican Party and support Trump in the current election. And the new survey shows that more Republican voters than Democratic voters say immigration will be very important to their choice this fall .

On the other hand, most atheists, agnostics, Black Protestants and Jewish voters identify with or lean toward the Democratic Party and support Harris in the current campaign. The new survey shows that abortion is a key issue for more Democratic voters than Republican voters.

A table showing that White evangelicals, Catholics especially likely to see immigration as a key issue.

Note: Here are the questions used for this analysis , the topline and the  survey methodology . Here are details about sample sizes and margins of error for groups analyzed in this analysis.

  • Beliefs & Practices
  • Religion & Government
  • Religion & Politics

Download Gregory A. Smith's photo

Gregory A. Smith is a senior associate director of research at Pew Research Center .

Many around the globe say it’s important their leader stands up for people’s religious beliefs

Cultural issues and the 2024 election, voters’ views of trump and biden differ sharply by religion, 5 facts about religion and americans’ views of donald trump, u.s. christians more likely than ‘nones’ to say situation at the border is a crisis, most popular.

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan, nonadvocacy fact tank that informs the public about the issues, attitudes and trends shaping the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, computational social science research and other data-driven research. Pew Research Center is a subsidiary of The Pew Charitable Trusts , its primary funder.

© 2024 Pew Research Center

research study an

  • NIH Grants & Funding
  • Blog Policies

NIH Extramural Nexus

research study an

Case Study in Research Integrity: Alcohol and Harassment

There was that bottle of champagne in the breakroom – to be opened when a paper is accepted. Or you heard a colleague’s plan to take a special guest speaker out to dinner at the local watering hole. And, then there were those recruiting events with prospective students that sometimes ended with a happy hour. As many of us have experienced, alcohol may often be part of lab events, conferences, or other related activities. But the presence of alcohol is not an excuse to check professionalism at the door. Here, we are spotlighting this issue to encourage members of the scientific community to consider the potential risks that alcohol can have on the research environment.

Unfortunately, over the past several years we have seen numerous instances where alcohol may have contributed to inappropriate behavior and sexual harassment in the context of scientific research. We are presenting a few case studies below, which are adapted in part from real situations where we worked in tandem with the recipient institutions to address the concerns.

  • A postdoctoral fellow sexually assaulted a graduate student after a lab event where alcohol was provided. This fellow was terminated from the institution (who was the recipient of the NIH grant ), and the graduate student was provided with information about how to report to law enforcement. Additionally, the recipient institution directed the principal investigator (PI) to limit alcohol at lab events, as drinking contributed to the abuse.
  • A PI at a prestigious scientific conference got severely intoxicated and sexually harassed a postdoctoral fellow. Because the conference organizers made their safety plan widely available and known, the fellow knew who to contact and how to report it. The PI was subsequently removed, an action outline in a safety plan the conference organizers had in place to protect their attendees. And, the PIs institution decided to remove the person from NIH grants, an action that NIH thought appropriate.
  • A lab head repeatedly encouraged and pressured their junior staff to drink alcohol and made inappropriate sexual comments while on travel. The institution removed the lab head from serving as PI on NIH awards, prohibited them from applying for new funding, and placed restrictions on travel and the use of alcohol at lab-related events. The institution also identified a new co-mentor for the junior scientists, engaged an external coach to work with the lab head on professional behavior, and began conducting quarterly climate assessments of the lab. NIH also requested regular updates from the recipient institution on their progress.
  • A lab head sent abusive emails to colleagues and staff. The institution also determined that the lab head was keeping alcohol in the office and working while under the influence, which may have contributed to the inappropriate communications. The recipient institution subsequently put their employee on administrative leave for several months. Upon their return to the lab, the institution also appointed a co-Director to provide additional oversight and mentoring.  

The National Academies reiterated in their 2019 report that organizational tolerance of alcohol use increases the chance of sexual or gender harassment (see also these articles from 2007 , 2005 , and 2002 ). Their report adds that such permissiveness leads some people to avoid lab related social events that involve alcohol. Furthermore, a 2019 report from an Advisory Committee to the NIH Director working group retold a story from a graduate student who was a target of sexual harassment where alcohol was involved.

