15 Steps to Good Research

  • Define and articulate a research question (formulate a research hypothesis). How to Write a Thesis Statement (Indiana University)
  • Identify possible sources of information in many types and formats. Georgetown University Library's Research & Course Guides
  • Judge the scope of the project.
  • Reevaluate the research question based on the nature and extent of information available and the parameters of the research project.
  • Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites).
  • Plan the research project. Writing Anxiety (UNC-Chapel Hill) Strategies for Academic Writing (SUNY Empire State College)
  • Retrieve information using a variety of methods (draw on a repertoire of skills).
  • Refine the search strategy as necessary.
  • Write and organize useful notes and keep track of sources. Taking Notes from Research Reading (University of Toronto) Use a citation manager: Zotero or Refworks
  • Evaluate sources using appropriate criteria. Evaluating Internet Sources
  • Synthesize, analyze and integrate information sources and prior knowledge. Georgetown University Writing Center
  • Revise hypothesis as necessary.
  • Use information effectively for a specific purpose.
  • Understand such issues as plagiarism, ownership of information (implications of copyright to some extent), and costs of information. Georgetown University Honor Council Copyright Basics (Purdue University) How to Recognize Plagiarism: Tutorials and Tests from Indiana University
  • Cite properly and give credit for sources of ideas. MLA Bibliographic Form (7th edition, 2009) MLA Bibliographic Form (8th edition, 2016) Turabian Bibliographic Form: Footnote/Endnote Turabian Bibliographic Form: Parenthetical Reference Use a citation manager: Zotero or Refworks

Adapted from the Association of Colleges and Research Libraries "Objectives for Information Literacy Instruction" , which are more complete and include outcomes. See also the broader "Information Literacy Competency Standards for Higher Education."

Banner

The Research Process

  • What is the Research Process?

There are many ways to describe the process of researching a topic for a paper or a project.

This description of the research process consists of ten actions across five stages. This process is cyclical and creative, not linear. Continue to adjust your terms, tools, and questions throughout the process and move back and forth across stages and actions as you explore your topic and find out new information.

Understand your assignment and timeline, and think about and write down the questions you'll be asking while you do your research. You may be asked to turn in a topic proposal for class, and this stage helps you complete your proposal.

Brainstorm the concepts, topics, and phrases you'll use to search for source material, and think about and choose the databases, websites, or other places you'll search.

Explore and search in the databases or other places you've chosen while developing your plan. Look through other databases or sites as new questions arise. Collect more sources than are required for your paper or project. Evaluate and select your sources. Take your time in this stage, and search again for different sources, if needed.

Read your selected sources carefully, taking notes while you do so. Read critically. Answer your existing questions and come up with new questions. Search again, if needed, so you can fill any gaps in knowledge and satisfy your curiosity about your topic.

Create your product, whether it's a research paper, a poster, a presentation, or something else. Draft your citations, and check your product against your assignment requirements. Edit your draft, proofread, incorporate feedback and turn it in.

  • Next: Prepare >>
  • Last Updated: Sep 16, 2024 10:38 AM
  • URL: https://libguides.unomaha.edu/researchprocess

make a research

How To Write A Research Paper

Step-By-Step Tutorial With Examples + FREE Template

By: Derek Jansen (MBA) | Expert Reviewer: Dr Eunice Rautenbach | March 2024

For many students, crafting a strong research paper from scratch can feel like a daunting task – and rightly so! In this post, we’ll unpack what a research paper is, what it needs to do , and how to write one – in three easy steps. 🙂 

Overview: Writing A Research Paper

What (exactly) is a research paper.

  • How to write a research paper
  • Stage 1 : Topic & literature search
  • Stage 2 : Structure & outline
  • Stage 3 : Iterative writing
  • Key takeaways

Let’s start by asking the most important question, “ What is a research paper? ”.

Simply put, a research paper is a scholarly written work where the writer (that’s you!) answers a specific question (this is called a research question ) through evidence-based arguments . Evidence-based is the keyword here. In other words, a research paper is different from an essay or other writing assignments that draw from the writer’s personal opinions or experiences. With a research paper, it’s all about building your arguments based on evidence (we’ll talk more about that evidence a little later).

Now, it’s worth noting that there are many different types of research papers , including analytical papers (the type I just described), argumentative papers, and interpretative papers. Here, we’ll focus on analytical papers , as these are some of the most common – but if you’re keen to learn about other types of research papers, be sure to check out the rest of the blog .

With that basic foundation laid, let’s get down to business and look at how to write a research paper .

Research Paper Template

Overview: The 3-Stage Process

While there are, of course, many potential approaches you can take to write a research paper, there are typically three stages to the writing process. So, in this tutorial, we’ll present a straightforward three-step process that we use when working with students at Grad Coach.

These three steps are:

  • Finding a research topic and reviewing the existing literature
  • Developing a provisional structure and outline for your paper, and
  • Writing up your initial draft and then refining it iteratively

Let’s dig into each of these.

Need a helping hand?

make a research

Step 1: Find a topic and review the literature

As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question . More specifically, that’s called a research question , and it sets the direction of your entire paper. What’s important to understand though is that you’ll need to answer that research question with the help of high-quality sources – for example, journal articles, government reports, case studies, and so on. We’ll circle back to this in a minute.

The first stage of the research process is deciding on what your research question will be and then reviewing the existing literature (in other words, past studies and papers) to see what they say about that specific research question. In some cases, your professor may provide you with a predetermined research question (or set of questions). However, in many cases, you’ll need to find your own research question within a certain topic area.

Finding a strong research question hinges on identifying a meaningful research gap – in other words, an area that’s lacking in existing research. There’s a lot to unpack here, so if you wanna learn more, check out the plain-language explainer video below.

Once you’ve figured out which question (or questions) you’ll attempt to answer in your research paper, you’ll need to do a deep dive into the existing literature – this is called a “ literature search ”. Again, there are many ways to go about this, but your most likely starting point will be Google Scholar .

If you’re new to Google Scholar, think of it as Google for the academic world. You can start by simply entering a few different keywords that are relevant to your research question and it will then present a host of articles for you to review. What you want to pay close attention to here is the number of citations for each paper – the more citations a paper has, the more credible it is (generally speaking – there are some exceptions, of course).

how to use google scholar

Ideally, what you’re looking for are well-cited papers that are highly relevant to your topic. That said, keep in mind that citations are a cumulative metric , so older papers will often have more citations than newer papers – just because they’ve been around for longer. So, don’t fixate on this metric in isolation – relevance and recency are also very important.

Beyond Google Scholar, you’ll also definitely want to check out academic databases and aggregators such as Science Direct, PubMed, JStor and so on. These will often overlap with the results that you find in Google Scholar, but they can also reveal some hidden gems – so, be sure to check them out.

Once you’ve worked your way through all the literature, you’ll want to catalogue all this information in some sort of spreadsheet so that you can easily recall who said what, when and within what context. If you’d like, we’ve got a free literature spreadsheet that helps you do exactly that.

Don’t fixate on an article’s citation count in isolation - relevance (to your research question) and recency are also very important.

Step 2: Develop a structure and outline

With your research question pinned down and your literature digested and catalogued, it’s time to move on to planning your actual research paper .

It might sound obvious, but it’s really important to have some sort of rough outline in place before you start writing your paper. So often, we see students eagerly rushing into the writing phase, only to land up with a disjointed research paper that rambles on in multiple

Now, the secret here is to not get caught up in the fine details . Realistically, all you need at this stage is a bullet-point list that describes (in broad strokes) what you’ll discuss and in what order. It’s also useful to remember that you’re not glued to this outline – in all likelihood, you’ll chop and change some sections once you start writing, and that’s perfectly okay. What’s important is that you have some sort of roadmap in place from the start.

You need to have a rough outline in place before you start writing your paper - or you’ll end up with a disjointed research paper that rambles on.

At this stage you might be wondering, “ But how should I structure my research paper? ”. Well, there’s no one-size-fits-all solution here, but in general, a research paper will consist of a few relatively standardised components:

  • Introduction
  • Literature review
  • Methodology

Let’s take a look at each of these.

First up is the introduction section . As the name suggests, the purpose of the introduction is to set the scene for your research paper. There are usually (at least) four ingredients that go into this section – these are the background to the topic, the research problem and resultant research question , and the justification or rationale. If you’re interested, the video below unpacks the introduction section in more detail. 

The next section of your research paper will typically be your literature review . Remember all that literature you worked through earlier? Well, this is where you’ll present your interpretation of all that content . You’ll do this by writing about recent trends, developments, and arguments within the literature – but more specifically, those that are relevant to your research question . The literature review can oftentimes seem a little daunting, even to seasoned researchers, so be sure to check out our extensive collection of literature review content here .

With the introduction and lit review out of the way, the next section of your paper is the research methodology . In a nutshell, the methodology section should describe to your reader what you did (beyond just reviewing the existing literature) to answer your research question. For example, what data did you collect, how did you collect that data, how did you analyse that data and so on? For each choice, you’ll also need to justify why you chose to do it that way, and what the strengths and weaknesses of your approach were.

Now, it’s worth mentioning that for some research papers, this aspect of the project may be a lot simpler . For example, you may only need to draw on secondary sources (in other words, existing data sets). In some cases, you may just be asked to draw your conclusions from the literature search itself (in other words, there may be no data analysis at all). But, if you are required to collect and analyse data, you’ll need to pay a lot of attention to the methodology section. The video below provides an example of what the methodology section might look like.

By this stage of your paper, you will have explained what your research question is, what the existing literature has to say about that question, and how you analysed additional data to try to answer your question. So, the natural next step is to present your analysis of that data . This section is usually called the “results” or “analysis” section and this is where you’ll showcase your findings.

Depending on your school’s requirements, you may need to present and interpret the data in one section – or you might split the presentation and the interpretation into two sections. In the latter case, your “results” section will just describe the data, and the “discussion” is where you’ll interpret that data and explicitly link your analysis back to your research question. If you’re not sure which approach to take, check in with your professor or take a look at past papers to see what the norms are for your programme.

Alright – once you’ve presented and discussed your results, it’s time to wrap it up . This usually takes the form of the “ conclusion ” section. In the conclusion, you’ll need to highlight the key takeaways from your study and close the loop by explicitly answering your research question. Again, the exact requirements here will vary depending on your programme (and you may not even need a conclusion section at all) – so be sure to check with your professor if you’re unsure.

Step 3: Write and refine

Finally, it’s time to get writing. All too often though, students hit a brick wall right about here… So, how do you avoid this happening to you?

