• Survey Paper
  • Open access
  • Published: 09 December 2019

Internet of Things is a revolutionary approach for future technology enhancement: a review

  • Sachin Kumar   ORCID: orcid.org/0000-0003-3949-0302 1 ,
  • Prayag Tiwari 2 &
  • Mikhail Zymbler 1  

Journal of Big Data volume  6 , Article number:  111 ( 2019 ) Cite this article

254k Accesses

503 Citations

43 Altmetric

Metrics details

Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a lot of challenges and issues that need to be addressed to achieve the full potential of IoT. These challenges and issues must be considered from various aspects of IoT such as applications, challenges, enabling technologies, social and environmental impacts etc. The main goal of this review article is to provide a detailed discussion from both technological and social perspective. The article discusses different challenges and key issues of IoT, architecture and important application domains. Also, the article bring into light the existing literature and illustrated their contribution in different aspects of IoT. Moreover, the importance of big data and its analysis with respect to IoT has been discussed. This article would help the readers and researcher to understand the IoT and its applicability to the real world.

Introduction

The Internet of Things (IoT) is an emerging paradigm that enables the communication between electronic devices and sensors through the internet in order to facilitate our lives. IoT use smart devices and internet to provide innovative solutions to various challenges and issues related to various business, governmental and public/private industries across the world [ 1 ]. IoT is progressively becoming an important aspect of our life that can be sensed everywhere around us. In whole, IoT is an innovation that puts together extensive variety of smart systems, frameworks and intelligent devices and sensors (Fig.  1 ). Moreover, it takes advantage of quantum and nanotechnology in terms of storage, sensing and processing speed which were not conceivable beforehand [ 2 ]. Extensive research studies have been done and available in terms of scientific articles, press reports both on internet and in the form of printed materials to illustrate the potential effectiveness and applicability of IoT transformations. It could be utilized as a preparatory work before making novel innovative business plans while considering the security, assurance and interoperability.

figure 1

General architecture of IoT

A great transformation can be observed in our daily routine life along with the increasing involvement of IoT devices and technology. One such development of IoT is the concept of Smart Home Systems (SHS) and appliances that consist of internet based devices, automation system for homes and reliable energy management system [ 3 ]. Besides, another important achievement of IoT is Smart Health Sensing system (SHSS). SHSS incorporates small intelligent equipment and devices to support the health of the human being. These devices can be used both indoors and outdoors to check and monitor the different health issues and fitness level or the amount of calories burned in the fitness center etc. Also, it is being used to monitor the critical health conditions in the hospitals and trauma centers as well. Hence, it has changed the entire scenario of the medical domain by facilitating it with high technology and smart devices [ 4 , 5 ]. Moreover, IoT developers and researchers are actively involved to uplift the life style of the disabled and senior age group people. IoT has shown a drastic performance in this area and has provided a new direction for the normal life of such people. As these devices and equipment are very cost effective in terms of development cost and easily available within a normal price range, hence most of the people are availing them [ 6 ]. Thanks to IoT, as they can live a normal life. Another important aspect of our life is transportation. IoT has brought up some new advancements to make it more efficient, comfortable and reliable. Intelligent sensors, drone devices are now controlling the traffic at different signalized intersections across major cities. In addition, vehicles are being launched in markets with pre-installed sensing devices that are able to sense the upcoming heavy traffic congestions on the map and may suggest you another route with low traffic congestion [ 7 ]. Therefore IoT has a lot to serve in various aspects of life and technology. We may conclude that IoT has a lot of scope both in terms of technology enhancement and facilitate the humankind.

IoT has also shown its importance and potential in the economic and industrial growth of a developing region. Also, in trade and stock exchange market, it is being considered as a revolutionary step. However, security of data and information is an important concern and highly desirable, which is a major challenging issue to deal with [ 5 ]. Internet being a largest source of security threats and cyber-attacks has opened the various doors for hackers and thus made the data and information insecure. However, IoT is committed to provide the best possible solutions to deal with security issues of data and information. Hence, the most important concern of IoT in trade and economy is security. Therefore, the development of a secure path for collaboration between social networks and privacy concerns is a hot topic in IoT and IoT developers are working hard for this.