This type of behavior in a professional setting violates grant policies and can even rise to a criminal offense. We are disheartened to receive reports about such unacceptable behavior, and we note that in the majority of these cases the recipient institution has taken serious actions in consultation with NIH. Based on the severity of the non-compliance, such actions included suspending personnel, removing principal investigators from NIH awards, placing restrictions around alcohol use at lab-related events, and imposing restrictions on travel and conference attendance.

While responsible inclusion of alcohol in celebrations or social outings may not pose a problem, researchers and their institutions should be mindful of how alcohol can contribute to unprofessional behaviors and sexual harassment. Also, keep in mind that purchasing alcoholic beverages is not an allowable grant-associated expense .

Relatedly, NIH-sponsored conferences must have approved safety plans . The strategies discussed in those plans aim to promote safe environments through communicating with attendees, documenting allegations and resulting actions, and other relevant steps to ensure a safe and respectful environment (see also this All About Grants podcast ). If someone at the conference is harassed, and whether or not alcohol was involved, they should feel empowered and protected to report the incident.

In our continued effort to make research environments safe , collectively we must be cognizant of situations that precipitate inappropriate behavior. Nobody should be bullied or pressured if they do not want to have a drink. All social events that include alcohol should also offer non-alcohol containing beverages for those choosing not to drink alcohol. Staff should feel comfortable attending social activities. There should not be an undercurrent or expectation to engage in activities counter to the individual’s personal choices or beliefs. For resources about what constitutes alcohol misuse and how to seek help, please see Rethinking Drinking and the Treatment Navigator  from the National Institute on Alcohol Abuse and Alcoholism.

Please also visit our website to inform us if you have any concerns that harassment, discrimination, or other inappropriate conduct may be affecting NIH supported research. You can remain anonymous. More on how to ensure safe and respectful workplaces is available on this podcast .

RELATED NEWS

I would urge the author to consider reframing contents of this article to reflect decades of research indicating that sexual assault, while often involving alcohol, is a an issue of power. Blaming alcohol, as the article suggests, for sexual assaults without recognizing the role power plays in the assault risks abuses continuing, if not exacerbating, since alcohol quashes the personal and social responsibilities of consent. Frankly, this is an embarrassing article to have on the NIH website, and I’d recommend the scholar learn from women in the fields of domestic violence and sexual assault research before publishing future research on the subject.

We appreciate your point about considering how power imbalances may contribute to harassment. Appropriately recognizing and addressing that issue is something we take seriously to ensure that NIH-supported research is conducted in safe and respectful workplaces. The following post may also be of interest: https://nexus.od.nih.gov/all/2023/07/17/case-study-in-research-integrity-banned-from-supervising-cant-go-in-lab-but-no-impact-on-nih-funded-research/

Prevention is the key! Rules of conduct must be out in place and followed.

Before submitting your comment, please review our blog comment policies.

Your email address will not be published. Required fields are marked *

Cookies on GOV.UK

We use some essential cookies to make this website work.

We’d like to set additional cookies to understand how you use GOV.UK, remember your settings and improve government services.

We also use cookies set by other sites to help us deliver content from their services.

You have accepted additional cookies. You can change your cookie settings at any time.

You have rejected additional cookies. You can change your cookie settings at any time.

  • Department of Health & Social Care

Management information on recruitment to clinical research studies

Published 12 September 2024

research study an

© Crown copyright 2024

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] .

Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

This publication is available at https://www.gov.uk/government/publications/management-information-on-recruitment-to-clinical-research-studies/management-information-on-recruitment-to-clinical-research-studies

Data on the recruitment to clinical research studies, reported to the Department of Health and Social Care ( DHSC ). This release is published as management information, in accordance with the Code of Practice for Statistics , to improve transparency and support publication of the Darzi review on 12 September 2024. The Darzi review is the independent investigation of the National Health Service in England, led by Lord Darzi.

Clinical research studies are important for advancing medical knowledge and enhancing patient care. These investigations are designed to evaluate the safety, efficacy and effectiveness of new treatments, medications, devices, or interventions. Clinical research includes various types of studies, such as clinical trials and observational studies.

Clinical trials, also known as interventional studies, test new medical approaches, including drugs, vaccines and surgical procedures. They are carried out in phases to assess safety, dosing and effectiveness. Observational studies monitor and analyse the effects of specific variables on health outcomes without intervening.

By systematically investigating in this way, clinical research plays a vital role in discovering new treatments and improving healthcare practices.