Well, there’s a lot to be said when it comes to writing a research paper (or any sort of academic piece), but we’ll share three practical tips to help you get started.

First and foremost , it’s essential to approach your writing as an iterative process. In other words, you need to start with a really messy first draft and then polish it over multiple rounds of editing. Don’t waste your time trying to write a perfect research paper in one go. Instead, take the pressure off yourself by adopting an iterative approach.

Secondly , it’s important to always lean towards critical writing , rather than descriptive writing. What does this mean? Well, at the simplest level, descriptive writing focuses on the “ what ”, while critical writing digs into the “ so what ” – in other words, the implications . If you’re not familiar with these two types of writing, don’t worry! You can find a plain-language explanation here.

Last but not least, you’ll need to get your referencing right. Specifically, you’ll need to provide credible, correctly formatted citations for the statements you make. We see students making referencing mistakes all the time and it costs them dearly. The good news is that you can easily avoid this by using a simple reference manager . If you don’t have one, check out our video about Mendeley, an easy (and free) reference management tool that you can start using today.

Recap: Key Takeaways

We’ve covered a lot of ground here. To recap, the three steps to writing a high-quality research paper are:

  • To choose a research question and review the literature
  • To plan your paper structure and draft an outline
  • To take an iterative approach to writing, focusing on critical writing and strong referencing

Remember, this is just a b ig-picture overview of the research paper development process and there’s a lot more nuance to unpack. So, be sure to grab a copy of our free research paper template to learn more about how to write a research paper.

A.LKARYOUNI

Can you help me with a full paper template for this Abstract:

Background: Energy and sports drinks have gained popularity among diverse demographic groups, including adolescents, athletes, workers, and college students. While often used interchangeably, these beverages serve distinct purposes, with energy drinks aiming to boost energy and cognitive performance, and sports drinks designed to prevent dehydration and replenish electrolytes and carbohydrates lost during physical exertion.

Objective: To assess the nutritional quality of energy and sports drinks in Egypt.

Material and Methods: A cross-sectional study assessed the nutrient contents, including energy, sugar, electrolytes, vitamins, and caffeine, of sports and energy drinks available in major supermarkets in Cairo, Alexandria, and Giza, Egypt. Data collection involved photographing all relevant product labels and recording nutritional information. Descriptive statistics and appropriate statistical tests were employed to analyze and compare the nutritional values of energy and sports drinks.

Results: The study analyzed 38 sports drinks and 42 energy drinks. Sports drinks were significantly more expensive than energy drinks, with higher net content and elevated magnesium, potassium, and vitamin C. Energy drinks contained higher concentrations of caffeine, sugars, and vitamins B2, B3, and B6.

Conclusion: Significant nutritional differences exist between sports and energy drinks, reflecting their intended uses. However, these beverages’ high sugar content and calorie loads raise health concerns. Proper labeling, public awareness, and responsible marketing are essential to guide safe consumption practices in Egypt.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

make a research

  • Print Friendly

The Sheridan Libraries

  • Writing Resources
  • Sheridan Libraries
  • Develop a Research Topic or Question
  • How to Access Full Text
  • Google Scholar and Google Books
  • Evaluate Your Sources This link opens in a new window
  • Citing Sources This link opens in a new window
  • Avoiding Plagiarism
  • Books to Help You Write
  • Copyright This link opens in a new window
  • How To Read an Article
  • Literature Reviews
  • RefWorks Guide and Help This link opens in a new window
  • Other Guides to Help You

Before You Start

  • What do you already know about your subject? Keep a list of key words, names, and events.
  • How long has your subject existed? Is it a relatively new concept with a lot published about it, or new and undiscovered?
  • What discipline does your topic fall into? A discipline is an area of study or branch of learning (e.g., History, Biology). Each has its own best starting points.
  • How are you viewing the topic? Think about what you are planning to emphasize: politics, history, or another aspect?
  • What's the Timing? How long do you have to do this project? How long does it need to be?

Three Approaches for Developing a Topic

Approach #1: List Key Words of Interest Make lists of concepts and topics you find interesting, as well as lists of related words and synonyms. These can serve as your key search terms.

school choice discrimination synonyms?
educational choice educational access related terms?
open enrollment access to education alternate phrases?
educational vouchers social justice

key names, events?

Approach #2: Draw It Out Sketch out the relationships between ideas.

Approach #3: Define it in Sentences Write an explanation of your topic, justifying it on multiple levels:

I am studying... conformity in Woolf’s Orlando in order to find out... how Orlando’s efforts to conform and fit in change over time in order to help my reader understand... the role maturity and self-awareness play in the character’s efforts to conform to societal norms.

Adapted from The Craft of Research (2003) by Wayne C. Booth, Gregory G. Colomb, and Joseph M. Williams. (We also own the latest edition, 8th edition, 2016 , in print.)

  • << Previous: HOME - The Research Process
  • Next: How to Access Full Text >>
  • Last Updated: Sep 13, 2024 12:06 PM
  • URL: https://guides.library.jhu.edu/writing

How to Do Research: A Step-By-Step Guide: Get Started

  • Get Started
  • 1a. Select a Topic
  • 1b. Develop Research Questions
  • 1c. Identify Keywords
  • 1d. Find Background Information
  • 1e. Refine a Topic
  • 2a. Search Strategies
  • 2d. Articles
  • 2e. Videos & Images
  • 2f. Databases
  • 2g. Websites
  • 2h. Grey Literature
  • 2i. Open Access Materials
  • 3a. Evaluate Sources
  • 3b. Primary vs. Secondary
  • 3c. Types of Periodicals
  • 4a. Take Notes
  • 4b. Outline the Paper
  • 4c. Incorporate Source Material
  • 5a. Avoid Plagiarism
  • 5b. Zotero & MyBib
  • 5c. MLA Formatting
  • 5d. MLA Citation Examples
  • 5e. APA Formatting
  • 5f. APA Citation Examples
  • 5g. Annotated Bibliographies

Related Guides

  • Elmira College Writing Center Get one-on-one assistance for all types of writing.

Recommended Websites

  • Purdue University's Online Writing Lab (OWL)

Research Process Overview

Step 1.  Develop a topic Select a Topic | Develop Research Questions | Identify Keywords | Find Background Information | Refine a Topic

Step 2. Locate information Search Strategies | Books | eBooks | Articles  | Videos & Images | Databases | Websites | Grey Literature

Step 3. Evaluate and analyze information Evaluate Sources | Primary vs Secondary | Types of Periodicals

Step 4. Write, organize, and communicate information Take Notes | Outline the Paper | Incorporate Source Material

Step 5. Cite sources Avoid Plagiarism | Zotero & MyBib | MLA | APA | Chicago Style | Annotated Bibliographies

For research help,  use one of the following options:

Ask the GTL

GTL Phone

  • Next: Step 1: Develop a Topic >>
  • Last Updated: Aug 13, 2024 3:10 PM
  • URL: https://libguides.elmira.edu/research

make a research

Princeton Correspondents on Undergraduate Research

How to Make a Successful Research Presentation

Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for  GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor’s standpoint. I’ve presented my own research before, but helping others present theirs taught me a bit more about the process. Here are some tips I learned that may help you with your next research presentation:

More is more

In general, your presentation will always benefit from more practice, more feedback, and more revision. By practicing in front of friends, you can get comfortable with presenting your work while receiving feedback. It is hard to know how to revise your presentation if you never practice. If you are presenting to a general audience, getting feedback from someone outside of your discipline is crucial. Terms and ideas that seem intuitive to you may be completely foreign to someone else, and your well-crafted presentation could fall flat.

Less is more

Limit the scope of your presentation, the number of slides, and the text on each slide. In my experience, text works well for organizing slides, orienting the audience to key terms, and annotating important figures–not for explaining complex ideas. Having fewer slides is usually better as well. In general, about one slide per minute of presentation is an appropriate budget. Too many slides is usually a sign that your topic is too broad.

make a research

Limit the scope of your presentation

Don’t present your paper. Presentations are usually around 10 min long. You will not have time to explain all of the research you did in a semester (or a year!) in such a short span of time. Instead, focus on the highlight(s). Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

You will not have time to explain all of the research you did. Instead, focus on the highlights. Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

Craft a compelling research narrative

After identifying the focused research question, walk your audience through your research as if it were a story. Presentations with strong narrative arcs are clear, captivating, and compelling.

  • Introduction (exposition — rising action)

Orient the audience and draw them in by demonstrating the relevance and importance of your research story with strong global motive. Provide them with the necessary vocabulary and background knowledge to understand the plot of your story. Introduce the key studies (characters) relevant in your story and build tension and conflict with scholarly and data motive. By the end of your introduction, your audience should clearly understand your research question and be dying to know how you resolve the tension built through motive.

make a research

  • Methods (rising action)

The methods section should transition smoothly and logically from the introduction. Beware of presenting your methods in a boring, arc-killing, ‘this is what I did.’ Focus on the details that set your story apart from the stories other people have already told. Keep the audience interested by clearly motivating your decisions based on your original research question or the tension built in your introduction.

  • Results (climax)

Less is usually more here. Only present results which are clearly related to the focused research question you are presenting. Make sure you explain the results clearly so that your audience understands what your research found. This is the peak of tension in your narrative arc, so don’t undercut it by quickly clicking through to your discussion.

  • Discussion (falling action)

By now your audience should be dying for a satisfying resolution. Here is where you contextualize your results and begin resolving the tension between past research. Be thorough. If you have too many conflicts left unresolved, or you don’t have enough time to present all of the resolutions, you probably need to further narrow the scope of your presentation.

  • Conclusion (denouement)

Return back to your initial research question and motive, resolving any final conflicts and tying up loose ends. Leave the audience with a clear resolution of your focus research question, and use unresolved tension to set up potential sequels (i.e. further research).

Use your medium to enhance the narrative

Visual presentations should be dominated by clear, intentional graphics. Subtle animation in key moments (usually during the results or discussion) can add drama to the narrative arc and make conflict resolutions more satisfying. You are narrating a story written in images, videos, cartoons, and graphs. While your paper is mostly text, with graphics to highlight crucial points, your slides should be the opposite. Adapting to the new medium may require you to create or acquire far more graphics than you included in your paper, but it is necessary to create an engaging presentation.

The most important thing you can do for your presentation is to practice and revise. Bother your friends, your roommates, TAs–anybody who will sit down and listen to your work. Beyond that, think about presentations you have found compelling and try to incorporate some of those elements into your own. Remember you want your work to be comprehensible; you aren’t creating experts in 10 minutes. Above all, try to stay passionate about what you did and why. You put the time in, so show your audience that it’s worth it.