The remaining part of the article is organized as follows: “ Literature survey ” section will provide state of art on important studies that addressed various challenges and issues in IoT. “ IoT architecture and technologies ” section discussed the IoT functional blocks, architecture in detail. In “ Major key issues and challenges of IoT ” section, important key issues and challenges of IoT is discussed. “ Major IoT applications ” section provides emerging application domains of IoT. In “ Importance of big data analytics in IoT ” section, the role and importance of big data and its analysis is discussed. Finally, the article concluded in “ Conclusions ” section.

Literature survey

IoT has a multidisciplinary vision to provide its benefit to several domains such as environmental, industrial, public/private, medical, transportation etc. Different researchers have explained the IoT differently with respect to specific interests and aspects. The potential and power of IoT can be seen in several application domains. Figure  2 illustrates few of the application domains of IoTs potentials.

figure 2

Some of the potential application domains of IoT

Various important IoT projects have taken charge over the market in last few years. Some of the important IoT projects that have captured most of the market are shown in Fig.  3 . In Fig.  3 , a global distribution of these IoT projects is shown among American, European and Asia/Pacific region. It can be seen that American continent are contributing more in the health care and smart supply chain projects whereas contribution of European continent is more in the smart city projects [ 8 ].

figure 3

Global distribution of IoT projects among America (USA, South America and Canada), Europe and APAC (Asia and Pacific region) [ 8 ]

Figure  4 , illustrates the global market share of IoT projects worldwide [ 8 ]. It is evident that industry, smart city, smart energy and smart vehicle based IoT projects have a big market share in comparison to others.

figure 4

Global share of IoT projects across the world [ 8 ]

Smart city is one of the trendy application areas of IoT that incorporates smart homes as well. Smart home consists of IoT enabled home appliances, air-conditioning/heating system, television, audio/video streaming devices, and security systems which are communicating with each other in order to provide best comfort, security and reduced energy consumption. All this communication takes place through IoT based central control unit using Internet. The concept of smart city gained popularity in the last decade and attracted a lot of research activities [ 9 ]. The smart home business economy is about to cross the 100 billion dollars by 2022 [ 10 ]. Smart home does not only provide the in-house comfort but also benefits the house owner in cost cutting in several aspects i.e. low energy consumption will results in comparatively lower electricity bill. Besides smart homes, another category that comes within smart city is smart vehicles. Modern cars are equipped with intelligent devices and sensors that control most of the components from the headlights of the car to the engine [ 11 ]. The IoT is committed towards developing a new smart car systems that incorporates wireless communication between car-to-car and car-to-driver to ensure predictive maintenance with comfortable and safe driving experience [ 12 ].

Khajenasiri et al. [ 10 ] performed a survey on the IoT solutions for smart energy control to benefit the smart city applications. They stated that at present IoT has been deployed in very few application areas to serve the technology and people. The scope of IoT is very wide and in near future IoT is able to capture almost all application areas. They mentioned that energy saving is one of the important part of the society and IoT can assist in developing a smart energy control system that will save both energy and money. They described an IoT architecture with respect to smart city concept. The authors also discussed that one of the challenging task in achieving this is the immaturity of IoT hardware and software. They suggested that these issues must be resolved to ensure a reliable, efficient and user friendly IoT system.

Alavi et al. [ 13 ] addressed the urbanization issue in the cities. The movement of people from rural to urban atmosphere resulting in growing population of the cities. Therefore, there is a need to provide smart solutions for mobility, energy, healthcare and infrastructure. Smart city is one of the important application areas for IoT developers. It explores several issues such as traffic management, air quality management, public safety solutions, smart parking, smart lightning and smart waste collection (Fig.  5 ). They mentioned that IoT is working hard to tackle these challenging issues. The need for improved smart city infrastructure with growing urbanization has opened the doors for entrepreneurs in the field of smart city technologies. The authors concluded that IoT enabled technology is very important for the development of sustainable smart cities.

figure 5

Potential IoT application areas for smart cities

Another important issue of IoT that requires attention and a lot of research is security and privacy. Weber [ 14 ] focused on these issues and suggested that a private organization availing IoT must incorporate data authentication, access control, resilience to attacks and client privacy into their business activities that would be an additional advantage. Weber suggested that in order to define global security and privacy issues, IoT developers must take into account the geographical limitations of the different countries. A generic framework needs to be designed to fit the global needs in terms of privacy and security. It is highly recommended to investigate and recognize the issues and challenges in privacy and security before developing the full fledge working IoT framework.