Monitoring clinical research delivery

One of the ways clinical research delivery in the UK is monitored is through the UK Clinical Research Delivery Key Performance Indicators Report . This report, previously known as the Research Status Report, brings together data from the National Institute for Health and Care Research ( NIHR ) and the Medicines and Healthcare products Regulatory Agency. It monitors progress on delivering parts of the government’s vision for UK clinical research delivery. The performance indicators measure trends in:

  • the speed and predictability of regulatory and study set-up timelines
  • the delivery of research to time and target
  • overall recruitment levels

The report is published monthly by DHSC and is being used to support the development of policies to encourage clinical research delivery.

This publication focuses specifically on clinical research recruitment data from the UK Clinical Research Delivery Key Performance Indicators Report from April 2014 onwards. It is a supplementary management information release, showing detailed tables behind the recruitment charts published in June 2024’s UK Clinical Research Delivery Key Performance Indicators Report.

Definition of a research study

Research is defined in the UK Policy Framework for Health and Social Care Research as the attempt to derive generalisable or transferable new knowledge to answer or refine relevant questions with scientifically sound methods. This excludes: audit, needs assessments, quality improvement and other local service evaluations. It also excludes routine banking of biological samples or data except where this activity is integral to a self-contained research project designed to test a clear hypothesis.

This definition applies to all studies for which NIHR Clinical Research Network support is sought regardless of the study type or research funder.

Table 1 shows the number of participants recruited into studies since April 2014, held on the NIHR Clinical Research Network’s central portfolio management system.

The central portfolio management system consists of all studies held on the Clinical Research Network portfolio, as well as some studies held on the network portfolios of Northern Ireland, Scotland and Wales.

The data includes recruitment to both interventional and observational studies. The data represents the total number of participants recruited for a given month, based on the month and year the recruitment notification was received.

Table 1: recruitment to clinical research studies

Recruitment month and year Number of participants
April 2014 53,127
May 2014 81,491
June 2014 60,363
July 2014 58,498
August 2014 52,321
September 2014 56,211
October 2014 62,436
November 2014 55,059
December 2014 46,203
January 2015 58,324
February 2015 63,841
March 2015 79,245
April 2015 55,841
May 2015 54,132
June 2015 63,624
July 2015 61,753
August 2015 73,360
September 2015 63,296
October 2015 61,527
November 2015 66,477
December 2015 43,906
January 2016 51,217
February 2016 54,898
March 2016 56,727
April 2016 55,838
May 2016 61,268
June 2016 70,329
July 2016 54,405
August 2016 57,022
September 2016 59,833
October 2016 56,395
November 2016 64,126
December 2016 50,328
January 2017 61,254
February 2017 60,311
March 2017 110,535
April 2017 57,058
May 2017 63,939
June 2017 74,999
July 2017 65,602
August 2017 63,852
September 2017 66,551
October 2017 74,006
November 2017 76,660
December 2017 50,561
January 2018 66,972
February 2018 77,654
March 2018 70,763
April 2018 71,401
May 2018 79,562
June 2018 101,583
July 2018 78,111
August 2018 69,173
September 2018 79,669
October 2018 102,418
November 2018 80,351
December 2018 52,956
January 2019 77,046
February 2019 85,854
March 2019 95,115
April 2019 76,893
May 2019 75,525
June 2019 69,448
July 2019 70,086
August 2019 57,268
September 2019 63,686
October 2019 81,183
November 2019 71,557
December 2019 54,106
January 2020 74,426
February 2020 71,698
March 2020 69,371
April 2020 118,865
May 2020 164,358
June 2020 235,733
July 2020 166,467
August 2020 152,595
September 2020 187,815
October 2020 193,757
November 2020 219,025
December 2020 219,465
January 2021 235,100
February 2021 198,865
March 2021 200,579
April 2021 174,143
May 2021 162,090
June 2021 171,082
July 2021 173,561
August 2021 104,394
September 2021 116,278
October 2021 86,524
November 2021 93,404
December 2021 92,956
January 2022 95,821
February 2022 91,643
March 2022 108,758
April 2022 103,638
May 2022 83,983
June 2022 94,282
July 2022 78,845
August 2022 81,659
September 2022 86,075
October 2022 89,064
November 2022 112,070
December 2022 77,792
January 2023 82,087
February 2023 80,451
March 2023 100,019
April 2023 82,115
May 2023 89,414
June 2023 104,076
July 2023 93,247
August 2023 104,386
September 2023 88,273
October 2023 94,272
November 2023 100,281
December 2023 81,339
January 2024 91,821
February 2024 94,866
March 2024 94,019

Source: NIHR Clinical Research Network, central portfolio management system

Table 2 shows the number of participants recruited into studies since April 2014, held on the NIHR Clinical Research Network’s central portfolio management system.