For more insight into research presentations, check out these past PCUR posts written by Emma and Ellie .

— Alec Getraer, Natural Sciences Correspondent

Share this:

  • Share on Tumblr

make a research

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing
  • Research Papers

How to Write a Research Paper

Last Updated: February 18, 2024 Approved

This article was co-authored by Chris Hadley, PhD . Chris Hadley, PhD is part of the wikiHow team and works on content strategy and data and analytics. Chris Hadley earned his PhD in Cognitive Psychology from UCLA in 2006. Chris' academic research has been published in numerous scientific journals. There are 14 references cited in this article, which can be found at the bottom of the page. wikiHow marks an article as reader-approved once it receives enough positive feedback. This article has 45 testimonials from our readers, earning it our reader-approved status. This article has been viewed 4,200,022 times.

Whether you’re in a history, literature, or science class, you’ll probably have to write a research paper at some point. It may seem daunting when you’re just starting out, but staying organized and budgeting your time can make the process a breeze. Research your topic, find reliable sources, and come up with a working thesis. Then create an outline and start drafting your paper. Be sure to leave plenty of time to make revisions, as editing is essential if you want to hand in your best work!

Sample Research Papers and Outlines

make a research

Researching Your Topic

Step 1 Focus your research on a narrow topic.

  • For instance, you might start with a general subject, like British decorative arts. Then, as you read, you home in on transferware and pottery. Ultimately, you focus on 1 potter in the 1780s who invented a way to mass-produce patterned tableware.

Tip: If you need to analyze a piece of literature, your task is to pull the work apart into literary elements and explain how the author uses those parts to make their point.

Step 2 Search for credible sources online and at a library.

  • Authoritative, credible sources include scholarly articles (especially those other authors reference), government websites, scientific studies, and reputable news bureaus. Additionally, check your sources' dates, and make sure the information you gather is up to date.
  • Evaluate how other scholars have approached your topic. Identify authoritative sources or works that are accepted as the most important accounts of the subject matter. Additionally, look for debates among scholars, and ask yourself who presents the strongest evidence for their case. [3] X Trustworthy Source Purdue Online Writing Lab Trusted resource for writing and citation guidelines Go to source
  • You’ll most likely need to include a bibliography or works cited page, so keep your sources organized. List your sources, format them according to your assigned style guide (such as MLA or Chicago ), and write 2 or 3 summary sentences below each one. [4] X Research source

Step 3 Come up with a preliminary thesis.

  • Imagine you’re a lawyer in a trial and are presenting a case to a jury. Think of your readers as the jurors; your opening statement is your thesis and you’ll present evidence to the jury to make your case.
  • A thesis should be specific rather than vague, such as: “Josiah Spode’s improved formula for bone china enabled the mass production of transfer-printed wares, which expanded the global market for British pottery.”

Drafting Your Essay

Step 1 Create an outline

  • Your outline is your paper’s skeleton. After making the outline, all you’ll need to do is fill in the details.
  • For easy reference, include your sources where they fit into your outline, like this: III. Spode vs. Wedgewood on Mass Production A. Spode: Perfected chemical formula with aims for fast production and distribution (Travis, 2002, 43) B. Wedgewood: Courted high-priced luxury market; lower emphasis on mass production (Himmelweit, 2001, 71) C. Therefore: Wedgewood, unlike Spode, delayed the expansion of the pottery market.

Step 2 Present your thesis...

  • For instance, your opening line could be, “Overlooked in the present, manufacturers of British pottery in the eighteenth and nineteenth centuries played crucial roles in England’s Industrial Revolution.”
  • After presenting your thesis, lay out your evidence, like this: “An examination of Spode’s innovative production and distribution techniques will demonstrate the importance of his contributions to the industry and Industrial Revolution at large.”

Tip: Some people prefer to write the introduction first and use it to structure the rest of the paper. However, others like to write the body, then fill in the introduction. Do whichever seems natural to you. If you write the intro first, keep in mind you can tweak it later to reflect your finished paper’s layout.

Step 3 Build your argument in the body paragraphs.

  • After setting the context, you'd include a section on Josiah Spode’s company and what he did to make pottery easier to manufacture and distribute.
  • Next, discuss how targeting middle class consumers increased demand and expanded the pottery industry globally.
  • Then, you could explain how Spode differed from competitors like Wedgewood, who continued to court aristocratic consumers instead of expanding the market to the middle class.
  • The right number of sections or paragraphs depends on your assignment. In general, shoot for 3 to 5, but check your prompt for your assigned length.

Step 4 Address a counterargument to strengthen your case.

  • If you bring up a counterargument, make sure it’s a strong claim that’s worth entertaining instead of ones that's weak and easily dismissed.
  • Suppose, for instance, you’re arguing for the benefits of adding fluoride to toothpaste and city water. You could bring up a study that suggested fluoride produced harmful health effects, then explain how its testing methods were flawed.

Step 5 Summarize your argument...

  • Sum up your argument, but don’t simply rewrite your introduction using slightly different wording. To make your conclusion more memorable, you could also connect your thesis to a broader topic or theme to make it more relatable to your reader.
  • For example, if you’ve discussed the role of nationalism in World War I, you could conclude by mentioning nationalism’s reemergence in contemporary foreign affairs.

Revising Your Paper

Step 1 Ensure your paper...

  • This is also a great opportunity to make sure your paper fulfills the parameters of the assignment and answers the prompt!
  • It’s a good idea to put your essay aside for a few hours (or overnight, if you have time). That way, you can start editing it with fresh eyes.

Tip: Try to give yourself at least 2 or 3 days to revise your paper. It may be tempting to simply give your paper a quick read and use the spell-checker to make edits. However, revising your paper properly is more in-depth.

Step 2 Cut out unnecessary words and other fluff.

  • The passive voice, such as “The door was opened by me,” feels hesitant and wordy. On the other hand, the active voice, or “I opened the door,” feels strong and concise.
  • Each word in your paper should do a specific job. Try to avoid including extra words just to fill up blank space on a page or sound fancy.
  • For instance, “The author uses pathos to appeal to readers’ emotions” is better than “The author utilizes pathos to make an appeal to the emotional core of those who read the passage.”

Step 3 Proofread

  • Read your essay out loud to help ensure you catch every error. As you read, check for flow as well and, if necessary, tweak any spots that sound awkward. [13] X Trustworthy Source University of North Carolina Writing Center UNC's on-campus and online instructional service that provides assistance to students, faculty, and others during the writing process Go to source

Step 4 Ask a friend, relative, or teacher to read your work before you submit it.

  • It’s wise to get feedback from one person who’s familiar with your topic and another who’s not. The person who knows about the topic can help ensure you’ve nailed all the details. The person who’s unfamiliar with the topic can help make sure your writing is clear and easy to understand.

Community Q&A

Community Answer

  • Remember that your topic and thesis should be as specific as possible. Thanks Helpful 5 Not Helpful 0
  • Researching, outlining, drafting, and revising are all important steps, so do your best to budget your time wisely. Try to avoid waiting until the last minute to write your paper. Thanks Helpful 6 Not Helpful 2

make a research

You Might Also Like

Get Started With a Research Project

  • ↑ https://writing.wisc.edu/handbook/assignments/planresearchpaper/
  • ↑ https://writingcenter.unc.edu/tips-and-tools/evaluating-print-sources/
  • ↑ https://owl.purdue.edu/owl/research_and_citation/conducting_research/research_overview/index.html
  • ↑ https://poorvucenter.yale.edu/writing/graduate-writing-lab/writing-through-graduate-school/working-sources
  • ↑ https://opentextbc.ca/writingforsuccess/chapter/chapter-5-putting-the-pieces-together-with-a-thesis-statement/
  • ↑ https://owl.purdue.edu/owl/general_writing/the_writing_process/developing_an_outline/index.html
  • ↑ https://writingcenter.unc.edu/tips-and-tools/introductions/
  • ↑ https://academicguides.waldenu.edu/writingcenter/writingprocess/counterarguments
  • ↑ https://writingcenter.fas.harvard.edu/pages/ending-essay-conclusions
  • ↑ https://writingcenter.unc.edu/tips-and-tools/revising-drafts/
  • ↑ https://academicguides.waldenu.edu/formandstyle/writing/scholarlyvoice/activepassive
  • ↑ https://writingcenter.unc.edu/tips-and-tools/editing-and-proofreading/
  • ↑ https://writingcenter.unc.edu/tips-and-tools/reading-aloud/
  • ↑ https://owl.purdue.edu/owl/general_writing/the_writing_process/proofreading/index.html

About This Article

Chris Hadley, PhD

To write a research paper, start by researching your topic at the library, online, or using an academic database. As you conduct your research and take notes, zero in on a specific topic that you want to write about and create a 1-2 sentence thesis to state the focus of your paper. Then, create an outline that includes an introduction, 3 to 5 body paragraphs to present your arguments, and a conclusion to sum up your main points. Once you have your paper's structure organized, draft your paragraphs, focusing on 1 argument per paragraph. Use the information you found through your research to back up your claims and prove your thesis statement. Finally, proofread and revise your content until it's polished and ready to submit. For more information on researching and citing sources, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Private And Discrete

Private And Discrete

Aug 2, 2020

Did this article help you?

Private And Discrete

Jan 3, 2018

Anonymous

Oct 29, 2016

Maronicha Lyles

Maronicha Lyles

Jul 24, 2016

Maxwell Ansah

Maxwell Ansah

Nov 22, 2019

Do I Have a Dirty Mind Quiz

Featured Articles

Enjoy Your Preteen Years

Trending Articles

The Office Trivia Quiz

Watch Articles

Make French Fries

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

make a research

College Info Geek

How to Do Research in 7 Simple Steps

make a research

C.I.G. is supported in part by its readers. If you buy through our links, we may earn an affiliate commission. Read more here.

make a research

It’s 2 am, and you’re on your fifth cup of coffee (or was it your sixth?). You’re crouched at a table in some dark corner of the library surrounded by fifteen open books. Equally as many tabs are open on your laptop, and you still haven’t written a word of the paper that’s due in 7 hours.

Many things can explain how you got to this point, including procrastination , poor organization , and a messy schedule .

Very often, however, the problem is a lack of research skills .

And it’s not your fault. High school does a poor job of teaching you how to do research, and most college classes do little better. It feels like you’re expected to figure it out through trial and error.

