Home — Essay Samples — Information Science and Technology — Impact of Technology — How Technology Has Changed Our Lives

test_template

How Technology Has Changed Our Lives

  • Categories: Impact of Technology

About this sample

close

Words: 1130 |

Updated: 9 November, 2023

Words: 1130 | Pages: 2 | 6 min read

Table of contents

Hook examples for technology essay, technology essay example.

  • A Digital Revolution: Enter the era of smartphones, AI, and the Internet of Things, where technology is the driving force. Join me as we explore how technology has transformed our lives and the profound impact it has on society.
  • An Intriguing Quote: Arthur C. Clarke once said, "Any sufficiently advanced technology is indistinguishable from magic." Let's delve into the magical world of modern technology and how it shapes our daily existence.
  • The Paradox of Connectivity: Technology promises to connect us, yet it can also lead to isolation. Explore with me the paradox of our hyperconnected world and how it affects our relationships, both online and offline.
  • The Impact on Work and Leisure: Discover how technology has revolutionized our work environments, blurring the lines between office and home. Together, we'll examine the changing landscape of leisure and entertainment in the digital age.
  • Looking Ahead: As technology continues to advance, what lies on the horizon? Join me in discussing the future implications of emerging technologies and how they will further reshape our world in the years to come.

The Dark Side of Technological Advancement

  • Increased Bullying
  • Lack of Privacy
  • Constant Distraction

Balancing Technology in Our Lives

Works cited.

  • Anderson, M. (2018). The Effects of Technology on Teenagers. Verywell Family.
  • Brown, B. W., & Bobkowski, P. S. (2011). Older and newer media: Patterns of use and effects on adolescents’ health and well-being. Journal of Research on Adolescence, 21(1), 95-113.
  • Calvillo, D. P., & Downey, R. G. (2010). Mobile phones and interruption in college classrooms: Instructors’ attitudes, beliefs, and practices. Computers in Human Behavior, 26(2), 223-231.
  • Clarke-Pearson, K., & O'Keeffe, G. (2011). The impact of social media on children, adolescents, and families. Pediatrics, 127(4), 800-804.
  • Livingstone, S., & Smith, P. K. (2014). Annual research review: Harms experienced by child users of online and mobile technologies: The nature, prevalence and management of sexual and aggressive risks in the digital age. Journal of Child Psychology and Psychiatry, 55(6), 635-654.
  • Oulasvirta, A., Rattenbury, T., Ma, L., & Raita, E. (2012). Habits make smartphone use more pervasive. Personal and Ubiquitous Computing, 16(1), 105-114.
  • Przybylski, A. K., & Weinstein, N. (2017). A large-scale test of the goldilocks hypothesis: Quantifying the relations between digital-screen use and the mental well-being of adolescents. Psychological Science, 28(2), 204-215.
  • Rosen, L. D., Lim, A. F., Carrier, L. M., & Cheever, N. A. (2011). An empirical examination of the educational impact of text message-induced task switching in the classroom: Educational implications and strategies to enhance learning. Psicologia Educativa, 17(2), 163-177.
  • Schulte, B. (2018). The human costs of bringing smartphones to every student. The Atlantic.
  • Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2018). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among US adolescents after 2010 and links to increased new media screen time. Clinical Psychological Science, 6(1), 3-17.

Video Version

Video Thumbnail

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr Jacklynne

Verified writer

  • Expert in: Information Science and Technology

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

1 pages / 974 words

2 pages / 819 words

2 pages / 1050 words

3 pages / 1416 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

How Technology Has Changed Our Lives Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Impact of Technology

In recent decades, technological advancements have transformed the daily lives of Americans, exerting profound influence on political, economic, and social aspects of modern society. These changes have been primarily driven by [...]

Technology is a blend of two Greek words, techne and logos. In Greek, the word techne alludes to the utilization of an instrument, or the usage of an art or logic, and logos alludes to a word or discussion about a specific [...]

There were many difficulties and challenges dealt with in the seventeenth century, some which have many similarities to difficulties and challenges in todays society. During the 17th Century; also known as the Baroque Period, [...]

Embedded systems have come a long way since their inception. Today, some toilets and toasters can tweet about what they’re upto. From smart clothing to smart banking, embedded systems have accentuated technology’s growth by [...]

What do demonstrations on city streets in the Philippines in 2001, the election of Barack Obama as President of the United States in 2008, revocation of the results of the fraudulent elections in Moldavia in 2009, the M-15 [...]

Technology might hold many benefits but is overall detrimental towards developing people's creativity. With technology, many resources and ideas are unlocked under people's fingertips. Because of the great number of amenities [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

how has technology advanced essay

Oxford Martin School logo

Technology over the long run: zoom out to see how dramatically the world can change within a lifetime

It is easy to underestimate how much the world can change within a lifetime. considering how dramatically the world has changed can help us see how different the world could be in a few years or decades..

Technology can change the world in ways that are unimaginable until they happen. Switching on an electric light would have been unimaginable for our medieval ancestors. In their childhood, our grandparents would have struggled to imagine a world connected by smartphones and the Internet.

Similarly, it is hard for us to imagine the arrival of all those technologies that will fundamentally change the world we are used to.

We can remind ourselves that our own future might look very different from the world today by looking back at how rapidly technology has changed our world in the past. That’s what this article is about.

One insight I take away from this long-term perspective is how unusual our time is. Technological change was extremely slow in the past – the technologies that our ancestors got used to in their childhood were still central to their lives in their old age. In stark contrast to those days, we live in a time of extraordinarily fast technological change. For recent generations, it was common for technologies that were unimaginable in their youth to become common later in life.

The long-run perspective on technological change

The big visualization offers a long-term perspective on the history of technology. 1

The timeline begins at the center of the spiral. The first use of stone tools, 3.4 million years ago, marks the beginning of this history of technology. 2 Each turn of the spiral represents 200,000 years of history. It took 2.4 million years – 12 turns of the spiral – for our ancestors to control fire and use it for cooking. 3

To be able to visualize the inventions in the more recent past – the last 12,000 years – I had to unroll the spiral. I needed more space to be able to show when agriculture, writing, and the wheel were invented. During this period, technological change was faster, but it was still relatively slow: several thousand years passed between each of these three inventions.

From 1800 onwards, I stretched out the timeline even further to show the many major inventions that rapidly followed one after the other.

The long-term perspective that this chart provides makes it clear just how unusually fast technological change is in our time.

You can use this visualization to see how technology developed in particular domains. Follow, for example, the history of communication: from writing to paper, to the printing press, to the telegraph, the telephone, the radio, all the way to the Internet and smartphones.

Or follow the rapid development of human flight. In 1903, the Wright brothers took the first flight in human history (they were in the air for less than a minute), and just 66 years later, we landed on the moon. Many people saw both within their lifetimes: the first plane and the moon landing.

This large visualization also highlights the wide range of technology’s impact on our lives. It includes extraordinarily beneficial innovations, such as the vaccine that allowed humanity to eradicate smallpox , and it includes terrible innovations, like the nuclear bombs that endanger the lives of all of us .

What will the next decades bring?

The red timeline reaches up to the present and then continues in green into the future. Many children born today, even without further increases in life expectancy, will live well into the 22nd century.

New vaccines, progress in clean, low-carbon energy, better cancer treatments – a range of future innovations could very much improve our living conditions and the environment around us. But, as I argue in a series of articles , there is one technology that could even more profoundly change our world: artificial intelligence (AI).

One reason why artificial intelligence is such an important innovation is that intelligence is the main driver of innovation itself. This fast-paced technological change could speed up even more if it’s driven not only by humanity’s intelligence but also by artificial intelligence. If this happens, the change currently stretched out over decades might happen within a very brief time span of just a year. Possibly even faster. 4

I think AI technology could have a fundamentally transformative impact on our world. In many ways, it is already changing our world, as I documented in this companion article . As this technology becomes more capable in the years and decades to come, it can give immense power to those who control it (and it poses the risk that it could escape our control entirely).

Such systems might seem hard to imagine today, but AI technology is advancing quickly. Many AI experts believe there is a real chance that human-level artificial intelligence will be developed within the next decades, as I documented in this article .

legacy-wordpress-upload

Technology will continue to change the world – we should all make sure that it changes it for the better

What is familiar to us today – photography, the radio, antibiotics, the Internet, or the International Space Station circling our planet – was unimaginable to our ancestors just a few generations ago. If your great-great-great grandparents could spend a week with you, they would be blown away by your everyday life.

What I take away from this history is that I will likely see technologies in my lifetime that appear unimaginable to me today.

In addition to this trend towards increasingly rapid innovation, there is a second long-run trend. Technology has become increasingly powerful. While our ancestors wielded stone tools, we are building globe-spanning AI systems and technologies that can edit our genes.

Because of the immense power that technology gives those who control it, there is little that is as important as the question of which technologies get developed during our lifetimes. Therefore, I think it is a mistake to leave the question about the future of technology to the technologists. Which technologies are controlled by whom is one of the most important political questions of our time because of the enormous power these technologies convey to those who control them.

We all should strive to gain the knowledge we need to contribute to an intelligent debate about the world we want to live in. To a large part, this means gaining knowledge and wisdom on the question of which technologies we want.

Acknowledgments: I would like to thank my colleagues Hannah Ritchie, Bastian Herre, Natasha Ahuja, Edouard Mathieu, Daniel Bachler, Charlie Giattino, and Pablo Rosado for their helpful comments on drafts of this essay and the visualization. Thanks also to Lizka Vaintrob and Ben Clifford for the conversation that initiated this visualization.

Appendix: About the choice of visualization in this article

The recent speed of technological change makes it difficult to picture the history of technology in one visualization. When you visualize this development on a linear timeline, then most of the timeline is almost empty, while all the action is crammed into the right corner:

Linear version of the spiral chart

In my large visualization here, I tried to avoid this problem and instead show the long history of technology in a way that lets you see when each technological breakthrough happened and how, within the last millennia, there was a continuous acceleration of technological change.

The recent speed of technological change makes it difficult to picture the history of technology in one visualization. In the appendix, I show how this would look if it were linear.

It is, of course, difficult to assess when exactly the first stone tools were used.

The research by McPherron et al. (2010) suggested that it was at least 3.39 million years ago. This is based on two fossilized bones found in Dikika in Ethiopia, which showed “stone-tool cut marks for flesh removal and percussion marks for marrow access”. These marks were interpreted as being caused by meat consumption and provide the first evidence that one of our ancestors, Australopithecus afarensis, used stone tools.