Table 2 includes recruitment to 3 study types:

  • commercial contract studies. These are studies sponsored and fully funded by the life sciences industry
  • commercial collaborative studies. These are studies typically funded, wholly or in part, by the life sciences industry and sponsored by a combination of life sciences industry and non-commercial organisations. This category has previously been included in non-commercial figures but it is now being presented separately to better represent the breadth of commercial studies. Commercial collaborative studies are supported in the same way as other non-commercial studies
  • non-commercial studies. These are studies sponsored and wholly funded by one or more non-commercial organisations, including medical research charities, universities and public funders such as NIHR and UK Research and Innovation

The data includes recruitment to both interventional and observational studies.

Table 2: recruitment to clinical research studies broken down by study type, 2014 to 2024

Recruitment month and year Non-commercial Commercial collaborative Commercial contract
April 2014 43,173 5,578 4,376
May 2014 66,388 12,326 2,777
June 2014 50,265 6,927 3,171
July 2014 48,828 6,187 3,483
August 2014 43,815 5,009 3,497
September 2014 47,757 5,369 3,085
October 2014 50,973 7,761 3,702
November 2014 45,728 5,678 3,653
December 2014 38,317 5,003 2,883
January 2015 48,852 5,983 3,489
February 2015 54,665 5,675 3,501
March 2015 67,630 6,463 5,152
April 2015 46,398 5,491 3,952
May 2015 45,736 5,128 3,268
June 2015 52,262 6,359 5,003
July 2015 52,094 6,341 3,318
August 2015 65,660 4,992 2,708
September 2015 53,527 6,263 3,506
October 2015 51,673 6,508 3,346
November 2015 54,737 7,400 4,340
December 2015 35,944 5,501 2,461
January 2016 41,691 6,574 2,952
February 2016 44,330 7,153 3,415
March 2016 46,049 7,676 3,002
April 2016 46,580 6,286 2,972
May 2016 51,508 6,409 3,351
June 2016 61,073 6,254 3,002
July 2016 46,045 5,596 2,764
August 2016 48,837 5,245 2,940
September 2016 50,791 5,029 4,013
October 2016 48,241 5,313 2,841
November 2016 54,962 5,560 3,604
December 2016 43,086 4,334 2,908
January 2017 52,886 5,674 2,694
February 2017 51,752 5,208 3,351
March 2017 99,600 6,468 4,467
April 2017 48,363 4,920 3,775
May 2017 54,453 5,861 3,625
June 2017 65,652 5,645 3,702
July 2017 56,161 5,809 3,632
August 2017 53,720 6,230 3,902
September 2017 56,392 6,642 3,517
October 2017 58,803 7,150 8,053
November 2017 59,785 6,976 9,899
December 2017 41,825 4,981 3,755
January 2018 56,295 6,907 3,770
February 2018 67,389 7,026 3,239
March 2018 59,613 7,229 3,921
April 2018 58,101 9,893 3,407
May 2018 65,842 10,130 3,590
June 2018 90,507 7,226 3,850
July 2018 65,253 8,034 4,824
August 2018 56,754 7,628 4,791
September 2018 64,719 9,524 5,426
October 2018 81,222 15,107 6,089
November 2018 64,477 9,960 5,914
December 2018 43,264 6,072 3,620
January 2019 64,392 7,900 4,754
February 2019 73,602 8,027 4,225
March 2019 78,586 12,842 3,687
April 2019 65,227 8,619 3,047
May 2019 64,321 8,270 2,934
June 2019 58,436 7,384 3,628
July 2019 57,487 8,988 3,611
August 2019 46,164 8,027 3,077
September 2019 51,515 9,676 2,495
October 2019 65,035 13,081 3,067
November 2019 58,227 9,737 3,593
December 2019 43,547 8,062 2,497
January 2020 60,631 10,273 3,522
February 2020 59,870 9,134 2,694
March 2020 61,025 6,653 1,693
April 2020 115,845 2,424 596
May 2020 161,882 2,093 383
June 2020 231,322 3,031 1,380
July 2020 158,874 5,974 1,619
August 2020 146,518 4,112 1,965
September 2020 180,769 5,629 1,417
October 2020 175,345 10,031 8,381
November 2020 197,086 10,666 11,273
December 2020 205,579 9,453 4,433
January 2021 223,132 6,580 5,388
February 2021 190,285 6,573 2,007
March 2021 188,380 10,219 1,980
April 2021 159,679 12,641 1,823
May 2021 144,032 11,711 6,347
June 2021 158,606 9,939 2,537
July 2021 162,320 8,037 3,204
August 2021 93,479 8,438 2,477
September 2021 104,652 9,317 2,309
October 2021 73,910 10,407 2,207
November 2021 79,500 11,252 2,652
December 2021 84,682 6,125 2,149
January 2022 86,960 6,681 2,180
February 2022 82,369 6,405 2,869
March 2022 97,714 8,093 2,951
April 2022 91,085 8,537 4,016
May 2022 70,674 10,166 3,143
June 2022 82,982 9,150 2,150
July 2022 67,393 9,077 2,375
August 2022 68,433 10,222 3,004
September 2022 72,358 10,821 2,896
October 2022 74,041 11,959 3,064
November 2022 93,771 13,873 4,426
December 2022 65,879 8,793 3,120
January 2023 67,678 10,949 3,460
February 2023 64,479 12,045 3,927
March 2023 82,690 10,892 6,437
April 2023 69,130 8,885 4,100
May 2023 75,632 9,370 4,412
June 2023 82,690 8,525 12,861
July 2023 75,273 8,535 9,439
August 2023 82,591 9,036 12,759
September 2023 71,893 8,170 8,210
October 2023 68,843 10,785 14,644
November 2023 72,188 11,216 16,877
December 2023 49,048 7,820 24,471
January 2024 68,659 10,785 12,377
February 2024 71,830 10,266 12,770
March 2024 67,475 11,090 15,454