I think we can do better than that, however. In this guide, I’m going to show you the 7-step process for researching everything from a 10-page term paper to a final presentation. Not only will you learn how to do better research; you’ll also learn how to research more efficiently.

What Is Research?

Before we go any further, what  is  research?

At its core, research is an attempt to answer a question. This could be anything from “How can we reduce infant mortality rates?” to “Why does salt make food taste good?”

To answer your question, you consult books, academic papers, newspaper articles, historical records, or anything else that could be helpful. The broad term for these things is “sources.”

And, usually, once you’ve done the research, you present or summarize it in some way. In many cases, this means writing an essay or another type of scholarly paper, but it could also mean giving a presentation or even creating a YouTube video.

Even if you have no interest in academia, research is an extremely useful skill to learn. When you know how to do research, it’s much easier to improve your life and work more effectively . Instead of having to ask someone every time you have a question, research will help you solve problems yourself (and help others in turn).

Note:  Research can also mean conducting surveys, performing experiments, or going on archaeological digs. While these activities are crucial for advancing human knowledge, I won’t be discussing them here. This article focuses on the research you can do with only a library and an internet connection.

The 7 Steps of the Research Process

Research can feel overwhelming, but it’s more manageable when you break it down into steps. In my experience, the research process has seven main steps:

  • Find a topic
  • Refine your topic
  • Find key sources
  • Take notes on your sources
  • Create your paper or presentation
  • Do additional research as necessary
  • Cite your sources

Let’s look at each of these steps in more detail.

1. Find a Topic

If you don’t have a topic, your research will be undirected and inefficient. You’ll spend hours reading dozens of sources, all because you didn’t take a few minutes to develop a topic.

How do you come up with a topic? My number one suggestion is to create a mind map.

A mind map is a visual way to generate ideas. Here’s how it works:

  • Get a piece of paper and a pen. Make sure the paper isn’t too small — you want lots of room for your ideas.
  • Draw an oval in the center of the paper.
  • Inside that oval, write a super vague topic. Start with whatever your professor has assigned you.
  • Draw lines from the oval towards the edges of the paper.
  • Draw smaller ovals connected to each of these lines.
  • Inside the smaller ovals, write more specific ideas/topics related to the central one.
  • Repeat until you’ve found 3-5 topic ideas.

When I write it out step by step, it sounds kind of strange. But trust me, it works . Anytime I’m stuck on a writing assignment, this method is my go-to. It’s basically magic.

To see what mind mapping looks like in practice, check out this clip:

Want to create a digital mind map like the one Thomas uses in the video? Check out Coggle .

2. Refine Your Topic

Okay, so now you have a list of 3-5 topics. They’re all still pretty general, and you need to narrow them down to one topic that you can research in depth.

To do this, spend 15 minutes doing some general research on each topic. Specifically, take each topic and plug it into your library’s catalog and database search tools.

The details of this process will vary from library to library. This is where consulting a librarian can be super helpful. They can show you how to use the tools I mentioned, as well as point you to some you probably don’t know about.

Furthermore, I suggest you ask your professor for recommendations. In some cases, they may even have created a resource page specifically for your assignment.

Once you’ve found out where to search, type in your topic. I like to use a mixture of the library catalog, a general academic database like EBSCO Host , and a search on Google Scholar .

google-scholar-screenshot

What exactly are you trying to find? Basically, you’re trying to find a topic with a sufficient quantity and variety of sources.

Ideally, you want something with both journal articles and books, as this demonstrates that lots of scholars are seriously engaging with the topic.

Of course, in some cases (if the topic is very cutting edge, for example), you may be only able to find journal articles. That’s fine, so long as there are enough perspectives available.

Using this technique, you’ll be able to quickly eliminate some topics. Be ruthless. If you’re not finding anything after 15 minutes, move on. And don’t get attached to a topic.

Tip: If you find two topics with equal numbers of sources available, ask your professor to help you break the tie. They can give you insight into which topic is super common (and thus difficult to write about originally), as well as which they find more interesting.

Now that you have your topic, it’s time to narrow down your sources.

3. Find Key Sources

If you’ve picked a good topic, then you probably have lots of sources to work with. This is both a blessing and a curse. A variety of sources shows that there’s something worth saying about your topic, and it also gives you plenty of material to cite.

But this abundance can quickly turn into a nightmare in which you spend hours reading dense, mind-numbing material without getting any closer to actually producing a paper.

How do you keep this from happening? Choose 3–5  key sources and focus on them intently. Sure, you may end up needing more sources, especially if this is a long paper or if the professor requires it. But if you start out trying to read 15 sources, you’re likely to get overwhelmed and frustrated.

Focusing on a few key sources is powerful because it:

  • Lets you engage deeply with each source.
  • Gives you a variety of perspectives.
  • Points you to further resources.
  • Keeps you focused.

4. Read and Take Notes

But what do you do with these sources, exactly? You need to read them the right way . Follow these steps to effectively read academic books and articles:

Go through the article and look at the section headings. If any words or terms jump out at you, make note of them. Also, glance at the beginning sentences of each section and paragraph to get an overall idea of the author’s argument.

The goal here isn’t to comprehend deeply, but to prime your mind for effective reading .

Write down any questions you have after skimming the article, as well as any general questions you hope the article can answer. Always keep your topic in mind.

Read Actively

Now, start reading. But don’t just passively go through the information like you’re scrolling through Tumblr. Read with a pen or pencil in hand , underlining any unfamiliar terms or interesting ideas.

Make notes in the margins about other sources or concepts that come to mind. If you’re reading a library book, you can make notes on a separate piece of paper.

Once you’ve finished reading, take a short break. Have a cup of tea or coffee. Go for a walk around the library. Stretch. Just get your mind away from the research for a moment without resorting to distracting, low-density fun .

Now come back to the article and look at the things you underlined or noted. Gather these notes and transfer them to a program like Evernote .

If you need to look up a term, do that, and then add that definition to your notes. Also, make note of any sources the author cites that look helpful.

But what if I’m reading a book?   Won’t this take forever?  No, because you’re not going to read the entire book.

For most research you’ll do in college, reading a whole academic book is overkill . Just skim the table of contents and the book itself to find chapters or sections that look relevant.

Then, read each of those in the same way you would read an article. Also, be sure to glance at the book’s bibliography, which is a goldmine for finding additional sources.

Note: The above method is a variation on the classic SQ3R method , adapted slightly since we’re not interested in taking notes from textbooks .

5. Create Your Paper or Presentation

“You can’t turn in raw research.”

Research is crucial to crafting a great paper or presentation, but it’s also a great way to procrastinate. I had classmates in college who would spend 8 hours researching a 5-page paper. That’s way too much!

At some point, you need to stop researching and start writing (or whatever method you’re using to present your research).

How do you decide when to stop researching? There’s no strict rule, but in general I wouldn’t spend more than 30 minutes per page of the final paper.

So if the final paper is supposed to be 10 pages, don’t spend more than 5 hours researching it.

6. Do Additional Research (As Necessary)

Once you’ve started writing the draft of your paper, you’ll probably find a few gaps. Maybe you realize that one scholar’s argument isn’t relevant to your paper, or that you need more information for a particular section. In this case, you are free to return to researching as necessary.

But again, beware the trap of procrastination masquerading as productivity! Only do as much additional research as you need to answer your question. Don’t get pulled into rabbit holes or dragged off on tangents. Get in there, do your research, and get back to writing .

To keep yourself focused, I suggest keeping a separate document or piece of paper nearby to note points that need additional research.

Every time you encounter such a point, make note of it in the document and then keep writing. Only stop when you can’t get any further without additional research.

It’s much better to get a full draft done first. Otherwise, you risk suffering a cognitive switching penalty , making it harder to regain your focus.

7. Cite Your Sources

Whether you’re creating an oral presentation, essay, or video, you’ll need to cite your sources. Plagiarism is a serious offense, so don’t take any chances.

How to cite your sources depends on the subject and the professor’s expectations. Chicago, MLA, and APA are the most common citation formats to use in college, but there are thousands more.

Luckily, you don’t need to painstakingly type each of your citations by hand or slog through a style manual. Instead, you can use a tool like Zotero to track and generate your citations. To make things even easier, install the Zotero Connector browser extension. It can automatically pull citation information from entries in an online library catalog.

Once you’ve collected all of your sources, Zotero can generate a properly formatted works cited page or bibliography at just the click of a button.

For help setting up and using Zotero, read this guide . If you need further assistance, ask a librarian.

Go Research With Confidence

I hope you now understand how to do research with more confidence. If you follow the procedures I’ve covered in this article, you’ll waste less time, perform more effective research, and ultimately have the material for a winning essay.

Curious about how to use your research to write a great research paper? Check out this guide .

Image Credits: picking book from shelf

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Research: Where to Begin

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Research isn't something that only scientists and professors do. Any time you use sources to investigate claims or reach new conclusions, you are performing research. Research happens in virtually all fields, so it’s vitally important to know how to conduct research and navigate through source material regardless of your professional or academic role.

Choosing and Narrowing Your Research Topic

Before beginning the process of looking for sources, it’s important to choose a research topic that is specific enough to explore in-depth. If your focus is too broad, it will be difficult to find sources that back up what you’re trying to say.

If your instructor gives you the flexibility to choose your own research topic, you might begin by brainstorming  a list of topics that interest you ( click here to visit an OWL page that can help you get started brainstorming or prewriting ). Once you find something that grabs your attention, the next step is to narrow your topic to a manageable scope. Some ways to narrow your focus are by sub-topic, demographic, or time period.

For example, suppose that you want to research cancer treatments. Cancer treatment is a fairly broad topic, so you would be wise to at least consider narrowing your scope. For example, you could focus on a sub-topic of cancer treatment, such as chemotherapy or radiation therapy. However, these are still broad topics, so you might also narrow your topic to a narrower sub-topic or even examine how these topics relate to a specific demographic or time period. In the end, you might decide to research how radiation therapy for women over fifty has changed in the past twenty years. In sum, having a specific idea of what you want to research helps you find a topic that feels more manageable.

Writing Your Research Question

Writing your research topic as a question helps you focus your topic in a clear and concise way. It ensure that your topic is arguable. While not all research papers have to offer an explicit argument, many do.

For the above example, you might phrase your research question like this: "How has radiation therapy changed in the past twenty years for women over fifty?" Of course, phrasing this topic as a question assumes that the research has, in fact, changed. Reading your sources (or, to begin with, at least summaries and abstracts of those sources) will help you formulate a research question that makes sense.