The research by Harmand et al. (2015) provided evidence for stone tool use in today’s Kenya 3.3 million years ago.

References:

McPherron et al. (2010) – Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia . Published in Nature.

Harmand et al. (2015) – 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya . Published in Nature.

Evidence for controlled fire use approximately 1 million years ago is provided by Berna et al. (2012) Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa , published in PNAS.

The authors write: “The ability to control fire was a crucial turning point in human evolution, but the question of when hominins first developed this ability still remains. Here we show that micromorphological and Fourier transform infrared microspectroscopy (mFTIR) analyses of intact sediments at the site of Wonderwerk Cave, Northern Cape province, South Africa, provide unambiguous evidence—in the form of burned bone and ashed plant remains—that burning took place in the cave during the early Acheulean occupation, approximately 1.0 Ma. To the best of our knowledge, this is the earliest secure evidence for burning in an archaeological context.”

This is what authors like Holden Karnofsky called ‘Process for Automating Scientific and Technological Advancement’ or PASTA. Some recent developments go in this direction: DeepMind’s AlphaFold helped to make progress on one of the large problems in biology, and they have also developed an AI system that finds new algorithms that are relevant to building a more powerful AI.

Cite this work

Our articles and data visualizations rely on work from many different people and organizations. When citing this article, please also cite the underlying data sources. This article can be cited as:

BibTeX citation

Reuse this work freely

All visualizations, data, and code produced by Our World in Data are completely open access under the Creative Commons BY license . You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.

The data produced by third parties and made available by Our World in Data is subject to the license terms from the original third-party authors. We will always indicate the original source of the data in our documentation, so you should always check the license of any such third-party data before use and redistribution.

All of our charts can be embedded in any site.

Our World in Data is free and accessible for everyone.

Help us do this work by making a donation.

The present and future of AI

Finale doshi-velez on how ai is shaping our lives and how we can shape ai.

image of Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences

Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences. (Photo courtesy of Eliza Grinnell/Harvard SEAS)

How has artificial intelligence changed and shaped our world over the last five years? How will AI continue to impact our lives in the coming years? Those were the questions addressed in the most recent report from the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted at Stanford University, that will study the status of AI technology and its impacts on the world over the next 100 years.

The 2021 report is the second in a series that will be released every five years until 2116. Titled “Gathering Strength, Gathering Storms,” the report explores the various ways AI is  increasingly touching people’s lives in settings that range from  movie recommendations  and  voice assistants  to  autonomous driving  and  automated medical diagnoses .

Barbara Grosz , the Higgins Research Professor of Natural Sciences at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) is a member of the standing committee overseeing the AI100 project and Finale Doshi-Velez , Gordon McKay Professor of Computer Science, is part of the panel of interdisciplinary researchers who wrote this year’s report. 

We spoke with Doshi-Velez about the report, what it says about the role AI is currently playing in our lives, and how it will change in the future.  

Q: Let's start with a snapshot: What is the current state of AI and its potential?

Doshi-Velez: Some of the biggest changes in the last five years have been how well AIs now perform in large data regimes on specific types of tasks.  We've seen [DeepMind’s] AlphaZero become the best Go player entirely through self-play, and everyday uses of AI such as grammar checks and autocomplete, automatic personal photo organization and search, and speech recognition become commonplace for large numbers of people.  

In terms of potential, I'm most excited about AIs that might augment and assist people.  They can be used to drive insights in drug discovery, help with decision making such as identifying a menu of likely treatment options for patients, and provide basic assistance, such as lane keeping while driving or text-to-speech based on images from a phone for the visually impaired.  In many situations, people and AIs have complementary strengths. I think we're getting closer to unlocking the potential of people and AI teams.

There's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: Over the course of 100 years, these reports will tell the story of AI and its evolving role in society. Even though there have only been two reports, what's the story so far?

There's actually a lot of change even in five years.  The first report is fairly rosy.  For example, it mentions how algorithmic risk assessments may mitigate the human biases of judges.  The second has a much more mixed view.  I think this comes from the fact that as AI tools have come into the mainstream — both in higher stakes and everyday settings — we are appropriately much less willing to tolerate flaws, especially discriminatory ones. There's also been questions of information and disinformation control as people get their news, social media, and entertainment via searches and rankings personalized to them. So, there's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: What is the responsibility of institutes of higher education in preparing students and the next generation of computer scientists for the future of AI and its impact on society?

First, I'll say that the need to understand the basics of AI and data science starts much earlier than higher education!  Children are being exposed to AIs as soon as they click on videos on YouTube or browse photo albums. They need to understand aspects of AI such as how their actions affect future recommendations.

But for computer science students in college, I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc.  I'm really excited that Harvard has the Embedded EthiCS program to provide some of this education.  Of course, this is an addition to standard good engineering practices like building robust models, validating them, and so forth, which is all a bit harder with AI.

I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc. 

Q: Your work focuses on machine learning with applications to healthcare, which is also an area of focus of this report. What is the state of AI in healthcare? 

A lot of AI in healthcare has been on the business end, used for optimizing billing, scheduling surgeries, that sort of thing.  When it comes to AI for better patient care, which is what we usually think about, there are few legal, regulatory, and financial incentives to do so, and many disincentives. Still, there's been slow but steady integration of AI-based tools, often in the form of risk scoring and alert systems.

In the near future, two applications that I'm really excited about are triage in low-resource settings — having AIs do initial reads of pathology slides, for example, if there are not enough pathologists, or get an initial check of whether a mole looks suspicious — and ways in which AIs can help identify promising treatment options for discussion with a clinician team and patient.

Q: Any predictions for the next report?

I'll be keen to see where currently nascent AI regulation initiatives have gotten to. Accountability is such a difficult question in AI,  it's tricky to nurture both innovation and basic protections.  Perhaps the most important innovation will be in approaches for AI accountability.

Topics: AI / Machine Learning , Computer Science

Cutting-edge science delivered direct to your inbox.

Join the Harvard SEAS mailing list.

Scientist Profiles

Finale Doshi-Velez

Finale Doshi-Velez

Herchel Smith Professor of Computer Science

Press Contact

Leah Burrows | 617-496-1351 | [email protected]

Related News

Two men wearing hospital scrubs, two wearing blue jackets with the logo for the company EndoShunt, in front of medical equipment

Seven SEAS teams named President’s Innovation Challenge finalists

Start-ups will vie for up to $75,000 in prize money

Computer Science , Design , Electrical Engineering , Entrepreneurship , Events , Master of Design Engineering , Materials Science & Mechanical Engineering , MS/MBA

A group of Harvard SEAS students standing behind a wooden table, in front of a sign that says "Agents of Change"

Exploring the depths of AI

 New SEAS club spends Spring Break meeting AI technology professionals in San Francisco

AI / Machine Learning , Computer Science , Student Organizations

Head shot of SEAS Ph.D. alum Jacomo Corbo

Alumni profile: Jacomo Corbo, Ph.D. '08

Racing into the future of machine learning 

AI / Machine Learning , Computer Science

  • Skip to main content
  • Keyboard shortcuts for audio player

How Tech Has Changed Our Lives In The Last 10 Years

Several tech experts weigh in on the technologies of the past decade that had the greatest impact on society.

Copyright © 2019 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by an NPR contractor. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.

UN logo

Search the United Nations

  • Issue Briefs
  • Commemoration
  • Branding Package
  • Our Common Agenda
  • Press Releases

how has technology advanced essay

The Impact of Digital Technologies

Technologies can help make our world fairer, more peaceful, and more just. Digital advances can support and accelerate achievement of each of the 17 Sustainable Development Goals – from ending extreme poverty to reducing maternal and infant mortality, promoting sustainable farming and decent work, and achieving universal literacy. But technologies can also threaten privacy, erode security and fuel inequality. They have implications for human rights and human agency. Like generations before, we – governments, businesses and individuals – have a choice to make in how we harness and manage new technologies.

A DIGITAL FUTURE FOR ALL?

Digital technologies have advanced more rapidly than any innovation in our history – reaching around 50 per cent of the developing world’s population in only two decades and transforming societies. By enhancing connectivity, financial inclusion, access to trade and public services, technology can be a great equaliser.

In the health sector, for instance, AI-enabled frontier technologies are helping to save lives, diagnose diseases and extend life expectancy. In education, virtual learning environments and distance learning have opened up programmes to students who would otherwise be excluded. Public services are also becoming more accessible and accountable through blockchain-powered systems, and less bureaucratically burdensome as a result of AI assistance.Big data can also support more responsive and accurate policies and programmes.

However, those yet to be connected remain cut off from the benefits of this new era and remain further behind. Many of the people left behind are women, the elderly, persons with disabilities or from ethnic or linguistic minorities, indigenous groups and residents of poor or remote areas. The pace of connectivity is slowing, even reversing, among some constituencies. For example, globally, the proportion of women using the internet is 12 per cent lower than that of men. While this gap narrowed in most regions between 2013 and 2017, it widened in the least developed countries from 30 per cent to 33 per cent.

The use of algorithms can replicate and even amplify human and systemic bias where they function on the basis of data which is not adequately diverse. Lack of diversity in the technology sector can mean that this challenge is not adequately addressed.

THE FUTURE OF WORK

Throughout history, technological revolutions have changed the labour force: creating new forms and patterns of work, making others obsolete, and leading to wider societal changes. This current wave of change is likely to have profound impacts. For example, the International Labour Organization estimates that the shift to a greener economy could create 24 million new jobs globally by 2030 through the adoption of sustainable practices in the energy sector, the use of electric vehicles and increasing energy efficiency in existing and future buildings.

Meanwhile, reports by groups such as McKinsey suggest that 800 million people could lose their jobs to automation by 2030 , while polls reveal that the majority of all employees worry that they do not have the necessary training or skills to get a well-paid job.

There is broad agreement that managing these trends will require changes in our approach to education, for instance, by placing more emphasis on science, technology, engineering, and maths; by teaching soft skills, and resilience; and by ensuring that people can re-skill and up-skill throughout their lifetimes. Unpaid work, for example childcare and elderly care in the home, will need to be better supported, especially as with the shifting age profile of global populations, the demands on these tasks are likely to increase.