Methodology and quality note

Inclusion and exclusion criteria.

Recruitment is only recorded in the central portfolio management system if it meets the definitions of recruitment as outlined in the NIHR Clinical Research Network Recruitment Policy Document . For example, recruitment data is not collected for studies classified as non-consenting. These are exceptional circumstances where no form of consent can be obtained.

Only research activity with a status of confirmed and provisional is included. Research activity which is indicated as inaccurate (queried) is excluded from figures.

Confirmed status includes manually uploaded data or data from the local portfolio management system that has been confirmed as accurate by the Chief Investigator, their representative or a representative of the commercial sponsor or contract research organisation.

Provisional status is given to data from the local portfolio management system that has yet to be confirmed or that requires reconfirmation following queries.

Data source and coverage

The data has been sourced from the central portfolio management system. The central portfolio management system consists of all studies held on the Clinical Research Network portfolio, as well as some studies held on the network portfolios of Northern Ireland, Scotland and Wales.

The data is recorded monthly from April 2014 to March 2024. For the purpose of the UK Clinical Research Delivery Key Performance Indicators Report, monthly snapshots are taken according to a data cut schedule. The snapshot used in this publication was taken on 21 June 2024.

Data caveats

The data does not show recruitment to the whole clinical research system, only recruitment to studies on the central portfolio management system. Therefore, this data will be an underestimate of total clinical research recruitment in the UK.

The data is not exclusive to NHS sites and includes recruitment to non- NHS sites.

While data covers the whole of the UK, data relating to studies led by devolved administrations may be incomplete. This is because they are only included in the central portfolio management system when added by the devolved administrations.

The quality of the data is dependent on the accuracy and timeliness of recruitment data being recorded in the system.

There is often a lag between activity taking place at a study site and data being recorded in the system. This means that previous months’ data may be updated retrospectively. Changes in recruitment for individual recent months should not be taken as an indication of overall trend in recruitment.

From the 2023 to 2024 financial year onwards, the data for the commercial collaborative category will be more robust. This is due to data quality improvements linked to reporting this category separately, instead of classifying activities as purely commercial or non-commercial. Not all studies will have been reviewed retrospectively and re-classified where necessary, particularly studies that had already closed.