Knowing What Types of Sources You Need

Depending on the type of research you’re doing, you may need to use different types of sources. Research is usually divided into scholarly and popular, and primary and secondary. For more information on specific details about these types of sources, visit our "Where to Begin" page in our "Evaluating Sources" subsection.  This subsection contains additional pages that explore various kinds of sources (like, e.g., internet sources) in more detail.

Asking Productive Questions

Before you begin your research, you should ask yourself questions that help narrow your search parameters.

What kind of information are you looking for?

Different types of research will require different sources. It’s important to know what kinds of sources your research demands. Ask whether you need facts or opinions, news reports, research studies, statistics and data, personal reflections, archival research, etc. Restricting yourself to only the most relevant kinds of sources will make the research process seem less daunting.

Where do you need to look for your research?

Your research topic will also dictate where you find your sources. This extends beyond simply whether you use the internet or a print source. For example, if you are searching for information on a current event, a well-regarded newspaper like the  New York Times  or  Wall Street Journal  could  be a useful source. If you are searching for statistics on some aspect of the U.S. population, then you might want to start with government documents, such as census reports. While much high-level academic research relies mainly on the sorts of academic journal articles and scholarly books that can be found in university libraries, depending the nature of your research project, you may need to look elsewhere.

How much information do you need?

Different research projects require different numbers of sources. For example, if you need to address both sides of a controversial issue, you may need to find more sources than if you were pursuing a non-controversial topic. Be sure to speak with your instructor if you are unclear on how many sources you will be expected to use.

How timely does your research need to be?

Depending on your research topic, the timeliness of your source may or may not matter. For example, if you are looking into recent changes in a specific scientific field, you would want the most up-to-date research. However, if you were researching the War of 1812, you might benefit from finding primary sources written during that time period.

WordReference Forums

  • Rules/Help/FAQ Help/FAQ
  • Members Current visitors
  • Interface Language

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

  • English Only

do a research / make a research

  • Thread starter Gema
  • Start date Jul 23, 2004
  • Jul 23, 2004

Hi! I'm a spanish girl. Now I'm doing an english course and I must do a writing for monday. I have a doubt. Which of this two options is correct, "do a research" or "make a research"? Thank you in advance for your help. Gema  

''Do a research , is more appropriate..although you can very well say i am going to research on this subject  

rinks said: ''Do a research , is more appropriate..although you can very well say i am going to research on this subject Click to expand...

Administrator

Hi Gema, (Yes, this type of question is much more appropriate.) Welcome to the forum! For many "hacer un ..." constructions in Spanish, we just use the verb form of the noun. So, we would usually say "We researched" or "We are researching."  

hypertweeky

Senior member.

  • Jul 24, 2004
Gema said: Hi! I'm a spanish girl. Now I'm doing an english course and I must do a writing for monday. I have a doubt. Which of this two options is correct, "do a research" or "make a research"? Thank you in advance for your help. Gema Click to expand...
  • Jul 25, 2004

el alabamiano

You can also use: I'm going to do some research / I did some research /  

el alabamiano said: You can also use: I'm going to do some research / I did some research / Click to expand...

Mary Solari

  • Jul 31, 2004

Norman P. Bock

  • Aug 1, 2004

If you are using "research" as a noun, you would say doing "research" or do "research". But "research" is also a verb. So you can either say "I am going to do research on the causes of the civil war." Or you can just say, "I am going to research the causes of the civil war."  

elroy

Moderator: EHL, Arabic, Hebrew, German(-Spanish)

  • Aug 2, 2004

"To research a subject" (not ON a subject) suggests something relatively in-depth. "To do research on a subject" suggests little or partial research. "To conduct" or "carry out" research on a subject would be a more elevated way to express the same idea. As was said, definitely not "make." Hope this helps.  

  • Apr 6, 2007
elroy said: "To research a subject" (not ON a subject) suggests something relatively in-depth. "To do research on a subject" suggests little or partial research. "To conduct" or "carry out" research on a subject would be a more elevated way to express the same idea. As was said, definitely not "make." Hope this helps. Click to expand...
  • Apr 11, 2008

Gema to do a research on a topic is more common I hope that I helped you  

Wilma_Sweden

Wilma_Sweden

I have also found that you can undertake or carry out research, and that into and on are valid prepositions. However, when using research as a verb , my dictionaries (Longman & Cambridge online) give into as the only valid preposition. I have also found research used in the plural, e.g. scientists being awarded the Nobel Prize for their researches into [whatever subject], and I'm assuming that this is idiomatic if you are referring to multiple research projects. /Wilma  

  • Dec 2, 2009

Hi! I actually have a question about what follows the word research . Can you say, f. e. , I did some research about it, or should it always be on/into or without anything like > I researched it. I'm really confused and I don't know what's wrong or right anymore. Thanks for your help.  

thoughtdots

  • May 15, 2011

Let's say I researched World War II. I think it sounds better to either say, "I researched WWII" or "I did research on WWII". However, if you use any other preposition, people will still understand you.  

  • Jan 22, 2014
  • Dec 14, 2015

Hi! What about 'I did my own research to prepare a talk for the students' ? In this case I'm using it as a noun, but if its uncountable would it be ok to 'classify' it as 'my own'? Thanks!  

Member Emeritus

Yes, "my own research" is fine.  

  • Aug 29, 2020
Maigualida said: ‘I have to conduct a research or I conducted a research’ . Click to expand...
Maigualida said: Can I correct ? Instead of saying to do research yo say ‘I have to conduct a research or I conducted a research’ . ( the verb conduct is more common) Also you don’t say I must do a writing, you say: I have to write a paper about... The days of the week are written with capital letters...Monday, Tuesday , etc I hits it helps Click to expand...

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

make a research

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

23k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Privacy Policy

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data Analysis

Data Analysis – Process, Methods and Types

Research Paper

Research Paper – Structure, Examples and Writing...

Theoretical Framework

Theoretical Framework – Types, Examples and...

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Research Methods

Research Methods – Types, Examples and Guide

Context of the Study

Context of the Study – Writing Guide and Examples

Prairie View A&M University

Astronaut Neil Armstrong once said, “Research is creating new knowledge.” Astronomer Carl Sagan stated, “Somewhere, something incredible is waiting to be known.” At Prairie View A&M University, there are nearly two dozen locations where the limits of knowledge and innovation are being pushed through cutting-edge research.

PVAMU, an R2 Carnegie research institution, is home to a number of renowned scholars, research centers, and institutes across a broad spectrum of academic disciplines. These resources converge to serve as a critical foundation for the University’s interdisciplinary collaborations.  

Read on to learn about the extraordinary facilities that make PVAMU a recognized and celebrated leading research center.

make a research

Research is formalized curiosity. It is poking and prying with a purpose.

Zora Neale Hurston

make a research

As one of the newest research locations on campus, the 1,650-square-foot Robotics Lab is among 14 specialized instructional labs in the Engineering Classroom and Research Building in the Roy G. Perry College of Engineering . Here, students work alongside collaborative robots (AKA cobots).

There are 17 cobots typically used to perform repetitive tasks, leaving the more complex work to humans. You can say these cobots are the right-hand helpers everyone needs.

"The demand for robotics and automation is rapidly increasing as artificial intelligence advances, transforming various aspects of society. Robots are becoming essential in many fields, particularly where they can handle strenuous, dangerous or repetitive tasks," said Roy G. Perry College of Engineering Dean Pamela H. Obiomon ’93. “The lab not only equips students with industry-relevant skills but also provides valuable training for research. Its extensive collection of collaborative robots is unmatched in teaching labs, making it unique among universities."

make a research

The PVAMU Robotics Lab is shaping the future of automation.

Dr. Pamela H. Obiomon '93 Dean, Roy G. Perry College of Engineering

make a research

Advancements in PVAMU’s International Goat Research Center can improve livelihoods in Texas and the Gulf Coast region, as well as the quality of life in developing countries abroad. The mission of the IGRC is simple: advancing the science of dairy and meat goat production and health and product development and using this information to make things better for us.

How is this possible, you ask? The IGRC, originally named the International Dairy Goat Research Center, was established in 1982 to help fulfill the land-grant mission of the College of Agriculture, Food and Natural Resources at PVAMU. Its primary areas of research are reproduction, genetics, nutrition and health, which has attracted visiting scientists from around the world. Furthermore, the Center has been involved in numerous international programs to help other countries meet their meat, milk and fiber needs.

“Strengthening research and teaching collaborations with animal/veterinary science and engineering sciences will create an interactive environment where the next generation of animal and veterinary scientists will be trained using research to teach the scientific method, critical thinking, problem-solving, and communication skills,” the IGRC website says.

The mission of the International Goat Research Center is to improve the livelihoods of the people in Texas, the Gulf Coast region and developing countries abroad.

make a research

When PVAMU’s Fabrication Center was conceived, its unique architecture was designed to look like the building was “looking to the prairie.”

Located on the east side of campus, the Fab Center (as it’s fondly referred to) supports students and faculty in the exploration, investigation and education of creative and innovative fabrication methods for their design solutions and research. Part of the School of Architecture , the 25,000-square-foot space is divided into three areas – digital fabrication, conventional fabrication, and assembling. It features the most advanced technology in the market.

“The Fabrication Center is equipped for all phases of woodworking, metalworking and machining, as well as digital fabrication with CNC routing, laser cutting and 3D printing,” said Stephen Yunsik Song, director of the Fabrication Center.

“The Center is designed to prepare students to be experts in using the latest technology in designing, fabricating and constructing buildings,” said Dr. Ikhlas Sabouni, dean of PVAMU’s School of Architecture.

The Center provides opportunities for faculty and students to conduct research related to materials, sustainability, affordability and new construction techniques that can benefit the school, the design and building industry, and the community.

Dr. Ikhlas Sabouni Dean, School of Architecture

make a research

If you’ve ever been inside a hospital, you probably know the intensive care unit is one of the most crucial spaces in the building, a place where matters of life and death are addressed. In PVAMU’s College of Nursing , students and future nursing professionals have access to the ICU Simulation Learning Lab, giving them a marked advantage over their academic peers at other institutions. 

“Exposure to a lab such as the ICU Simulation Learning Lab is important to prepare practice-ready nursing graduates - students who are equipped to provide safe, competent, compassionate and culturally aligned nursing care,” said Dr. Antonea' Jackson, director of PVAMU’s BSN Programs and clinical associate professor in the College of Nursing. “This lab is important for society because it ensures our graduates are prepared to provide safe, competent and compassionate care.”