THE FUTURE OF DATA

Today, digital technologies such as data pooling and AI are used to track and diagnose issues in agriculture, health, and the environment, or to perform daily tasks such as navigating traffic or paying a bill. They can be used to defend and exercise human rights – but they can also be used to violate them, for example, by monitoring our movements, purchases, conversations and behaviours. Governments and businesses increasingly have the tools to mine and exploit data for financial and other purposes.

However, personal data would become an asset to a person, if there were a formula for better regulation of personal data ownership. Data-powered technology has the potential to empower individuals, improve human welfare, and promote universal rights, depending on the type of protections put in place.

THE FUTURE OF SOCIAL MEDIA

Social media connects almost half of the entire global population . It enables people to make their voices heard and to talk to people across the world in real time. However, it can also reinforce prejudices and sow discord, by giving hate speech and misinformation a platform, or by amplifying echo chambers.

In this way, social media algorithms can fuel the fragmentation of societies around the world. And yet they also have the potential to do the opposite.

THE FUTURE OF CYBERSPACE

How to manage these developments is the subject of much discussion – nationally and internationally – at a time when geopolitical tensions are on the rise. The UN Secretary-General has warned of a ‘great fracture’ between world powers, each with their own internet and AI strategy, as well as dominant currency, trade and financial rules and contradictory geopolitical and military views. Such a divide could establish a digital Berlin Wall. Increasingly, digital cooperation between states – and a universal cyberspace that reflects global standards for peace and security, human rights and sustainable development – is seen as crucial to ensuring a united world. A ‘global commitment for digital cooperation’ is a key recommendation by the Secretary-General’s High-level Panel on Digital Cooperation .

FOR MORE INFORMATION

The Sustainable Development Goals

The Age of Digital Interdependence: Report of the UN Secretary-General’s High-level Panel on Digital Cooperation

ILO | Global Commission on the Future of Work

Secretary General’s Address to the 74th Session of the UN General Assembly

Secretary General’s Strategy on New Technology

PDF VERSION

Download the pdf version

From the world wide web to AI: 11 technology milestones that changed our lives

Laptop half-open.

The world wide web is a key technological milestone in the past 40 years. Image:  Unsplash/Ales Nesetril

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Stephen Holroyd

how has technology advanced essay

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Artificial Intelligence is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, emerging technologies.

  • It’s been 40 years since the launch of the Apple Macintosh personal computer.
  • Since then, technological innovation has accelerated – here are some of the most notable tech milestones over the past four decades.
  • The World Economic Forum’s EDISON Alliance aims to digitally connect 1 billion people to essential services like healthcare, education and finance by 2025.

On 24 January 1984, Apple unveiled the Macintosh 128K and changed the face of personal computers forever.

Steve Jobs’ compact, user-friendly computer introduced the graphical user interface to the world, marking a pivotal moment in the evolution of personal technology.

Since that day, the rate of technological innovation has exploded, with developments in computing, communication, connectivity and machine learning expanding at an astonishing rate.

Here are some of the key technological milestones that have changed our lives over the past 40 years.

Have you read?

9 ways ai is helping tackle climate change, driving trust: paving the road for autonomous vehicles, these are the top 10 emerging technologies of 2023: here's how they can impact the world, 1993: the world wide web.

Although the internet’s official birthday is often debated, it was the invention of the world wide web that drove the democratization of information access and shaped the modern internet we use today.

Created by British scientist Tim Berners-Lee, the World Wide Web was launched to the public in 1993 and brought with it the dawn of online communication, e-commerce and the beginning of the digital economy.

Despite the enormous progress since its invention, 2.6 billion people still lack internet access and global digital inclusion is considered a priority. The World Economic Forum’s EDISON Alliance aims to bridge this gap and digitally connect 1 billion people to essential services like healthcare, education and finance by 2025.

1997: Wi-Fi

The emergence of publicly available Wi-Fi in 1997 changed the face of internet access – removing the need to tether to a network via a cable. Without Wi-Fi, the smartphone and the ever-present internet connection we’ve come to rely on, wouldn’t have been possible, and it has become an indispensable part of our modern, connected world.

1998: Google

The launch of Google’s search engine in 1998 marked the beginning of efficient web search, transforming how people across the globe accessed and navigated online information . Today, there are many others to choose from – Bing, Yahoo!, Baidu – but Google remains the world’s most-used search engine.

2004: Social media

Over the past two decades, the rise of social media and social networking has dominated our connected lives. In 2004, MySpace became the first social media site to reach one million monthly active users. Since then, platforms like Facebook, Instagram and TikTok have reshaped communication and social interaction , nurturing global connectivity and information sharing on an enormous scale, albeit not without controversy .

Most popular social networks worldwide as of January 2024, ranked by number of monthly active users

2007: The iPhone

More than a decade after the first smartphone had been introduced, the iPhone redefined mobile technology by combining a phone, music player, camera and internet communicator in one sleek device. It set new standards for smartphones and ultimately accelerated the explosion of smartphone usage we see across the planet today.

2009: Bitcoin

The foundations for modern digital payments were laid in the late 1950s with the introduction of the first credit and debit cards, but it was the invention of Bitcoin in 2009 that set the stage for a new era of secure digital transactions. The first decentralized cryptocurrency, Bitcoin introduced a new form of digital payment system that operates independently of traditional banking systems. Its underlying technology, blockchain, revolutionized the concept of digital transactions by providing a secure, transparent, and decentralized method for peer-to-peer payments. Bitcoin has not only influenced the development of other cryptocurrencies but has also sparked discussions about the future of money in the digital age.

2014: Virtual reality

2014 was a pivotal year in the development of virtual reality (VR) for commercial applications. Facebook acquired the Oculus VR company for $2 billion and kickstarted a drive for high-quality VR experiences to be made accessible to consumers. Samsung and Sony also announced VR products, and Google released the now discontinued Cardboard – a low-cost, do-it-yourself viewer for smartphones. The first batch of Oculus Rift headsets began shipping to consumers in 2016.

2015: Autonomous vehicles

Autonomous vehicles have gone from science fiction to science fact in the past two decades, and predictions suggest that almost two-thirds of registered passenger cars worldwide will feature partly-assisted driving and steering by 2025 . In 2015, the introduction of Tesla’s Autopilot brought autonomous features to consumer vehicles, contributing to the mainstream adoption of self-driving technology.

Cars Increasingly Ready for Autonomous Driving

2019: Quantum computing

A significant moment in the history of quantum computing was achieved in October 2019 when Google’s Sycamore processor demonstrated “quantum supremacy” by solving a complex problem faster than the world’s most powerful supercomputers. Quantum technologies can be used in a variety of applications and offer transformative impacts across industries. The World Economic Forum’s Quantum Economy Blueprint provides a framework for value-led, democratic access to quantum resources to help ensure an equitable global distribution and avoid a quantum divide.

2020: The COVID-19 pandemic

The COVID-19 pandemic accelerated digital transformation on an unprecedented scale . With almost every aspect of human life impacted by the spread of the virus – from communicating with loved ones to how and where we work – the rate of innovation and uptake of technology across the globe emphasized the importance of remote work, video conferencing, telemedicine and e-commerce in our daily lives.

In response to the uncertainties surrounding generative AI and the need for robust AI governance frameworks to ensure responsible and beneficial outcomes for all, the Forum’s Centre for the Fourth Industrial Revolution (C4IR) has launched the AI Governance Alliance .

The Alliance will unite industry leaders, governments, academic institutions, and civil society organizations to champion responsible global design and release of transparent and inclusive AI systems.

2022: Artificial intelligence

Artificial intelligence (AI) technology has been around for some time and AI-powered consumer electronics, from smart home devices to personalized assistants, have become commonplace. However, the emergence of mainstream applications of generative AI has dominated the sector in recent years.

In 2022, OpenAI unveiled its chatbot, ChatGPT. Within a week, it had gained over one million users and become the fastest-growing consumer app in history . In the same year, DALL-E 2, a text-to-image generative AI tool, also launched.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

The Agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} Weekly

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Emerging Technologies .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

how has technology advanced essay

Robot rock stars, pocket forests, and the battle for chips - Forum podcasts you should hear this month

Robin Pomeroy and Linda Lacina

April 29, 2024

how has technology advanced essay

4 steps for the Middle East and North Africa to develop 'intelligent economies' 

Maroun Kairouz

how has technology advanced essay

The future of learning: How AI is revolutionizing education 4.0

Tanya Milberg

April 28, 2024

how has technology advanced essay

Shaping the Future of Learning: The Role of AI in Education 4.0

how has technology advanced essay

The cybersecurity industry has an urgent talent shortage. Here’s how to plug the gap

Michelle Meineke

how has technology advanced essay

Stanford just released its annual AI Index report. Here's what it reveals

April 26, 2024

how has technology advanced essay

Technophrenia

On the interface between technology, people and society

How technology is changing language and the way we think about the world

Director of UWA Centre for Software Practice, The University of Western Australia

University of Western Australia provides funding as a founding partner of The Conversation AU.

View all partners

how has technology advanced essay

We are getting used to the idea of rapidly developing technologies changing what we can do and how we do things. What most people haven’t considered is how technologies affect our language and how these changes are affecting the way we speak and even the way we think.

One of the key ways we see this is when the name of a company becomes a way of doing something involving any product that is similar. Classic examples are “to hoover” which came from the early dominance of vaccuum cleaners from the Hoover Company .

Googling becomes a verb

More significantly is the use of the term “to google” which first came to prominence in 2002 when the American Dialect Society declared it word of the year. Later, in 2009, they declared “google” to be the the word of the decade.

Google had become a generic word meaning “to search the Internet” with any search engine, not just Google itself. But googling has become much more than just the mere act of typing words into a text box and clicking a button. We now understand the subtext when someone declares “I have googled you” or even that they have googled themselves. The idea that this act can now exert a powerful effect on the opinion we form of others has even resulted in laws formulated by the European Union giving individuals rights over search engine companies to have information about them removed in order to be “forgotten”.

Google has now become our collective global memory and googling is the process by which we access those memories. This, in turn, is simply a process that we have always engaged with called “ transactive memory ” in which we turn to people around us, usually people we know, to help us recall facts and memories. The invention of the Gutenberg press allowed us to outsource people to books. The difference now though is that Google is now always with us, has a vast database of information that it is getting increasingly better at letting you access, with the vaguest of questions. This in turn has had a dramatic effect on what we are able to achieve, not only as individuals, but as a society.