Using the data

The data cannot be used for:

  • measuring overall UK study recruitment as the data is only on studies on the central portfolio management system (not activity of the whole research environment). It is unknown what proportion of studies in the UK at that particular point in time are contributing to the figures
  • comparing (portfolio) recruitment over the time. The network as an organisation and its remit has changed significantly over time. Caution should be taken with time comparisons as portfolio and associated data collection may have changed
  • UK-wide data within the central portfolio management system across years. It has only been in recent years that UK-wide data for commercial (for example) has been collected into the central portfolio management system

The portfolio balance between observational studies and interventional ones will influence the numbers. For example, if at a particular time, the portfolio has some large sample size observational studies, this will affect recruitment numbers and make it difficult to compare to other years.

Recruitment from private sites may not be collected and so may not be included in the data.

If you have any questions in relation to these statistics, please contact [email protected] .

Is this page useful?

  • Yes this page is useful
  • No this page is not useful

Help us improve GOV.UK

Don’t include personal or financial information like your National Insurance number or credit card details.

To help us improve GOV.UK, we’d like to know more about your visit today. Please fill in this survey (opens in a new tab) .

New Study Reveals Majority of Pediatric Long COVID Patients Develop a Dizziness Known as Orthostatic Intolerance

  • Faculty+Staff
  • Make an Appointment
  • Access Epic CareLink
  • Access the Network
  • Get Directions
  • Request Medical Records
  • Find a Specialist
  • Find Departments
  • Search Jobs
  • Donate or Volunteer
  • Refer a Patient
  • Pay My Bill

Frequently Searched Terms and Topics

  • Resources for Patients & Families

Faculty & Staff

Centers & programs.

  • , Directions

General Information

BALTIMORE, September 16, 2024 — A new study from Kennedy Krieger Institute shows that the majority of children diagnosed with long COVID are likely to experience orthostatic intolerance (OI), a condition that causes the body to struggle with regulating blood pressure and heart rate when standing up. As a result, children often feel dizzy, lightheaded, fatigued and may experience “brain fog” or cognitive difficulties.

Orthostatic intolerance includes disorders such as postural orthostatic tachycardia syndrome (POTS) and orthostatic hypotension. Among the patients studied, dizziness (67%), fatigue (25%), and body pain (23%) are found to be common symptoms, which worsen when standing and improve when lying down. These symptoms can make it difficult to perform everyday activities like exercising, attending school, and socializing, severely impacting their quality of life.

This new research, conducted at Kennedy Krieger’s Pediatric Post-COVID-19 Rehabilitation Clinic , reveals that OI is prevalent among children dealing with the long-term effects of the COVID-19 virus. Researchers found 71% of the patients studied at the Institute experienced at least one orthostatic condition.

Dr. Laura Malone, Director of the Pediatric Post-COVID-19 Rehabilitation Clinic at Kennedy Krieger, is the senior author of this study. She explains these findings show the importance of screening pediatric long COVID patients for OI, as many have symptoms that could be missed without proper testing.

“Research proves this condition is common. Sixty-five out of the 92 children we studied were battling side effects like dizziness and fatigue from OI” Dr. Malone said. “Early diagnosis and treatment will give them the chance to recover and return to their normal routines.”

The study findings call for a multi-faceted approach to treatment. Research emphasizes the importance of increased salt and fluid intake, exercise training, and physical therapy. Medications to manage heart rate and blood pressure are also being explored. However, Dr. Malone says more research is needed to fully understand OI.

“Our goal is to provide more targeted and tailored treatments that will help these children,” Dr. Malone said. “This study is just the beginning, and we hope it will spark further research to support for children with long COVID.”

Click here to discover more about Kennedy Krieger’s research on long COVID and its nationally recognized clinic in Baltimore.

About Kennedy Krieger Institute:  Kennedy Krieger Institute, an internationally known nonprofit organization located in the greater Baltimore-Washington, D.C., region, transforms the lives of more than 27,000 individuals a year through inpatient and outpatient medical, behavioral health and wellness therapies; home and community services; school-based programs; training and education for professionals; and advocacy. Kennedy Krieger provides a wide range of services for children, adolescents and adults with diseases, disorders and injuries that impact the nervous system, ranging from mild to severe. The Institute is home to a team of investigators who contribute to the understanding of how disorders develop while at the same time pioneering new interventions and methods of early diagnosis, prevention and treatment. Visit  KennedyKrieger.org  for more information about Kennedy Krieger. 