Students can diagnose simulated patients that have life-like heart, breath and bowel sounds. They can also check the “dummy’s” pulse, administer medications, and provide therapeutic communication, all of which are vital medical practices in nursing. The PVAMU CON is fortunate to have numerous specialty labs aside from the ICU Lab, including an Adult Health Lab, Pediatrics Lab and Obstetric Lab, all equipped with state-of-the-art simulation technology.

Exposure to a lab, such as the ICU Simulation Learning Lab, is important to prepare practice-ready nursing graduates - students who are equipped to provide safe, competent, compassionate and culturally aligned nursing care.

Dr. Antonea' Jackson Director and Professor, College of Nursing

make a research

Solar power is a hot topic these days (no pun intended), especially in Texas. Two months ago (at the time of this publication), hundreds of thousands of residents were without power due to two powerful storms.

PVAMU's new Solar Labs facility, positioned on the northwest side of campus, is now the ideal testing ground to study the most efficient uses of solar energy. The labs include communications systems, semiconductor material, 3D tracking systems that track the sun, solid-state systems, power security systems and more.

“We want to give our students knowledge of a true power system. We have some young minds, and they might have some proposals on how to improve these systems. Most of what we’re doing is addressing the needs of the country,” said manager of the Solar Labs and Electrical Engineering Professor Dr. John Fuller ’69.

This is the future.

Dr. John Fuller ’69 Professor, Roy G. Perry College of Engineering

make a research

At PVAMU, almost every student gains hands-on lab experience, which helps develop well-rounded individuals, especially those pursuing careers in the sciences. This experience ensures that students leave with the tools they need to confidently enter the next phase of their academic and professional journeys.    Providing students with this kind of advantage remains a point of great pride for Prairie View A&M. 

Learn more about PVAMU’s Research Centers and Institutes here.

Female and male student watering plants in greenhouse

This story is a part of the Excellence Lives Here series led by the Office for Marketing and Communications at Prairie View A&M University.

Author: Marchita Shilo Images: Nicholas Hunt '16 Layout: Ashley Albee

make a research

  • Scroll to top
  • Dark Light Dark Light

SurveyPoint

Beginner’s Guide on How Create a Research Survey

  • Author Survey Point Team
  • Published September 16, 2024

Research Survey

Research survey is a good tool, If you’re new to creating surveys, you might wonder where to start. Research survey is a great tool to collect valuable information, whether you’re looking for customer feedback, market research, or data for a school project. A well-made survey can give you clear answers and helpful insights.

This simple guide will take you through the process, step by step, to help you create a successful survey.

Table of Contents

1. Know Your Survey’s Purpose

Before you start writing questions, it’s important to know why you’re making the survey. Having a clear purpose will help you focus on the right questions and get the answers you need.

Ask Yourself:

  • What information do I want to gather?
  • Why is this survey important?
  • Who is the survey for? (Customers, employees, students, etc.)

For example, instead of saying, “I want to know about customer satisfaction,” make it more specific: “I want to know what makes customers happy with our new product.”

2. Pick the Right Survey Type

Once you know your survey’s purpose, choose how you’ll collect responses. Different survey methods work for different situations.

Common Survey Methods:

  • Online Surveys : Quick and easy to create with tools like Google Forms or SurveyMonkey.
  • Phone Surveys : Useful for getting verbal feedback, but time-consuming.
  • Face-to-Face Interviews : Great for detailed feedback, but harder to scale.
  • Paper Surveys : Useful for in-person events but harder to manage than online surveys.

3. Write Simple and Clear Questions

The success of your survey depends on the questions . Keep them clear, short, and related to your goal. There are different types of questions you can use.

Types of Questions:

  • Example: “How would you rate our service? (1 = Poor, 5 = Excellent)”
  • Example: “Have you used our product before? Yes/No”
  • Example: “What do you like about our service?”
  • Example: “How likely are you to recommend us? (1 = Not likely, 5 = Very likely)”

Tips for Good Questions:

  • Avoid Confusing Questions : Make sure your questions are easy to understand.
  • Example of a biased question: “Why do you think our product is the best?”
  • Keep It Simple : Use everyday language, not technical terms or jargon.

4. Keep the Survey Short

People are more likely to finish your survey if it’s short and to the point . Long surveys can cause people to lose interest and quit halfway through.

Best Practices:

  • Stick to the most important questions (10-15 is a good range).
  • Tell people upfront how long the survey will take.
  • Use skip logic to hide irrelevant questions. For example, if someone says they don’t use a certain feature, don’t ask them questions about it.

5. Test Your Survey First

Before you send your survey to everyone, test it with a small group of people. This helps you catch any problems or confusing questions.

How to Test:

  • Check for Clarity : Ask your test group if they understand all the questions.
  • See How Long It Takes : Time how long it takes people to finish the survey.
  • Ask for Feedback : Find out if anything was unclear or difficult.

6. Share Your Survey

Once your survey is ready, it’s time to share it with your audience. The method you choose depends on who you’re targeting.

How to Share:

  • Email : Send your survey to your email list, especially for customers or employees.
  • Social Media : Post your survey on platforms like Facebook, Instagram, or LinkedIn.
  • Website or App : If you have a website or app, use a pop-up or banner to invite visitors to take the survey.
  • Survey Panels : If you need a large audience, consider paying for access to a survey panel (a group of people ready to take surveys).

7. Analyze Your Data

Once you have your survey responses, it’s time to analyze the results. This will help you find patterns, trends, and answers to your research questions.

How to Analyze:

  • For Yes/No and Multiple Choice Questions : Look at the percentages of people who chose each answer.
  • For Open-Ended Questions : Group similar answers together to find common themes.
  • Use Charts and Graphs : Visualize your data using tools like Google Sheets or Excel. This makes it easier to understand the results.

8. Present Your Findings

After analyzing the data, create a report or presentation to show what you’ve learned. Use this information to make decisions or improvements based on the survey results.

Tips for Reporting:

  • Keep It Simple : Use charts and visuals to make your data easy to understand.
  • Highlight Key Insights : Focus on the most important findings that align with your survey’s purpose.
  • Make Recommendations : Suggest what actions should be taken based on the results.

Conclusion: Start Small and Build Your Skills

Creating a research survey doesn’t have to be difficult. By following these steps—knowing your purpose, writing clear questions, keeping it short, and analyzing the results—you can collect useful data that helps you make better decisions. With practice, you’ll get better at creating surveys that provide even deeper insights.

Whether you’re doing a school project, market research, or customer feedback, these tips will guide you through the process with confidence. For more information checkout – surveypoint.ai

Survey Point Team

Recent posts.

Bajaj Housing

  • Posted by Survey Point Team

All You Should Know About Bajaj Housing Finance IPO

Black Marketing

All You Need To Know About The Black Marketing of Tickets in India

Customers

How To Engage More Customers with Your Brand

make a research

A doctor looking at an ultrasound on a screen

People with Fetal Alcohol Spectrum Disorder face a heightened risk of homelessness

make a research

PhD Student, Rural and Northern Health, Laurentian University

make a research

Professor, Faculty of Education, University of Alberta

make a research

Adjunct Professor, Psychology, Laurentian University

Disclosure statement

Celisse Olivia Bibr is a Research Assistant for Canada Fetal Alcohol Spectrum Disorder Research Network (CanFASD).

Jacqueline Pei is Lead of the Intervention Network Action Team for the Canada Fetal Alcohol Spectrum Disorder Research Network (CanFASD). The original research reported in this article was supported by funding from the Canada Mortgage and Housing Corporation's (CMHC) National Housing Strategy Solutions Labs. The Co-Creating Housing Solutions: Enacting Opportunities for Individuals with Fetal Alcohol Spectrum Disorder (CHOoSE) received funding from the CMHC under the NHS Solutions Labs.

Kelly Harding is the Director of Research Administration and a Research Associate with the Canada Fetal Alcohol Spectrum Disorder Research Network (CanFASD).

University of Alberta provides funding as a founding partner of The Conversation CA.

University of Alberta provides funding as a member of The Conversation CA-FR.

View all partners

Canada is in the midst of a housing crisis . A systematic failure to provide decent and affordable housing means far too many people are ending up homeless. Rigid and unresponsive policies perpetuate adversity and fuel stigma that places blame on the individual. And for already vulnerable and marginalized people, finding a suitable place to live can be all the more challenging.

That includes people with Fetal Alcohol Spectrum Disorder (FASD). FASD is used to describe impacts on the brain and body of individuals prenatally exposed to alcohol . In other words, when alcohol is consumed during pregnancy, it can cross the placenta and impact fetal development .

If you are unfamiliar with the term, you’re not alone: despite an estimated 1.5 million Canadians living with the disorder, awareness of FASD is limited and support remains insufficient.

However, the lack of consistent systematic support means that 90 per cent of individuals with FASD will experience mental health issues , and they are around 20 times more likely to struggle with substance use than the general population.

As a result of these challenges, many people with FASD also experience homelessness : whether it be hidden (couch surfing, or residence in shelters) or more visible (having no physical shelter available). However, with recognition and accommodation, success and stability are possible.

September marks Fetal Alcohol Spectrum Disorder Awareness Month . Now is an apt time to learn more about the disorder and about those who you might know who have it.

Impacts of FASD

The way alcohol causes cognitive deficits is complex, and as the name of the disorder implies, the effects exist on a spectrum. FASD is a lifelong, whole-body disorder. People with this disorder may need support with motor skills, physical health, learning, memory, attention, communication, emotional regulation and social skills to reach their full potential.

These impacts mean that people with FASD can struggle with everyday tasks. For example, memory challenges may make tasks like paying rent and taking medication on time difficult. The cognitive impacts of the disorder can also impact a person’s performance at work. That can make finding and keeping a place to stay all the more challenging.

In our recent study , Alice, an adoptive parent of two boys with FASD, described a time when she came to visit one of them, and that her son agreed to meet her at a time and place. When she arrived, her son was not there. He did not know what day of the week it was. Without an understanding of how FASD can change the brain, people can be perceived as unco-operative, defiant or unwilling to participate in supports. In reality, as Alice put it, “there’s just a complete lack of understanding that it’s not willful.”

People with disabilities experience discrimination in their daily lives and in housing . Individuals with FASD are no different.

They can experience discrimination from landlords who do not understand the disorder, hold negative stereotypes, or do not want to rent to individuals receiving disability benefits as their primary source of income. Discrimination based on source of income is especially problematic for people who are in crisis: being penalized for using disability supports defeats the purpose of them.