The act of computer programming for example has become much easier through the ability to learn new computer languages and solve problems by “googling” the answers. It could be argued that the boom in mobile phone apps would not have been possible without Ggoogle providing a mechanism to access the “transactive memories” of the thousands of knowledgeable programmers with the answers to any developer’s questions.

Interestingly, it has been [Google] themselves who have resisted , even at times through legal threats, the spread of “google” being used beyond its reference to the company. This is because if it does enter the language as a common term, Google could lose the protection of the name as a trademark. If Google becomes a common term, to mean any generic search, it could become a “generic trademark” like Cellophane, Aspirin, Escalator and others.

Industries become uberized

In a different example of a verb that has come from a proper noun but may have just as significant an impact on our social lives, we have “to uberize”. This comes from the company Uber whose business approach has disrupted an industry by using mobile apps backed with data analytics to provide cheaper taxi services to consumers. The concept of “uberization” has taken the general meaning of disrupting any industry through the use of technology to circumvent unnecessary bureaucracy and legislation. What is interesting about the use of the term uberization is that again, the subtext is not just about the actual process of transforming an industry into something more efficient or productive. Saying that an industry needs to be “uberized” is as much a commentary about its unwillingness to change, modernise and really meet consumers’ needs. This context is being built up with every new development in the ongoing battles and controversies that Uber is facing as it pushes through its disruption of the taxi industry.

Uber’s less successful contribution to our language has been the concept of “ surge pricing ”. The concept embodies basic economic principles to ensure that there are taxis willing to pick up consumers at the busiest times. It turns out that this is too hard for most consumers (and reporters) to understand and they have interpreted it simply as unfair price gouging.

As a new term, it is an interesting example however of how a term that was supposed to have a specific meaning has been turned into something completely different through popular usage.

How much has changed

There are many conversations that we could have today that would mean little to someone from 2005. Even though the definition of specific words could be given, it would need the entire context of how they have developed through the interplay of technology, individuals and society to have any real meaning. This is not the first time this has happened in history but certainly the increase in the pace of change has resulted in our language changing equally rapidly, and with it, our thoughts.

On a final historical note, you can wonder what George Bernard Shaw would have understood by the following statements? “My mother was hacked last night.” “What a great meal - I’ll upload it!” “If anyone’s out there, can you inbox me?’ "How many steps did you get today?” “Will you torrent me the next series?” “I’ve given up on windows.”

how has technology advanced essay

Assistant Editor - 1 year cadetship

how has technology advanced essay

Program Development Officer - Business Processes

how has technology advanced essay

Executive Dean, Faculty of Health

how has technology advanced essay

Lecturer/Senior Lecturer, Earth System Science (School of Science)

how has technology advanced essay

Sydney Horizon Educators (Identified)

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

how has technology advanced essay

Podcast: How education technology can improve learning for all students

how has technology advanced essay

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

how has technology advanced essay

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Technology Is Changing Transportation, and Cities Should Adapt

  • Stefan M. Knupfer,
  • Eric Hannon,
  • Shannon Bouton

how has technology advanced essay

Different metro areas will need different solutions.

The shift to next-generation mobility systems won’t be easy for cities to manage. Some cities have chosen a wait-and-see approach, opting to watch mobility trends and develop policy responses as needed as trends play out. Officials might do better to envision what mobility ought to look like five to 15 years from now, and devise policies to bring about that future sooner than it might otherwise arrive.

It has taken only a few years for ride-hailing services to make urban journeys more convenient in many cities, much to the delight of city dwellers the world over. And as innovation brings self-driving cars, electric vehicles, in-vehicle data connectivity, mechanisms for sharing rides and vehicles, and other technologies to more people, getting around cities will become easier, faster, and safer.

  • SK Stefan M. Knupfer is a senior partner in the Stamford office and the North America leader of McKinsey’s Sustainability and Resource Productivity Practice.
  • EH Eric Hannon is a partner in the McKinsey Frankfurt office.
  • SB Shannon Bouton is the global manager of the McKinsey Center for Business and Environment and is based in McKinsey’s Detroit office.

Partner Center

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

How Technology Affects Our Lives – Essay

Do you wish to explore the use of information technology in daily life? Essays like the one below discuss this topic in depth. Read on to find out more.

Introduction

Technology in communication, technology in healthcare, technology in government, technology in education, technology in business, negative impact of technology.

Technology is a vital component of life in the modern world. People are so dependent on technology that they cannot live without it. Technology is important and useful in all areas of human life today. It has made life easy and comfortable by making communication and transport faster and easier (Harrington, 2011, p.35).

It has made education accessible to all and has improved healthcare services. Technology has made the world smaller and a better place to live. Without technology, fulfilling human needs would be a difficult task. Before the advent of technology, human beings were still fulfilling their needs. However, with technology, fulfillment of needs has become easier and faster.

It is unimaginable how life would be without technology. Technology is useful in the following areas: transport, communication, interaction, education, healthcare, and business (Harrington, 2011, p.35). Despite its benefits, technology has negative impacts on society. Examples of negative impacts of technology include the development of controversial medical practices such as stem cell research and the embracement of solitude due to changes in interaction methods. For example, social media has changed the way people interact.

Technology has led to the introduction of cloning, which is highly controversial because of its ethical and moral implications. The growth of technology has changed the world significantly and has influenced life in a great way. Technology is changing every day and continuing to influence areas of communication, healthcare, governance, education, and business.

Technology has contributed fundamentally in improving people’s lifestyles. It has improved communication by incorporating the Internet and devices such as mobile phones into people’s lives. The first technological invention to have an impact on communication was the discovery of the telephone by Graham Bell in 1875.

Since then, other inventions such as the Internet and the mobile phone have made communication faster and easier. For example, the Internet has improved ways through which people exchange views, opinions, and ideas through online discussions (Harrington, 2011, p.38). Unlike in the past when people who were in different geographical regions could not easily communicate, technology has eradicated that communication barrier. People in different geographical regions can send and receive messages within seconds.

Online discussions have made it easy for people to keep in touch. In addition, they have made socializing easy. Through online discussions, people find better solutions to problems by exchanging opinions and ideas (Harrington, 2011, p.39). Examples of technological inventions that facilitate online discussions include emails, online forums, dating websites, and social media sites.

Another technological invention that changed communication was the mobile phone. In the past, people relied on letters to send messages to people who were far away. Mobile phones have made communication efficient and reliable. They facilitate both local and international communication.

In addition, they enable people to respond to emergencies and other situations that require quick responses. Other uses of cell phones include the transfer of data through applications such as infrared and Bluetooth, entertainment, and their use as miniature personal computers (Harrington, 2011, p.40).

The latest versions of mobile phones are fitted with applications that enable them to access the Internet. This provides loads of information in diverse fields for mobile phone users. For business owners, mobile phones enhance the efficiency of their business operations because they are able to keep in touch with their employees and suppliers (Harrington, 2011, p.41). In addition, they are able to receive any information about the progress of their business in a short period of time.

Technology has contributed significantly to the healthcare sector. For example, it has made vital contributions in the fields of disease prevention and health promotion. Technology has aided in the understanding of the pathophysiology of diseases, which has led to the prevention of many diseases. For example, understanding the pathophysiology of the gastrointestinal tract and blood diseases has aided in their effective management (Harrington, 2011, p.49).

Technology has enabled practitioners in the medical field to make discoveries that have changed the healthcare sector. These include the discovery that peptic ulceration is caused by a bacterial infection and the development of drugs to treat schizophrenia and depressive disorders that afflict a greater portion of the population (Harrington, 2011, p.53). The development of vaccines against polio and measles led to their total eradication.

Children who are vaccinated against these diseases are not at risk of contracting the diseases. The development of vaccines was facilitated by technology, without which certain diseases would still be causing deaths in great numbers. Vaccines play a significant role in disease prevention.

Technology is used in health promotion in different ways. First, health practitioners use various technological methods to improve health care. eHealth refers to the use of information technology to improve healthcare by providing information on the Internet to people. In this field, technology is used in three main ways.

These include its use as an intervention tool, its use in conducting research studies, and its use for professional development (Lintonen et al, 2008, p. 560). According to Lintonenet al (2008), “e-health is the use of emerging information and communications technology, especially the internet, to improve or enable health and healthcare.” (p.560). It is largely used to support health care interventions that are mainly directed towards individual persons. Secondly, it is used to improve the well-being of patients during recovery.

Bedside technology has contributed significantly in helping patients recover. For example, medical professionals have started using the Xbox computer technology to develop a revolutionary process that measures limb movements in stroke patients (Tanja-Dijkstra, 2011, p.48). This helps them recover their manual competencies. The main aim of this technology is to help stroke patients do more exercises to increase their recovery rate and reduce the frequency of visits to the hospital (Lintonen et al, 2008, p. 560).

The government has utilized technology in two main areas. These include the facilitation of the delivery of citizen services and the improvement of defense and national security (Scholl, 2010, p.62). The government is spending large sums of money on wireless technologies, mobile gadgets, and technological applications. This is in an effort to improve their operations and ensure that the needs of citizens are fulfilled.

For example, in order to enhance safety and improve service delivery, Cisco developed a networking approach known as Connected Communities. This networking system connects citizens with the government and the community. The system was developed to improve the safety and security of citizens, improve service delivery by the government, empower citizens, and encourage economic development.

The government uses technology to provide information and services to citizens. This encourages economic development and fosters social inclusion (Scholl, 2010, p.62). Technology is also useful in improving national security and the safety of citizens. It integrates several wireless technologies and applications that make it easy for security agencies to access and share important information effectively. Technology is widely used by security agencies to reduce vulnerability to terrorism.

Technologically advanced gadgets are used in airports, hospitals, shopping malls, and public buildings to screen people for explosives and potentially dangerous materials or gadgets that may compromise the safety of citizens (Bonvillian and Sharp, 2001, par2). In addition, security agencies use surveillance systems to restrict access to certain areas. They also use technologically advanced screening and tracking methods to improve security in places that are prone to terrorist attacks (Bonvillian and Sharp, 2001, par3).

Technology has made significant contributions in the education sector. It is used to enhance teaching and learning through the use of different technological methods and resources. These include classrooms with digital tools such as computers that facilitate learning, online learning schools, blended learning, and a wide variety of online learning resources (Barnett, 1997, p.74). Digital learning tools that are used in classrooms facilitate learning in different ways. They expand the scope of learning materials and experiences for students, improve student participation in learning, make learning easier and quick, and reduce the cost of education (Barnett, 1997, p.75). For example, online schools and free learning materials reduce the costs that are incurred in purchasing learning materials. They are readily available online. In addition, they reduce the expenses that are incurred in program delivery.