Touching Lives & Making a Difference Articles, Blogs, Stories and More

Tatyana McFadden participating in wheelchair racing at the Paralympics.

Four Former Kennedy Krieger Athletes Achieve Success at Paralympics; Tatyana McFadden Sets Para Track Medal Record

A boy with a muscular dystrophy sits on the floor next to a woman while reading a book.

Muscular Dystrophy

A group of Kennedy Krieger staff members smile while wearing purple Team Kennedy Krieger t-shirts.

Forbes Names Kennedy Krieger Institute Among Top Ten Maryland Employers

Gwena Herman stands next to her husband Gerry while holding the Jan Elix Award.

Gwena Herman, Co-Director of Bennett Blazers, Receives Award for Her Work to Expand Youth Adaptive Sports Opportunities

A woman and a man in business attire plant a tree, with a group of people standing behind them.

Letter From Our President

A young girl smiles with her arms outstretched. She has faint port wine-colored birthmarks across her forehead. A sign with the words “Kennedy Krieger” is in the background.

All That She Can Be

A young man in athletic clothing poses for the camera, sitting in a wheelchair.

Team Player

A woman and a man share a dance in a gym setting. The man is in a harness that is attached to the ceiling and holding him up.

Unparalleled Movement

Two latex-gloved hands operate a microscope.

A Life-Changing Pursuit

A woman sits at a table, holding a pencil. Across the table are a mother and her young daughter. All three are smiling.

Personalized Diagnosis

A group of nine people, mostly men and mostly wearing bright yellow construction vests and helmets, pose for the camera.

Powering a Partnership

A teacher and a young boy high-five each other while playing with Lego bricks.

CARD Becomes CASSI

Maureen van Stone headshot.

News and Awards

A large group of people, some wearing teal T-shirts and some wearing red T-shirts, pose for the camera. Some hold up purple signs that say “Team Kennedy Krieger.”

Upcoming Events

Amy Solomon headshot

  • Share full article

Advertisement

Supported by

The Big City Is Vibrant. Birds There Might Be Getting Less So.

Recent studies show that certain feather pigments can help neutralize toxic pollution. It means darker, duller birds could have a survival advantage.

A close-up of two small birds held gently in a human hand. One bird has a very pale yellow breast, the other a bright yellow breast.

By Marta Zaraska

Some popular city dwellers appear to be losing their colorful allure, and not just the dirty birds.

According to a study published this summer in the journal Landscape and Planning that looked at 547 bird species in China, birds that live in cities are duller and darker on average than their rural counterparts. A similar conclusion emerged from an analysis of 59 studies published in March in Biological Reviews : Urban feathers are not as bright, with yellow, orange and red feathers affected most.

Often, city birds are covered in grime. But even if you could give them all a good bird bath, chances are their brightness still wouldn’t match that of their country cousins. That’s because of the way pollution, and heavy metals in particular, can interact with melanin, a pigment that makes feathers black, brown and gray.

Studies show that melanin can bind to heavy metals like lead. That means toxic chemicals may be more likely to be stored in plumage in darker and duller birds. And that, in turn, can confer a survival advantage.

“The more melanin you accumulate, the better able you are to sequester these harmful compounds in feathers,” said Kevin McGraw, a biologist at Michigan State University who studies the colors of animals to understand the costs, benefits and evolution of visual signals.

Urban pollution affects avian colors in other ways, too. Research shows that, compared with rural plants, city trees store fewer natural pigments called carotenoids. And pollution is the likely reason. Carotenoids are produced by plants, algae and fungi. They’re what makes red peppers red and carrots orange.

When leaves are low on these pigments, the effects go up the food chain: Leaf-munching caterpillars become deficient in carotenoids, and so do caterpillar-munching birds.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Prevent plagiarism. Run a free check.