Individuals with FASD are fully capable of success. Their largest barrier comes in the form of understanding, or lack thereof, from broader society. People with FASD are often just as personable, funny, clever and caring as anyone else. However, that can mask the underlying brain differences that make typical housing supports unconducive for them.

Shelters, for example, are loud and overstimulating environments, but if a person with FASD leaves, they are seen as rejecting supports rather than protecting themselves. People with FASD may need assistance in working out disputes with their landlord, or struggle with rigid rules and regulations. Knowing more about FASD would prevent situations from escalating to eviction.

More understanding needed

In the world of FASD research, there has been movement towards finding ways to implement understanding to better support safe and stable housing. The Canada FASD Research Network’s framework aims to reflect the voices of individuals struggling to be housed while empowering service providers in their supportive efforts.

The fundamentals that need to change come down to several points: access, individualization and collaboration. These need to be improved across multiple systemic levels, including housing itself, resources around housing (including basic resources, such as nutrition), and creating flexible and adaptive policy.

The fundamental component to these improvements is knowledge of FASD. Fostering broader understanding of these brain-based differences would inform policy changes, emphasize resource requirements and eliminate the misunderstandings that can lead to individuals with FASD losing access to needed supports.

A.....

National FASD Framework

The Canada FASD Research Network has put forward a National FASD Framework , proposed as Bill S-253 in the Senate in 2022. The bill is currently waiting to go to committee in the Senate. If passed into law, the framework would be the systematic and co-ordinated effort that is truly necessary to address support for FASD while recognizing the disorder at a national level.

Right now, people with FASD experience scattered, inconsistent support across Canada. The bill describes a development plan for a framework that would address that. This includes consulting caregivers, self-advocates and representatives of provincial and territorial governments.

That also includes making sure the framework will address training needs of professionals working with people with FASD and setting out national support measures for those impacted by it. Passing the bill would ensure the development of this framework, which would be an essential step towards improving the lives of individuals with FASD.

While systemic supports are essential, understanding and education need to be fostered at every level, starting with the individual. Better understanding, awareness and acceptance will then promote diagnosis, which will allow individuals to receive the support they require .

Having a decent place to live is the foundation for a healthy and stable life. For individuals with FASD, that foundation is too often absent. The basis of understanding has not yet been built. Restructuring supported housing to suit each individual person will require a tremendous and co-ordinated effort, but its effects will be felt outside of just this population. Personalized and human-centred care will benefit everyone who is unhoused.

  • Homelessness
  • Fetal Alcohol Spectrum Disorder

make a research

Research Fellow Community & Consumer Engaged Health Professions Education

make a research

Professor of Indigenous Cultural and Creative Industries (Identified)

make a research

Communications Director

make a research

University Relations Manager

make a research

2024 Vice-Chancellor's Research Fellowships

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Questionnaire Design | Methods, Question Types & Examples

Questionnaire Design | Methods, Question Types & Examples

Published on July 15, 2021 by Pritha Bhandari . Revised on June 22, 2023.

A questionnaire is a list of questions or items used to gather data from respondents about their attitudes, experiences, or opinions. Questionnaires can be used to collect quantitative and/or qualitative information.

Questionnaires are commonly used in market research as well as in the social and health sciences. For example, a company may ask for feedback about a recent customer service experience, or psychology researchers may investigate health risk perceptions using questionnaires.

Table of contents

Questionnaires vs. surveys, questionnaire methods, open-ended vs. closed-ended questions, question wording, question order, step-by-step guide to design, other interesting articles, frequently asked questions about questionnaire design.

A survey is a research method where you collect and analyze data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.

Designing a questionnaire means creating valid and reliable questions that address your research objectives , placing them in a useful order, and selecting an appropriate method for administration.

But designing a questionnaire is only one component of survey research. Survey research also involves defining the population you’re interested in, choosing an appropriate sampling method , administering questionnaires, data cleansing and analysis, and interpretation.

Sampling is important in survey research because you’ll often aim to generalize your results to the population. Gather data from a sample that represents the range of views in the population for externally valid results. There will always be some differences between the population and the sample, but minimizing these will help you avoid several types of research bias , including sampling bias , ascertainment bias , and undercoverage bias .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Questionnaires can be self-administered or researcher-administered . Self-administered questionnaires are more common because they are easy to implement and inexpensive, but researcher-administered questionnaires allow deeper insights.

Self-administered questionnaires

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Self-administered questionnaires can be:

  • cost-effective
  • easy to administer for small and large groups
  • anonymous and suitable for sensitive topics

But they may also be:

  • unsuitable for people with limited literacy or verbal skills
  • susceptible to a nonresponse bias (most people invited may not complete the questionnaire)
  • biased towards people who volunteer because impersonal survey requests often go ignored.

Researcher-administered questionnaires

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents.

Researcher-administered questionnaires can:

  • help you ensure the respondents are representative of your target audience
  • allow clarifications of ambiguous or unclear questions and answers
  • have high response rates because it’s harder to refuse an interview when personal attention is given to respondents

But researcher-administered questionnaires can be limiting in terms of resources. They are:

  • costly and time-consuming to perform
  • more difficult to analyze if you have qualitative responses
  • likely to contain experimenter bias or demand characteristics
  • likely to encourage social desirability bias in responses because of a lack of anonymity

Your questionnaire can include open-ended or closed-ended questions or a combination of both.

Using closed-ended questions limits your responses, while open-ended questions enable a broad range of answers. You’ll need to balance these considerations with your available time and resources.

Closed-ended questions

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. Closed-ended questions are best for collecting data on categorical or quantitative variables.

Categorical variables can be nominal or ordinal. Quantitative variables can be interval or ratio. Understanding the type of variable and level of measurement means you can perform appropriate statistical analyses for generalizable results.

Examples of closed-ended questions for different variables

Nominal variables include categories that can’t be ranked, such as race or ethnicity. This includes binary or dichotomous categories.

It’s best to include categories that cover all possible answers and are mutually exclusive. There should be no overlap between response items.

In binary or dichotomous questions, you’ll give respondents only two options to choose from.

White Black or African American American Indian or Alaska Native Asian Native Hawaiian or Other Pacific Islander

Ordinal variables include categories that can be ranked. Consider how wide or narrow a range you’ll include in your response items, and their relevance to your respondents.

Likert scale questions collect ordinal data using rating scales with 5 or 7 points.

When you have four or more Likert-type questions, you can treat the composite data as quantitative data on an interval scale . Intelligence tests, psychological scales, and personality inventories use multiple Likert-type questions to collect interval data.

With interval or ratio scales , you can apply strong statistical hypothesis tests to address your research aims.

Pros and cons of closed-ended questions

Well-designed closed-ended questions are easy to understand and can be answered quickly. However, you might still miss important answers that are relevant to respondents. An incomplete set of response items may force some respondents to pick the closest alternative to their true answer. These types of questions may also miss out on valuable detail.

To solve these problems, you can make questions partially closed-ended, and include an open-ended option where respondents can fill in their own answer.

Open-ended questions

Open-ended, or long-form, questions allow respondents to give answers in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered. For example, respondents may want to answer “multiracial” for the question on race rather than selecting from a restricted list.

  • How do you feel about open science?
  • How would you describe your personality?
  • In your opinion, what is the biggest obstacle for productivity in remote work?

Open-ended questions have a few downsides.

They require more time and effort from respondents, which may deter them from completing the questionnaire.

For researchers, understanding and summarizing responses to these questions can take a lot of time and resources. You’ll need to develop a systematic coding scheme to categorize answers, and you may also need to involve other researchers in data analysis for high reliability .

Question wording can influence your respondents’ answers, especially if the language is unclear, ambiguous, or biased. Good questions need to be understood by all respondents in the same way ( reliable ) and measure exactly what you’re interested in ( valid ).

Use clear language

You should design questions with your target audience in mind. Consider their familiarity with your questionnaire topics and language and tailor your questions to them.

For readability and clarity, avoid jargon or overly complex language. Don’t use double negatives because they can be harder to understand.

Use balanced framing

Respondents often answer in different ways depending on the question framing. Positive frames are interpreted as more neutral than negative frames and may encourage more socially desirable answers.

Positive frame Negative frame
Should protests of pandemic-related restrictions be allowed? Should protests of pandemic-related restrictions be forbidden?

Use a mix of both positive and negative frames to avoid research bias , and ensure that your question wording is balanced wherever possible.

Unbalanced questions focus on only one side of an argument. Respondents may be less likely to oppose the question if it is framed in a particular direction. It’s best practice to provide a counter argument within the question as well.

Unbalanced Balanced
Do you favor…? Do you favor or oppose…?
Do you agree that…? Do you agree or disagree that…?

Avoid leading questions

Leading questions guide respondents towards answering in specific ways, even if that’s not how they truly feel, by explicitly or implicitly providing them with extra information.

It’s best to keep your questions short and specific to your topic of interest.

  • The average daily work commute in the US takes 54.2 minutes and costs $29 per day. Since 2020, working from home has saved many employees time and money. Do you favor flexible work-from-home policies even after it’s safe to return to offices?
  • Experts agree that a well-balanced diet provides sufficient vitamins and minerals, and multivitamins and supplements are not necessary or effective. Do you agree or disagree that multivitamins are helpful for balanced nutrition?

Keep your questions focused

Ask about only one idea at a time and avoid double-barreled questions. Double-barreled questions ask about more than one item at a time, which can confuse respondents.

This question could be difficult to answer for respondents who feel strongly about the right to clean drinking water but not high-speed internet. They might only answer about the topic they feel passionate about or provide a neutral answer instead – but neither of these options capture their true answers.

Instead, you should ask two separate questions to gauge respondents’ opinions.

Strongly Agree Agree Undecided Disagree Strongly Disagree

Do you agree or disagree that the government should be responsible for providing high-speed internet to everyone?

You can organize the questions logically, with a clear progression from simple to complex. Alternatively, you can randomize the question order between respondents.

Logical flow

Using a logical flow to your question order means starting with simple questions, such as behavioral or opinion questions, and ending with more complex, sensitive, or controversial questions.

The question order that you use can significantly affect the responses by priming them in specific directions. Question order effects, or context effects, occur when earlier questions influence the responses to later questions, reducing the validity of your questionnaire.

While demographic questions are usually unaffected by order effects, questions about opinions and attitudes are more susceptible to them.

  • How knowledgeable are you about Joe Biden’s executive orders in his first 100 days?
  • Are you satisfied or dissatisfied with the way Joe Biden is managing the economy?
  • Do you approve or disapprove of the way Joe Biden is handling his job as president?

It’s important to minimize order effects because they can be a source of systematic error or bias in your study.