Technology has improved the process of teaching by introducing new methods that facilitate connected teaching. These methods virtually connect teachers to their students. Teachers are able to provide learning materials and the course content to students effectively. In addition, teachers are able to give students an opportunity to personalize learning and access all learning materials that they provide. Technology enables teachers to serve the academic needs of different students.

In addition, it enhances learning because the problem of distance is eradicated, and students can contact their teachers easily (Barnett, 1997, p.76). Technology plays a significant role in changing how teachers teach. It enables educators to evaluate the learning abilities of different students in order to devise teaching methods that are most efficient in the achievement of learning objectives.

Through technology, teachers are able to relate well with their students, and they are able to help and guide them. Educators assume the role of coaches, advisors, and experts in their areas of teaching. Technology helps make teaching and learning enjoyable and gives it meaning that goes beyond the traditional classroom set-up system (Barnett, 1997, p.81).

Technology is used in the business world to improve efficiency and increase productivity. Most important, technology is used as a tool to foster innovation and creativity (Ray, 2004, p.62). Other benefits of technology to businesses include the reduction of injury risk to employees and improved competitiveness in the markets. For example, many manufacturing businesses use automated systems instead of manual systems. These systems eliminate the costs of hiring employees to oversee manufacturing processes.

They also increase productivity and improve the accuracy of the processes because of the reduction of errors (Ray, 2004, p.63). Technology improves productivity due to Computer-aided Manufacturing (CAM), Computer-integrated Manufacturing (CIM), and Computer-aided Design (CAD). CAM reduces labor costs, increases the speed of production, and ensures a higher level of accuracy (Hunt, 2008, p.44). CIM reduces labor costs, while CAD improves the quality and standards of products and reduces the cost of production.

Another example of the use of technology in improving productivity and output is the use of database systems to store data and information. Many businesses store their data and other information in database systems that make accessibility of information fast, easy, and reliable (Pages, 2010, p.44).

Technology has changed how international business is conducted. With the advent of e-commerce, businesses became able to trade through the Internet on the international market (Ray, 2004, p.69). This means that there is a large market for products and services. In addition, it implies that most markets are open 24 hours a day.

For example, customers can shop for books or music on Amazon.com at any time of the day. E-commerce has given businesses the opportunity to expand and operate internationally. Countries such as China and Brazil are taking advantage of opportunities presented by technology to grow their economy.

E-commerce reduces the complexities involved in conducting international trade (Ray, 2004, p.71). Its many components make international trade easy and fast. For example, a BOES system allows merchants to execute trade transactions in any language or currency, monitor all steps involved in transactions, and calculate all costs involved, such as taxes and freight costs (Yates, 2006, p.426).

Financial researchers claim that a BOES system is capable of reducing the cost of an international transaction by approximately 30% (Ray, 2004, p.74). BOES enables businesses to import and export different products through the Internet. This system of trade is efficient and creates a fair environment in which small and medium-sized companies can compete with large companies that dominate the market.

Despite its many benefits, technology has negative impacts. It has negative impacts on society because it affects communication and has changed the way people view social life. First, people have become more anti-social because of changes in methods of socializing (Harrington, 2008, p.103). Today, one does not need to interact physically with another person in order to establish a relationship.

The Internet is awash with dating sites that are full of people looking for partners and friends. The ease of forming friendships and relationships through the Internet has discouraged many people from engaging in traditional socializing activities. Secondly, technology has affected the economic statuses of many families because of high rates of unemployment. People lose jobs when organizations and businesses embrace technology (Harrington, 2008, p.105).

For example, many employees lose their jobs when manufacturing companies replace them with automated machines that are more efficient and cost-effective. Many families are struggling because of the lack of a constant stream of income. On the other hand, technology has led to the closure of certain companies because the world does not need their services. This is prompted by technological advancements.

For example, the invention of digital cameras forced Kodak to close down because people no longer needed analog cameras. Digital cameras replaced analog cameras because they are easy to use and efficient. Many people lost their jobs due to changes in technology. Thirdly, technology has made people lazy and unwilling to engage in strenuous activities (Harrington, 2008, p.113).

For example, video games have replaced physical activities that are vital in improving the health of young people. Children spend a lot of time watching television and playing video games such that they have little or no time for physical activities. This has encouraged the proliferation of unhealthy eating habits that lead to conditions such as diabetes.

Technology has elicited heated debates in the healthcare sector. Technology has led to medical practices such as stem cell research, implant embryos, and assisted reproduction. Even though these practices have been proven viable, they are highly criticized on the grounds of their moral implications on society.

There are many controversial medical technologies, such as gene therapy, pharmacogenomics, and stem cell research (Hunt, 2008, p.113). The use of genetic research in finding new cures for diseases is imperative and laudable. However, the medical implications of these disease treatment methods and the ethical and moral issues associated with the treatment methods are critical. Gene therapy is mostly rejected by religious people.

They claim that it is against natural law to alter the gene composition of a person in any way (Hunt, 2008, p.114). The use of embryonic stem cells in research is highly controversial, unlike the use of adult stem cells. The controversy exists because of the source of the stem cells. The cells are obtained from embryos. There is a belief among many people that life starts after conception.

Therefore, using embryos in research means killing them to obtain their cells for research. The use of embryo cells in research is considered in the same light as abortion: eliminating a life (Hunt, 2008, p.119). These issues have led to disagreements between the science and the religious worlds.

Technology is a vital component of life in the modern world. People are so dependent on technology that they cannot live without it. Technology is important and useful in all areas of human life today.

It has made life easy and comfortable by making communication faster and travel faster, making movements between places easier, making actions quick, and easing interactions. Technology is useful in the following areas of life: transport, communication, interaction, education, healthcare, and business. Despite its benefits, technology has negative impacts on society.

Technology has eased communication and transport. The discovery of the telephone and the later invention of the mobile phone changed the face of communication entirely. People in different geographical regions can communicate easily and in record time. In the field of health care, technology has made significant contributions in disease prevention and health promotion. The development of vaccines has eradicated certain diseases, and the use of the Internet is vital in promoting health and health care.

The government uses technology to enhance the delivery of services to citizens and the improvement of defense and security. In the education sector, teaching and learning processes have undergone significant changes owing to the impact of technology. Teachers are able to relate to different types of learners, and the learners have access to various resources and learning materials. Businesses benefit from technology through the reduction of costs and increased efficiency of business operations.

Despite the benefits, technology has certain disadvantages. It has negatively affected human interactions and socialization and has led to widespread unemployment. In addition, its application in the healthcare sector has elicited controversies due to certain medical practices such as stem cell research and gene therapy. Technology is very important and has made life easier and more comfortable than it was in the past.

Barnett, L. (1997). Using Technology in Teaching and Learning . New York: Routledge.

Bonvillian, W., and Sharp, K. (2011). Homeland Security Technology . Retrieved from https://issues.org/bonvillian/ .

Harrington, J. (2011). Technology and Society . New York: Jones & Bartlett Publishers.

Hunt, S. (2008). Controversies in Treatment Approaches: Gene Therapy, IVF, Stem Cells and Pharmagenomics. Nature Education , 19(1), 112-134.

Lintonen, P., Konu, A., and Seedhouse, D. (2008). Information Technology in Health Promotion. Health Education Research , 23(3), 560-566.

Pages, J., Bikifalvi, A., and De Castro Vila, R. (2010). The Use and Impact of Technology in Factory Environments: Evidence from a Survey of Manufacturing Industry in Spain. International Journal of Advanced Manufacturing Technology , 47(1), 182-190.

Ray, R. (2004). Technology Solutions for Growing Businesses . New York: AMACOM Div American Management Association.

Scholl, H. (2010). E-government: Information, Technology and Transformation . New York: M.E. Sharpe.

Tanja-Dijkstra, K. (2011). The Impact of Bedside Technology on Patients’ Well-Being. Health Environments Research & Design Journal (HERD) , 5(1), 43-51.

Yates, J. (2006). How Business Enterprises use Technology: Extending the Demand-Side Turn. Enterprise and Society , 7(3), 422-425.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, August 28). How Technology Affects Our Lives – Essay. https://ivypanda.com/essays/technology-affecting-our-daily-life/

"How Technology Affects Our Lives – Essay." IvyPanda , 28 Aug. 2023, ivypanda.com/essays/technology-affecting-our-daily-life/.

IvyPanda . (2023) 'How Technology Affects Our Lives – Essay'. 28 August.

IvyPanda . 2023. "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

1. IvyPanda . "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

Bibliography

IvyPanda . "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

  • Pros and Cons of Mobile Phones
  • Are Cell Phone Dangerous?
  • Relationship with Cell Phones
  • Mobile Phone Base Stations: Overview of Technology
  • Development of Mobile Phones and the Future
  • Is Using Cell Phone Dangerous?
  • Mobile Phone Use Effects on People’s Lifestyles
  • Mobile Phones and True Communication
  • You Cannot Live Without Mobile Phones
  • Future in Marketing using the Mobile Phone
  • Inventions That the World Would Do Without
  • Technology and Its Impact in the World
  • The Evolution of the Automobile & Its Effects on Society
  • How Computers Affect Our Lives
  • Evolution of Power Production

How Technology Can Help Us Remember Better

My photo camera creates best pictures of Spring

I n the digital age, we have the technology to document our lives in extraordinary detail via photographs, voice recordings, and social media posts. In theory, this ability to effortlessly capture the important moments of our lives should enrich our ability to remember those moments. But in practice, people often tell me they experience the opposite.

I study the neuroscience of memory and one question I hear again and again is whether technology is making us “dumber” —or, more precisely, whether it’s hurting our ability to remember. For some, the question is motivated by worry about the amount of time their children spend on screens or mobile devices. For others, it reflects concerns about their own memory problems.

A common fear is that there might be a “use it or lose it” principle at play—that an increasing dependence on our devices for reminders will lead us to lose our own capabilities to remember. This might be true for certain skills. If, for instance, you always rely on navigation apps in new or unfamiliar neighborhoods, you might not attend to features in the environment to create a mental map that would allow you to learn to navigate on your own. However, there is no reason to think that relying on technology to store important information will somehow lead your brain to wither in ways that are bad for memory. In fact, I’m all for outsourcing mundane memory tasks, like memorizing phone numbers, passwords, email addresses, and appointments. I don’t have a photographic memory—but my phone does.