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved September 15, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

IMAGES

  1. Five Basic Types of Research Studies

    research study an

  2. The Importance of Studies: Definition and Methodology Explained

    research study an

  3. Essential Things to Do Before Starting Your Research Study

    research study an

  4. (PDF) WHAT IS A RESEARCH STUDY

    research study an

  5. 💐 How to write up research findings. How to write chapter 4 Research

    research study an

  6. 7 Steps Of Research Process

    research study an

VIDEO

  1. Research Setting or Study Area

  2. What is academic research? (2021)

  3. HOW TO READ and ANALYZE A RESEARCH STUDY

  4. What is Research || Scientific Meaning

  5. What is research

  6. Clinical Research Participation Explained

COMMENTS

  1. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  2. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  3. Understanding Research Study Designs

    Ranganathan P. Understanding Research Study Designs. Indian J Crit Care Med 2019;23 (Suppl 4):S305-S307. Keywords: Clinical trials as topic, Observational studies as topic, Research designs. We use a variety of research study designs in biomedical research. In this article, the main features of each of these designs are summarized. Go to:

  4. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  5. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  6. Research Design

    Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions. Introduction. Step 1. Step 2.

  7. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  8. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  9. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  10. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  11. Research 101: Understanding Research Studies

    The basis of a scientific research study follows a common pattern: Define the question. Gather information and resources. Form hypotheses. Perform an experiment and collect data. Analyze the data ...

  12. What is Research: Definition, Methods, Types & Examples

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  13. Research Methodology

    Experimental research is often used to study cause-and-effect relationships and to make predictions. Survey Research Methodology. This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

  14. 6 Basic Types of Research Studies (Plus Pros and Cons)

    Here are six common types of research studies, along with examples that help explain the advantages and disadvantages of each: 1. Meta-analysis. A meta-analysis study helps researchers compile the quantitative data available from previous studies. It's an observational study in which the researchers don't manipulate variables.

  15. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  16. Design a research study

    The design of a piece of research refers to the practical way in which the research was conducted according to a systematic attempt to generate evidence to answer the research question. The term "research methodology" is often used to mean something similar, however different writers use both terms in slightly different ways: some writers, for ...

  17. Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.

  18. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  19. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  20. ResearchGate

    Access 160+ million publications and connect with 25+ million researchers. Join for free and gain visibility by uploading your research.

  21. The human costs of the research-assessment culture

    The Research Council of Norway also runs subject-based assessments every decade, including institutional-level metrics and case studies, to broadly survey a field.

  22. Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with

    Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire ...

  23. In brief: What types of studies are there?

    There are various types of scientific studies such as experiments and comparative analyses, observational studies, surveys, or interviews. The choice of study type will mainly depend on the research question being asked. When making decisions, patients and doctors need reliable answers to a number of questions. Depending on the medical condition and patient's personal situation, the following ...

  24. White Protestants, Catholics prefer Trump; Harris ...

    Heading into the fall campaign for president, U.S. religious groups that traditionally have leaned Republican are backing former President Donald Trump by wide margins, while religious groups that traditionally have favored Democratic candidates are mostly supporting Vice President Kamala Harris.. The latest Pew Research Center survey, conducted Aug. 26-Sept. 2, 2024, finds that majorities of ...

  25. What Is Quantitative Research?

    Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...

  26. Case Study in Research Integrity: Alcohol and Harassment

    Unfortunately, over the past several years we have seen numerous instances where alcohol may have contributed to inappropriate behavior and sexual harassment in the context of scientific research. We are presenting a few case studies below, which are adapted in part from real situations where we worked in tandem with the recipient institutions ...

  27. Management information on recruitment to clinical research studies

    Table 2: recruitment to clinical research studies broken down by study type, 2014 to 2024. Recruitment month and year Non-commercial Commercial collaborative Commercial contract; April 2014:

  28. New Study Reveals Majority of Pediatric Long COVID Patients Develop a

    The study findings call for a multi-faceted approach to treatment. Research emphasizes the importance of increased salt and fluid intake, exercise training, and physical therapy. Medications to manage heart rate and blood pressure are also being explored. However, Dr. Malone says more research is needed to fully understand OI.

  29. Pollution May Affect the Color of City Birds, Research Shows

    Research shows that, compared with rural plants, city trees store fewer natural pigments called carotenoids. And pollution is the likely reason. Carotenoids are produced by plants, algae and fungi.

  30. Independent vs. Dependent Variables

    Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias. Example: Quasi-experimental design. You study whether gender identity affects neural responses to infant cries. Your independent variable is a subject variable, namely the gender identity of the participants.