Randomization

Randomization involves presenting individual respondents with the same questionnaire but with different question orders.

When you use randomization, order effects will be minimized in your dataset. But a randomized order may also make it harder for respondents to process your questionnaire. Some questions may need more cognitive effort, while others are easier to answer, so a random order could require more time or mental capacity for respondents to switch between questions.

Step 1: Define your goals and objectives

The first step of designing a questionnaire is determining your aims.

  • What topics or experiences are you studying?
  • What specifically do you want to find out?
  • Is a self-report questionnaire an appropriate tool for investigating this topic?

Once you’ve specified your research aims, you can operationalize your variables of interest into questionnaire items. Operationalizing concepts means turning them from abstract ideas into concrete measurements. Every question needs to address a defined need and have a clear purpose.

Step 2: Use questions that are suitable for your sample

Create appropriate questions by taking the perspective of your respondents. Consider their language proficiency and available time and energy when designing your questionnaire.

  • Are the respondents familiar with the language and terms used in your questions?
  • Would any of the questions insult, confuse, or embarrass them?
  • Do the response items for any closed-ended questions capture all possible answers?
  • Are the response items mutually exclusive?
  • Do the respondents have time to respond to open-ended questions?

Consider all possible options for responses to closed-ended questions. From a respondent’s perspective, a lack of response options reflecting their point of view or true answer may make them feel alienated or excluded. In turn, they’ll become disengaged or inattentive to the rest of the questionnaire.

Step 3: Decide on your questionnaire length and question order

Once you have your questions, make sure that the length and order of your questions are appropriate for your sample.

If respondents are not being incentivized or compensated, keep your questionnaire short and easy to answer. Otherwise, your sample may be biased with only highly motivated respondents completing the questionnaire.

Decide on your question order based on your aims and resources. Use a logical flow if your respondents have limited time or if you cannot randomize questions. Randomizing questions helps you avoid bias, but it can take more complex statistical analysis to interpret your data.

Step 4: Pretest your questionnaire

When you have a complete list of questions, you’ll need to pretest it to make sure what you’re asking is always clear and unambiguous. Pretesting helps you catch any errors or points of confusion before performing your study.

Ask friends, classmates, or members of your target audience to complete your questionnaire using the same method you’ll use for your research. Find out if any questions were particularly difficult to answer or if the directions were unclear or inconsistent, and make changes as necessary.

If you have the resources, running a pilot study will help you test the validity and reliability of your questionnaire. A pilot study is a practice run of the full study, and it includes sampling, data collection , and analysis. You can find out whether your procedures are unfeasible or susceptible to bias and make changes in time, but you can’t test a hypothesis with this type of study because it’s usually statistically underpowered .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Questionnaire Design | Methods, Question Types & Examples. Scribbr. Retrieved September 18, 2024, from https://www.scribbr.com/methodology/questionnaire/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, survey research | definition, examples & methods, what is a likert scale | guide & examples, reliability vs. validity in research | difference, types and examples, what is your plagiarism score.

IMAGES

  1. Infographic: Steps in the Research Process

    make a research

  2. How to Write a Research Methodology

    make a research

  3. How to Create a Strong Research Design: 2-Minute Summary

    make a research

  4. Your Step-by-Step Guide to Writing a Good Research Methodology

    make a research

  5. A Beginner's Guide to Starting the Research Process

    make a research

  6. The Best Way to Write a Research Paper Fast in 7 Simple Steps

    make a research

VIDEO

  1. How to make research title #philippines #research #thesis #rrl #researchtips

  2. How to Do Research and Get Published

  3. HOW TO READ and ANALYZE A RESEARCH STUDY

  4. Research Paper Example: Full Step-By-Step Tutorial

  5. How to do research? and How to write a research paper?

  6. How to Start Research Work || Beginner’s Guide || Research Publications || Dr. Akash Bhoi

COMMENTS

  1. A Beginner's Guide to Starting the Research Process

    Learn the basics of the research process, from choosing a topic to writing a proposal. This article covers the steps of defining a problem, formulating questions, creating a design, and outlining your ideas.

  2. 15 Steps to Good Research

    Judge the scope of the project. Reevaluate the research question based on the nature and extent of information available and the parameters of the research project. Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites). Plan the research project.

  3. How To Write A Research Proposal

    Learn how to write a research proposal with this comprehensive guide that covers the steps, format, and template. Find out what to include in each section of your proposal and see an example of a research proposal on online education.

  4. How to Write a Research Paper

    Learn how to write a research paper with this step-by-step guide from Scribbr, a leading provider of academic writing services. Find out how to choose a topic, conduct research, develop a thesis, and more.

  5. Introduction

    Write. Create your product, whether it's a research paper, a poster, a presentation, or something else. Draft your citations, and check your product against your assignment requirements. Edit your draft, proofread, incorporate feedback and turn it in.

  6. 9 Ways to Do Research

    Start writing the middle, or body, of your paper. Get your ideas down, then see if you need to do any research. Since your introduction and conclusion summarize your paper, it's best to write those last. [8] Include an in-text citation for everything that needs one, even in your initial rough draft.

  7. How To Write A Research Paper (FREE Template

    Learn how to write a research paper in three easy steps: finding a topic and reviewing the literature, developing a structure and outline, and writing up your draft and refining it. Get tips, examples, and a free template from Grad Coach.

  8. Guides: Writing Resources: Develop a Research Topic or Question

    Three Approaches for Developing a Topic. Approach #1: List Key Words of Interest. Make lists of concepts and topics you find interesting, as well as lists of related words and synonyms. These can serve as your key search terms. Concept 1: Concept 2: Look For:

  9. How to Write a Research Paper: A Step-By-Step Guide

    Unlike essays, research papers usually divide the body into sections with separate headers to facilitate browsing and scanning. Use the divisions in your outline as a guide. Follow along your outline and go paragraph by paragraph. Because this is just the first draft, don't worry about getting each word perfect.

  10. Writing Center

    Learn how to write a successful scientific research article with our free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset. ... Good data management practices make your data discoverable and easy to use, promote a strong foundation for reproducibility and increase your likelihood of ...

  11. Writing a scientific article: A step-by-step guide for beginners

    We describe here the basic steps to follow in writing a scientific article. We outline the main sections that an average article should contain; the elements that should appear in these sections, and some pointers for making the overall result attractive and acceptable for publication. 1.

  12. The Writing Process

    Table of contents. Step 1: Prewriting. Step 2: Planning and outlining. Step 3: Writing a first draft. Step 4: Redrafting and revising. Step 5: Editing and proofreading. Other interesting articles. Frequently asked questions about the writing process.

  13. How to Do Research: A Step-By-Step Guide: Get Started

    How to do research. For research help, use one of the following options: Ask the GTL General Information & Research Help Phone: (607) 735-1862 Research Help Email: [email protected] For help registering a device, password reset and more: EC IT Resources and Services

  14. How to Make a Successful Research Presentation

    Make sure you explain the results clearly so that your audience understands what your research found. This is the peak of tension in your narrative arc, so don't undercut it by quickly clicking through to your discussion. Discussion (falling action) By now your audience should be dying for a satisfying resolution.

  15. How to Write a Research Paper

    To write a research paper, start by researching your topic at the library, online, or using an academic database. As you conduct your research and take notes, zero in on a specific topic that you want to write about and create a 1-2 sentence thesis to state the focus of your paper. Then, create an outline that includes an introduction, 3 to 5 ...

  16. How to Do Research in 7 Simple Steps

    Do additional research as necessary. Cite your sources. Let's look at each of these steps in more detail. 1. Find a Topic. If you don't have a topic, your research will be undirected and inefficient. You'll spend hours reading dozens of sources, all because you didn't take a few minutes to develop a topic.

  17. Research: Where to Begin

    Research: Where to Begin. Research isn't something that only scientists and professors do. Any time you use sources to investigate claims or reach new conclusions, you are performing research. Research happens in virtually all fields, so it's vitally important to know how to conduct research and navigate through source material regardless of ...

  18. do a research / make a research

    A discussion thread on the correct usage of the verb research in English. Learn the difference between do a research and make a research, and see examples and alternatives.

  19. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  20. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  21. Research Report

    Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it can also ...

  22. Scribbr

    Happy to help you. You're not alone. Together with our team and highly qualified editors, we help you answer all your questions about academic writing. Open 24/7 - 365 days a year. Always available to help you. Meet the team. Kerlyne Liberus 5 September 2024.

  23. How to Write a Research Question

    Most professional researchers focus on topics they are genuinely interested in studying. Writers should choose a broad topic about which they genuinely would like to know more. An example of a general topic might be "Slavery in the American South" or "Films of the 1930s.". Do some preliminary research on your general topic.

  24. Market research and competitive analysis

    But, direct research can be time consuming and expensive. Use it to answer questions about your specific business or customers, like reactions to your logo, improvements you could make to buying experience, and where customers might go instead of your business. Here are a few methods you can use to do direct research: Surveys; Questionnaires ...

  25. Research at PVAMU Changes the World

    The IGRC, originally named the International Dairy Goat Research Center, was established in 1982 to help fulfill the land-grant mission of the College of Agriculture, Food and Natural Resources at PVAMU. Its primary areas of research are reproduction, genetics, nutrition and health, which has attracted visiting scientists from around the world.

  26. Beginner's Guide on How Create a Research Survey

    Creating a research survey doesn't have to be difficult. By following these steps—knowing your purpose, writing clear questions, keeping it short, and analyzing the results—you can collect useful data that helps you make better decisions. With practice, you'll get better at creating surveys that provide even deeper insights.

  27. How the Research Triangle has helped make North Carolina one of America

    The Research Triangle region has about 4,000 technology and 600 life science companies, and more than 300 companies are headquartered in RTP alone.

  28. How to Become a Private School Teacher in Kentucky ...

    Research.com is an editorially independent organization with a carefully engineered commission system that's both transparent and fair. Our primary source of income stems from collaborating with affiliates who compensate us for advertising their services on our site, and we earn a referral fee when prospective clients decided to use those services.

  29. People with Fetal Alcohol Spectrum Disorder face a heightened risk of

    The Canada FASD Research Network has put forward a National FASD Framework, proposed as Bill S-253 in the Senate in 2022. The bill is currently waiting to go to committee in the Senate.

  30. Questionnaire Design

    Questionnaires vs. surveys. A survey is a research method where you collect and analyze data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.. Designing a questionnaire means creating valid and reliable questions that address your research objectives, placing them in a useful order, and selecting an appropriate method for administration.