So, if technology can help us “free up space” for the things we want to remember when we need to remember them, why do so many of us feel like its presence in our lives is leading us to form blurry, fragmented, and impoverished memories?

The short answer: technology isn’t the problem—it’s how we interact with it.

To form lasting memories, we need to focus on what is distinct about the present moment, those immersive sensory details we can call back up to reconstruct an experience when we remember. As we go about our daily lives, we usually do a pretty good job of focusing on what’s relevant, and for that, we can thank a part of the brain called the prefrontal cortex. The prefrontal cortex helps us focus attention on and meaningfully process what we need to learn, to search for memories that are “in there somewhere,” and to keep our recollections accurate when we manage to remember the right thing.

But, in a world where our conversations, activities, and meetings are routinely interrupted by text messages, emails, and phone calls, these abilities get swamped—and we often compound the problem by splitting our attention between multiple goals. Multitasking can make us feel that we’re being more efficient. Many of us even pride ourselves on our ability to switch from one task to another, but it comes at a cost.

Read More: Why Multitasking Is Bad for You

Each time we are routinely distracted or intentionally toggle between different media streams (such as reading a text message while maintaining a conversation), prefrontal resources are sucked up to regain our focus. The result is that we remain one step behind, and after all is done, we are only left with blurry, fragmented memories.

Outside of the workplace, we often use technology to document our lives. The proliferation of “Instagram walls” and the throngs of people at concerts recording the action with their smartphones illustrate how technology has changed our lives. The ubiquity of smartphone cameras enables us to easily document our experiences, yet for most of us this hasn’t translated into a more expansive memory for the personal past. Again, the problem isn’t necessarily with the technology, but rather that we are filtering our experiences through the lens of a camera.

Taking photos does not necessarily have a good or bad effect on memory. The critical factors involve how you direct your attention and whether you meaningfully engage with the subject matter. Our brains are designed to do more with less, by engaging meaningfully with a little bit of high-quality information rather than amassing a massive catalog of information. When we focus on “documenting” over “experiencing,” we don’t pay attention to what is distinctive in the moment, the sights, sounds, smells, and feelings that make an experience unique—and memorable. Without those immersive details, something that was so vivid when we experienced it (a family vacation or child’s violin recital) can wind up feeling as distant to us as a story we read in a book. By trying to record every moment, we don’t focus on any one facet of the experience in enough detail to form distinctive memories that we will retain.

The negative potential of technology is exacerbated by a culture of sharing experiences on social media platforms. Social media engagement can have a negative effect on memory, partly because it involves multitasking (e.g., switching between recording the moment and engagement with social media platforms) and increases the potential for distraction.

Social media itself isn’t bad for memory, per se. Like most forms of technology, it’s a tool that when used properly can even enhance our memory of an event, but the images we post are often accompanied by captions with brief descriptions, rather than a thorough reflection on the event. Some platforms like Snapchat and Instagram stories, feature photo posts that disappear within 24 hours—an apt metaphor for the way in which mindless documentation can leave us bereft of lasting memories for our experiences.

Read More: How to Make Your Mind Happy, According to Neuroscience

Technology can enhance memory if it is used consistently with principles that help us remember. Thoughtfully taking pictures or videos at opportune moments can orient us to what is interesting and distinctive around us. My daughter, for instance, likes to selectively photograph plants and flowers that catch her eye on our nature walks, which allows her to pause and fully take in those aspects of the scenery as we are experiencing them in the moment.

After you take those pictures and videos, organize them in a way that will allow you to find them later (as we used to in the old days with photo albums) and make sure to revisit them later on. In the following weeks, revisit those photos and use them as cues to mentally re-experience those events, bringing back as many details as possible. By using the photos almost like a “test” of your memory, and spacing out those tests, you can enhance your ability to retain memories of the entire event, not only what is in the photo. Journaling can be another way to enhance memory because it allows us to test our memory for an event and also integrate it in a meaningful way, so that we can shape our narrative of the experience.

As with memory itself, a key principle for technology is that “less is more.” All the life-logging in the world will not enable us to remember all our experiences, nor is that a desirable goal in the first place. Our memories for events are selective, but they also can have a great deal of detail, meaning, and emotion. By mindfully using technology in ways that allow us to access those aspects of our past experiences, we can hold on to what matters.

More Must-Reads From TIME

  • The 100 Most Influential People of 2024
  • How Far Trump Would Go
  • Scenes From Pro-Palestinian Encampments Across U.S. Universities
  • Saving Seconds Is Better Than Hours
  • Why Your Breakfast Should Start with a Vegetable
  • 6 Compliments That Land Every Time
  • Welcome to the Golden Age of Ryan Gosling
  • Want Weekly Recs on What to Watch, Read, and More? Sign Up for Worth Your Time

Contact us at [email protected]

How Has Technology Changed Education?

Technology has impacted almost every aspect of life today, and education is no exception. Or is it? In some ways, education seems much the same as it has been for many years. A 14th century illustration by Laurentius de Voltolina depicts a university lecture in medieval Italy. The scene is easily recognizable because of its parallels to the modern day. The teacher lectures from a podium at the front of the room while the students sit in rows and listen. Some of the students have books open in front of them and appear to be following along. A few look bored. Some are talking to their neighbors. One appears to be sleeping. Classrooms today do not look much different, though you might find modern students looking at their laptops, tablets, or smart phones instead of books (though probably open to Facebook). A cynic would say that technology has done nothing to change education.

However, in many ways, technology has profoundly changed education. For one, technology has greatly expanded access to education. In medieval times, books were rare and only an elite few had access to educational opportunities. Individuals had to travel to centers of learning to get an education. Today, massive amounts of information (books, audio, images, videos) are available at one’s fingertips through the Internet, and opportunities for formal learning are available online worldwide through the Khan Academy, MOOCs, podcasts, traditional online degree programs, and more. Access to learning opportunities today is unprecedented in scope thanks to technology.

Opportunities for communication and collaboration have also been expanded by technology. Traditionally, classrooms have been relatively isolated, and collaboration has been limited to other students in the same classroom or building. Today, technology enables forms of communication and collaboration undreamt of in the past. Students in a classroom in the rural U.S., for example, can learn about the Arctic by following the expedition of a team of scientists in the region, read scientists’ blog posting, view photos, e-mail questions to the scientists, and even talk live with the scientists via a videoconference. Students can share what they are learning with students in other classrooms in other states who are tracking the same expedition. Students can collaborate on group projects using technology-based tools such as wikis and Google docs. The walls of the classrooms are no longer a barrier as technology enables new ways of learning, communicating, and working collaboratively.

Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina’s illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the “sage on the stage” has been in education for a long time, and it is still very much in evidence today. However, because of the access to information and educational opportunity that technology has enabled, in many classrooms today we see the teacher’s role shifting to the “guide on the side” as students take more responsibility for their own learning using technology to gather relevant information. Schools and universities across the country are beginning to redesign learning spaces to enable this new model of education, foster more interaction and small group work, and use technology as an enabler.

Technology is a powerful tool that can support and transform education in many ways, from making it easier for teachers to create instructional materials to enabling new ways for people to learn and work together. With the worldwide reach of the Internet and the ubiquity of smart devices that can connect to it, a new age of anytime anywhere education is dawning. It will be up to instructional designers and educational technologies to make the most of the opportunities provided by technology to change education so that effective and efficient education is available to everyone everywhere.

You can help shape the influence of technology in education with an Online Master of Science in Education in Learning Design and Technology from Purdue University Online. This accredited program offers studies in exciting new technologies that are shaping education and offers students the opportunity to take part in the future of innovation.

Learn more about the online MSEd in Learning Design and Technology at Purdue University today and help redefine the way in which individuals learn. Call (877) 497-5851 to speak with an admissions advisor or to request more information.

55 Ways Technology Has Changed Our Lives for the Better

By: Author Valerie Forgeard

Posted on September 18, 2023

Categories Technology

You’re living in an era of unprecedented technological advancement. It’s transformed how you communicate, care for your health, learn, and even do your daily chores. Isn’t it exciting to consider how much easier life has become?

This article delves into the ways technology has bettered our lives and dares to dream about what might be just around the corner.

Key Takeaways

  • Digital diplomacy and social media platforms have given ordinary people a global voice, shifting power dynamics and allowing for unprecedented connectivity.
  • Advancements in health and medicine, such as genetic engineering, AI diagnostics, and robotic surgery, have led to more precise and personalized treatments, giving patients more control over their health.
  • The transformation of education through digital tools, virtual field trips, and gamified learning has made learning more engaging, accessible, and immersive, breaking down traditional boundaries.
  • Technology has had a positive impact on daily lives, with smart homes, digital farming, wearable tech, and increased connectivity through social media platforms making life more efficient, convenient, and less stressful.

15 Ways Technology Has Uplifted Our Lives

In an era where technology is an inseparable part of our existence, it’s hard to imagine life without our digital companions. While there are debates on the negative impacts of technology, one can’t deny the substantial positive effects it has on our daily lives.

From healthcare advancements to simplifying mundane tasks, technology has indeed made our lives better in countless ways.

Here are 55 ways technology has unequivocally changed our lives for the better:

Communication

  • Instant Messaging – Quick and real-time chats.
  • Video Confering – Long-distance face-to-face conversations.
  • Social Media – A new level of connectivity and community.
  • Telemedicine – Remote medical consultations.
  • Wearable Fitness Tech – Real-time health tracking.
  • Genetic Testing – Customized healthcare and early diagnosis.

Convenience

  • Online Banking – Finances at your fingertips.
  • Ride-Sharing Apps – Convenient and cost-effective transportation.
  • E-commerce – The world’s marketplace in your pocket.

Information & Education

  • Search Engines – Instant information retrieval.
  • E-books & E-libraries – Portable and accessible knowledge.
  • Online Courses – Learning opportunities for everyone, everywhere.

Entertainment

  • Streaming Services – Entertainment on-demand.
  • Virtual Reality – Lifelike digital experiences.
  • Digital Art Platforms – Creative outlets for modern artists.

Productivity

  • Cloud Computing – Access your files from anywhere.
  • Project Management Software – Streamline team efforts.
  • Automated Customer Service – 24/7 support.

Home & Lifestyle

  • Smart Homes – Automated and personalized living spaces.
  • Food Delivery Apps – Gourmet meals at your door.
  • Online Dating – Meet your match from miles away.

Safety & Security

  • GPS Tracking – Never get lost.
  • Biometric Verification – Enhanced security measures.
  • Blockchain – Secure and transparent transactions.

Business & Economics

  • E-commerce Platforms – Small business empowerment.
  • Data Analytics – Informed decision-making.
  • Digital Marketing – Precise and scalable reach.

Social Good

  • Crowdfunding – Direct access to capital for startups and causes.
  • Online Petitions – Mass mobilization for change.
  • Translation Apps – Break down language barriers.

Environment

  • Electric Cars – A step towards sustainability.
  • Solar Panels – Clean energy for all.
  • Climate Modeling – Better preparedness for environmental challenges.

Scientific Research

  • Computer Simulations – Virtual laboratories for safe experimentation.
  • DNA Sequencing – Unveiling the blueprints of life.
  • Space Exploration – Unlocking the cosmos.

Travel & Exploration

  • Travel Aggregators – Customized itineraries.
  • Virtual Tours – Travel from the comfort of home.
  • Digital Maps – Interactive and up-to-date navigation.
  • Remote Work Tools – Work from anywhere.
  • Job Search Engines – Tailored career opportunities.
  • Freelance Platforms – Skill-based income sources.

Personal Development

  • Meditation Apps – Mindfulness at your fingertips.
  • Financial Planning Software – Secure your future.
  • DIY Platforms – Learn new skills and hobbies.

Specialized Fields

  • Agricultural Drones – Precision farming.
  • 3D Printing – From digital designs to physical products.
  • Augmented Reality – Enhanced interactive experiences.

Kids & Education

  • Educational Games – Learning made fun.
  • Parental Control Apps – Keep your children safe online.
  • Virtual Classrooms – Learning without borders.

Pets & Animal Care

  • Pet Tracking Devices – Keep tabs on your furry friends.
  • Automated Feeders – Timely nutrition for pets.
  • Online Vet Consultations – Professional care from home.

Miscellaneous

  • Voice Assistants – Hands-free help and information.

In a world that is continuously evolving, technology serves as a tool for progress, addressing complex problems and making our lives more enjoyable.

The Revolution of Communication Through Technology

You’ve probably noticed how technology has revolutionized the way we communicate, haven’t you? A perfect example is digital diplomacy. It’s an evolved form of international relations where states use social media platforms to connect with their citizens and other nations. You’re no longer confined by traditional media; you’re free to engage in global conversations instantly.

By observing social media influence, it’s clear that power dynamics are shifting; ordinary people now have a voice that can reach far and wide at lightning speed. But remember, this freedom isn’t without responsibility. The rapid dissemination of information demands critical thinking and discernment.

As we explore these technological wonders, let’s not forget about the strides made in health and medicine, another arena transformed by technology.

Technological Advancements in Health and Medicine

In the realm of health and medicine, there are incredible advancements that are prolonging life expectancy and improving patient care. The fusion of Genetic Engineering with Artificial Intelligence is unlocking new doors in healthcare innovation, offering an unprecedented level of freedom. Patients can now take control over their health.

Consider these four revolutionary developments:

  • Precision Medicine: Genetic engineering enables tailored treatments based on your unique genetic makeup.
  • AI Diagnostics: AI can analyze medical images faster and more accurately than humans.
  • Robotic Surgery: Surgeons use AI-powered robots for precise, minimally invasive procedures.
  • Genome Editing: Genetic diseases could soon be a thing of the past thanks to CRISPR technology.

How Technology Has Transformed Education

Education has been significantly transformed by the advent of digital tools, making learning more engaging and accessible than ever before. Imagine this: you’re stepping into the pyramids of Egypt or exploring Mars’ surface, all from your classroom through virtual field trips. It’s not science fiction; it’s a reality today. These tech advancements tear down traditional boundaries, empowering you to explore beyond your physical confines.

Similarly, gamified learning turns monotonous lessons into exciting challenges. You’re no longer memorizing facts; instead, you’re on an adventure quest where each level up means mastering a new concept. This immersive approach not only enhances retention but also fuels self-paced learning.

The Impact of Technology on Our Daily Lives

Consider this: you’re now living in an era where digital advancements have seeped into every aspect of your daily routine, transforming the way you interact with the world.

  • Smart Homes : Envision controlling your home’s appliances, lighting, and security systems right from your smartphone. It’s not a sci-fi movie; it’s reality.
  • Digital Farming : Imagine farmers utilizing data-driven insights to improve crop yields and reduce waste – that’s digital farming for you.
  • Healthcare : Wearable tech is helping monitor vital signs in real time, revolutionizing healthcare.
  • Communication : Social media platforms provide unprecedented connectivity.

These aren’t just conveniences; they’re radical shifts freeing up time and resources, making life more efficient and less stressful.

Future Prospects: How Technology Will Continue to Improve Our Lives

You’re probably wondering what’s next on the horizon as advancements continue to redefine our daily routines and expectations.

Imagine this: Smart Homes that not only respond to your commands but anticipate your needs, learning from your habits to create a living space that’s uniquely tailored to you.

Think of an autonomous vehicle that understands your schedule, ready to chauffeur you around at a moment’s notice, liberating you from the constraints of public transport or even the need for personal car ownership.

Such advancements are not mere science fiction; they’re becoming our reality and will continue to revolutionize how we live.

Frequently Asked Questions

What are the negative impacts of technology on our society.

Certainly, technology is a double-edged sword. On one side, it has revolutionized our world, making life more convenient and efficient. On the flip side, it has introduced a new set of challenges including potential technology addiction. Excessive screen time can impinge on physical health and real-world social interactions. Furthermore, the digital divide exacerbates existing inequalities, as those without access to technology find themselves increasingly marginalized.

How Has Technology Contributed to Environmental Degradation?

The environmental cost of technology is alarming. From resource-intensive manufacturing processes to the challenge of electronic waste disposal, technology contributes to environmental stress. Practices like unsustainable mining for rare earth minerals and the carbon footprint of data centers should be part of any discussion about the environmental impact of technology.

What Are Some Common Privacy Concerns Related to the Use of Technology?

Privacy has become a major concern in the age of technology. Issues range from data breaches to unauthorized data collection by corporations and potential governmental surveillance. Implementing strong cybersecurity measures and being discerning about the personal information you share online are more crucial than ever.

How Can Technology Contribute to Social Isolation?

Ironically, while technology has the power to connect us globally, it can also isolate us from our immediate surroundings. The convenience of online interactions can sometimes make them replace in-person socialization, contributing to feelings of loneliness and social isolation. Striking a balance by consciously allocating time for offline interactions can help mitigate this effect.

What Are the Potential Risks and Challenges Associated With Relying Heavily on Technology?

Over-dependence on technology brings its own set of risks. Not only does it make us vulnerable to digital addiction, but it also increases our exposure to cybersecurity threats such as hacking and identity theft. It’s essential to exercise digital prudence by maintaining updated security software and employing best practices in data protection to ensure that our reliance on technology doesn’t compromise our freedom or well-being.

Impact of Technology on Agriculture

Technological innovations have greatly shaped agriculture throughout time. From the creation of the plow to the global positioning system (GPS) driven precision farming equipment, humans have developed new ways to make farming more efficient and grow more food. We are constantly working to find new ways to irrigate crops or breed more disease resistant varieties. These iterations are key to feeding the ever-expanding global population with the decreasing freshwater supply.

Explore developments in agricultural technology and its impacts on civilization with this curated collection of classroom resources.

Earth Science, Geography

  • Share full article

Advertisement

Supported by

Tesla Reaches Deals in China on Self-Driving Cars

Elon Musk met with the country’s premier, a longtime Tesla ally, and secured regulatory nods and a necessary partnership with a Chinese tech company.

Elon Musk and Li Qiang, the Chinese premier, both wearing dark suits, white shirts and ties, sit alongside one another with a small table between them.

By Keith Bradsher and Jack Ewing

Keith Bradsher reported from Beijing, and Jack Ewing from New York.

Tesla has concluded a series of arrangements with regulators and a Chinese artificial intelligence company during a quick trip to Beijing on Sunday and Monday by Elon Musk, the carmaker’s chief executive, potentially clearing the way for the company to offer its most advanced self-driving software on cars in China.

Tesla had faced a couple of hurdles to offering the latest level of autonomous driving, which it calls supervised Full Self-Driving. It has needed approval from Chinese regulators, who questioned whether the company took adequate precautions to protect data. And it has needed access to extremely high-resolution maps across the country.

The timing of Mr. Musk’s trip was significant. He arrived in China days after he identified self-driving technology and artificial intelligence as critical to Tesla’s future. Tesla is not just a car company, Mr. Musk told investors last week, saying, “We should be thought of as an A.I. robotics company.”

Approval of the technology in China would give Mr. Musk a much-needed win after regulators in the United States issued a harsh assessment of the system’s safety and performance in a report released on Friday.

Mr. Musk flew on his private jet to Beijing on Sunday morning and met almost immediately with Premier Li Qiang, China’s No. 2 official after Xi Jinping. Mr. Li is a longtime ally of Mr. Musk who, when he served as Communist Party secretary in Shanghai, helped clear the way for Tesla’s construction there of what is now the company’s largest car assembly plant.

The government-linked China Association of Automobile Manufacturers later announced that Tesla and five Chinese automakers had obtained approval from authorities and the association for their data security precautions on dozens of car models. The rules bar automakers in China from using software that would identify the face of anyone outside his or her vehicle, and include many other restrictions. Self-driving systems use cameras to guide vehicles.

The cars included Tesla’s Model 3 and Model Y. The five Chinese manufacturers included BYD , which is China’s dominant electric vehicle company and Tesla’s primary global rival, and Nio , a longtime player in China’s auto sector.

Tesla has run a data center in Shanghai for the past three years that handles the extensive information accumulated by the cars it has sold in China as they navigate the country’s roads. China has tightened its data security regulations in recent years to severely limit information leaving the country.

Tesla has separately concluded a deal with one of China’s largest tech companies, Baidu, to obtain high-resolution maps of road lanes, according to a person familiar with the deal who was not authorized to speak about it publicly. Tesla cars in China have used Baidu maps for four years for basic navigation, directing drivers where to turn, but have not previously had access to the higher-resolution maps.

Baidu is one of about 20 Chinese companies with the necessary credentials from the Chinese government to obtain access to high-resolution mapping data. Automakers are required to team up with one of these companies or be forced to rely heavily on cameras on their vehicles to create their own maps, as Tesla has done until now.

No details were immediately available on Monday on what Tesla has agreed to do in exchange for the approvals. China has a long history of urging multinationals to share considerable technology in exchange for access to its market. But the Chinese government insists that it does not force foreign companies to surrender their commercial secrets, and promised the Trump administration it would not do so.

Tesla’s stock jumped Monday on the news of the approvals in China. The company last week reported that its profit plunged 55 percent in the first three months of the year, while its revenue fell 9 percent. Days earlier, Tesla announced that it would lay off 10 percent of its worldwide work force, or about 14,000 employees .

As Chinese automakers introduce large numbers of their own electric car models this year, Tesla is doubling down on self-driving capabilities, putting the features into cars ahead of other automakers, despite concerns by regulators and safety experts about the capability of the company’s technology.

Tesla already offers what it calls “supervised Full Self Driving” in the United States. The company charges $99 a month to upgrade Tesla cars from its Autopilot or Enhanced Autopilot driver-assistance systems to the new level.

The main traffic safety regulator in the United States said on Friday that it was investigating Tesla’s recall of its Autopilot driver-assistance system because of concerns that the company had not done enough to ensure that drivers remained attentive while using the technology.

The regulator, the National Highway Traffic Safety Administration, said there had been at least 29 fatal accidents involving Autopilot and Full Self-Driving from January 2018 to August 2023. The analysis did not assess whether the number of deaths was more or fewer than if humans had been driving without those systems in use. Technology used by other carmakers does a better job of making sure that drivers are paying attention, the highway safety agency said.

Tesla’s use of the term autopilot “may lead drivers to believe that the automation has greater capabilities than it does and invite drivers to overly trust the automation,” the agency said.

The agency is also investigating two fatal crashes involving Ford Motors’ BlueCruise system, which allows drivers to take their hands off the steering wheel on many U.S. highways.

China has also had deaths from mistakes made by self-driving cars, which are now offered by numerous Chinese companies as well as Tesla. But crashes involving errors by human drivers are the frequent subject of viral videos in China, feeding a popular perception that self-driving cars may be safer.

Joy Dong contributed research.

Keith Bradsher is the Beijing bureau chief for The Times. He previously served as bureau chief in Shanghai, Hong Kong and Detroit and as a Washington correspondent. He has lived and reported in mainland China through the pandemic. More about Keith Bradsher

Jack Ewing writes about the auto industry with an emphasis on electric vehicles. More about Jack Ewing

The World of Elon Musk

The billionaire’s portfolio includes the world’s most valuable automaker, an innovative rocket company and plenty of drama..

Tesla: Elon Musk has gutted the part of the carmaking company responsible for building charging stations for electric vehicles , sowing uncertainty about the future of the largest and most reliable U.S. charging network.

X: An Australian court extended an injunction ordering the social media platform to remove videos depicting the recent stabbing of a bishop , setting the country’s judicial system up for a clash with Musk.

A $47 Billion Pay Deal: Despite   facing criticism that Tesla is overly beholden to Musk , its board of directors said that the company would essentially give him everything he wanted, including the biggest pay package in corporate history.

SpaceX: President Biden wants companies that use American airspace for rocket launches to start paying taxes into a federal fund  that finances the work of air traffic controllers.

Business With China : Tesla and China built a symbiotic relationship that made Musk ultrarich. Now, his reliance on the country may give Beijing leverage .  

IMAGES

  1. Technology Essay

    how has technology advanced essay

  2. Importance of Technology Essay

    how has technology advanced essay

  3. Essay on Technology

    how has technology advanced essay

  4. Argumentative Essay On TechnologyStudy Paragraphs

    how has technology advanced essay

  5. How to Write a Technology Essay: Tips, Topics and Example

    how has technology advanced essay

  6. Essay on Technological effects on education

    how has technology advanced essay

VIDEO

  1. External power supplies and integrateds

  2. Information Technology Essay writing in English..Short Essay on Technology Information in 150 words

  3. Are We Draining Earth's Lifeline? The Groundwater Crisis #water #groundwater #world #hydrology

  4. High Quality Content for Research Article -Samwell AI -AI Tool to generate Essay,summarize & Analyse

  5. Scams, Death, and "Glamour" Films SMSoup Ep70

  6. Advanced Essay C1

COMMENTS

  1. Here's how technology has changed the world since 2000

    Since the dotcom bubble burst back in 2000, technology has radically transformed our societies and our daily lives. From smartphones to social media and healthcare, here's a brief history of the 21st century's technological revolution. Just over 20 years ago, the dotcom bubble burst, causing the stocks of many tech firms to tumble.

  2. How Is Technology Changing the World, and How Should the World Change

    A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used.

  3. Technological Advancement Essay

    Introduction. Technological advancement has taken major strides in bringing liberation to the divergent human wants and gratifications. After keen observation, I have come to realize that technological advancement plays a critical role in solving the major crisis of food shortages in the modern world. In the state of Virginia during the 17th ...

  4. How Technology Has Changed Our Lives

    Hook Examples for Technology Essay. A Digital Revolution: Enter the era of smartphones, AI, and the Internet of Things, where technology is the driving force. Join me as we explore how technology has transformed our lives and the profound impact it has on society. An Intriguing Quote: Arthur C. Clarke once said, "Any sufficiently advanced ...

  5. Technology over the long run: zoom out to see how dramatically the

    The big visualization offers a long-term perspective on the history of technology. 1. The timeline begins at the center of the spiral. The first use of stone tools, 3.4 million years ago, marks the beginning of this history of technology. 2 Each turn of the spiral represents 200,000 years of

  6. The present and future of AI

    The 2021 report is the second in a series that will be released every five years until 2116. Titled "Gathering Strength, Gathering Storms," the report explores the various ways AI is increasingly touching people's lives in settings that range from movie recommendations and voice assistants to autonomous driving and automated medical ...

  7. How artificial intelligence is transforming the world

    Their advanced algorithms, sensors, and cameras incorporate experience in current operations, and use dashboards and visual displays to present information in real time so human drivers are able ...

  8. How Tech Has Changed Our Lives In The Last 10 Years : NPR

    In a minute, we'll look ahead to the next decade in tech. Before we do, let's revisit this one. We asked three experts to pick what they see as the most significant ways tech has changed our lives ...

  9. The Impact of Digital Technologies

    Digital advances can support and accelerate achievement of each of the 17 Sustainable Development Goals - from ending extreme poverty to reducing maternal and infant mortality, promoting ...

  10. How AI and other technology changed our lives

    Artificial intelligence (AI) technology has been around for some time and AI-powered consumer electronics, from smart home devices to personalized assistants, have become commonplace. However, the emergence of mainstream applications of generative AI has dominated the sector in recent years. In 2022, OpenAI unveiled its chatbot, ChatGPT.

  11. How technology is changing language and the way we think about the world

    What most people haven't considered is how technologies affect our language and how these changes are affecting the way we speak and even the way we think. One of the key ways we see this is ...

  12. Technological advancement in the era of COVID-19

    Advanced technology has improved Telehealth and the administration of healthcare to patients with the coronavirus. Telehealth is an effective way made possible by technology to prevent the spread of COVID 19 and provide essential primary care to patients. 12 The doctors can diagnose patients through the description they give via the chat box or ...

  13. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  14. IELTS Essay: Advanced Technology

    1. The advances made in the field of technology are not shared equally by all age demographics. 2. In my opinion, the elderly in particular could benefit more in terms of convenience and this could be achieved by businesses transitioning to primarily online business models. Paraphrase the overall essay topic.

  15. How Technology Is Changing the Future of Higher Education

    That's 30 percent cheaper than the in-state, in-person tuition. Paying by the month encourages students to move faster through their educations, and most are projected to graduate in 18 months ...

  16. Technology Is Changing Transportation, and Cities Should Adapt

    The shift to next-generation mobility systems won't be easy for cities to manage. Some cities have chosen a wait-and-see approach, opting to watch mobility trends and develop policy responses as ...

  17. 200-500 Word Example Essays about Technology

    Direct Effect on Direct Interaction: The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication.

  18. How Does Technology Affect Our Daily Lives? Essay

    Technology affects our daily lives in various ways, from how we communicate, work, learn, entertain, and even think. In this essay, you will find out how technology has changed our society, both positively and negatively, and what challenges we face in the digital era. Read on to discover the impact of technology on our daily lives and how we can cope with it.

  19. How Advanced Medical Technologies Are Changing The Healthcare ...

    However, advancements in medical technology are rapidly and drastically changing the healthcare landscape to go well beyond this elementary approach. Today, settling for a quick five-minute annual ...

  20. Ocean Exploration: Technology

    noun. method of determining the presence and location of an object using sound waves (echolocation). submersible. noun. small submarine used for research and exploration. technology. noun. the science of using tools and complex machines to make human life easier or more profitable. 1.

  21. How Technology Can Help Us Remember Better

    Journaling can be another way to enhance memory because it allows us to test our memory for an event and also integrate it in a meaningful way, so that we can shape our narrative of the experience ...

  22. How Has Technology Changed Education?

    However, in many ways, technology has profoundly changed education. For one, technology has greatly expanded access to education. In medieval times, books were rare and only an elite few had access to educational opportunities. Individuals had to travel to centers of learning to get an education. Today, massive amounts of information (books ...

  23. 55 Ways Technology Has Changed Our Lives for the Better

    The transformation of education through digital tools, virtual field trips, and gamified learning has made learning more engaging, accessible, and immersive, breaking down traditional boundaries. Technology has had a positive impact on daily lives, with smart homes, digital farming, wearable tech, and increased connectivity through social media ...

  24. Impact of Technology on Agriculture

    37. Technological innovations have greatly shaped agriculture throughout time. From the creation of the plow to the global positioning system (GPS) driven precision farming equipment, humans have developed new ways to make farming more efficient and grow more food. We are constantly working to find new ways to irrigate crops or breed more ...

  25. Tesla Reaches Deals in China on Self-Driving Cars

    The timing of Mr. Musk's trip was significant. He arrived in China days after he identified self-driving technology and artificial intelligence as critical to Tesla's future. Tesla is not just ...