Later, Heer et al. [ 15 ] came up with a security issue in IP based IoT system. They mentioned that internet is backbone for the communication among devices that takes place in an IoT system. Therefore, security issues in IP based IoT systems are an important concern. In addition, security architecture should be designed considering the life cycle and capabilities of any object in the IoT system. It also includes the involvement of the trusted third party and the security protocols. The security architecture with scalability potential to serve the small-scale to large-scale things in IoT is highly desirable. The study pointed out that IoT gave rise to a new way of communication among several things across the network therefore traditional end to end internet protocol are not able to provide required support to this communication. Therefore, new protocols must be designed considering the translations at the gateways to ensure end-to-end security. Moreover, all the layers responsible for communication has their own security issues and requirements. Therefore, satisfying the requirements for one particular layers will leave the system into a vulnerable state and security should be ensured for all the layers.

Authentication and access control is another issue in IoT that needs promising solutions to strengthen the security. Liu et al. [ 16 ] brought up a solution to handle authentication and access control. Authentication is very important to verify the communicating parties to prevent the loss of confidential information. Liu et al. [ 16 ] provided an authentication scheme based on Elliptic Curve Cryptosystem and verified it on different security threats i.e. eavesdropping, man-in-the-middle attack, key control and replay attack. They claimed that there proposed schemes are able to provide better authentication and access control in IoT based communication. Later, Kothmayr et al. [ 17 ] proposed a two-way authentication scheme based of datagram transport layer security (DTLS) for IoT. The attackers over the internet are always active to steal the secured information. The proposed approach are able to provide message security, integrity, authenticity and confidentiality, memory overhead and end-to-end latency in the IoT based communication network.

Li et al. [ 18 ] proposed a dynamic approach for data centric IoT applications with respect to cloud platforms. The need of an appropriate device, software configuration and infrastructure requires efficient solutions to support massive amount of IoT applications that are running on cloud platforms. IoT developers and researchers are actively engaged in developing solutions considering both massive platforms and heterogeneous nature of IoT objects and devices. Olivier et al. [ 19 ] explained the concept of software defined networking (SDN) based architecture that performs well even if a well-defined architecture is not available. They proposed that SDN based security architecture is more flexible and efficient for IoT.

Luk et al. [ 20 ] stated that the main task of a secure sensor network (SSN) is to provide data privacy, protection from replay attacks and authentication. They discussed two popular SSN services namely TinySec [ 21 ] and ZigBee [ 22 ]. They mentioned that although both the SSN services are efficient and reliable, however, ZigBee is comparatively provides higher security but consumes high energy whereas TinySec consumes low energy but not as highly secured as ZigBee. They proposed another architecture MiniSec to support high security and low energy consumption and demonstrated its performance for the Telos platform. Yan et al. [ 23 ] stated that trust management is an important issue in IoT. Trust management helps people to understand and trust IoT services and applications without worrying about uncertainty issues and risks [ 24 ]. They investigated different issues in trust management and discussed its importance with respect to IoT developers and users.

Noura et al. [ 25 ] stated the importance of interoperability in IoT as it allows integration of devices, services from different heterogeneous platforms to provide the efficient and reliable service. Several other studies focused on the importance of interoperability and discussed several challenges that interoperability issue is facing in IoT [ 26 , 27 , 28 ]. Kim et al. [ 29 ] addressed the issue of climate change and proposed an IoT based ecological monitoring system. They mentioned that existing approaches are time consuming and required a lot of human intervention. Also, a routine visit is required to collect the information from the sensors installed at the site under investigation. Also, some information remained missing which leads to not highly accurate analysis. Therefore, IoT based framework is able to solve this problem and can provide high accuracy in analysis and prediction. Later, Wang et al. [ 30 ] shows their concern for domestic waste water treatment. They discussed several deficiencies in the process of waste water treatment and dynamic monitoring system and suggested effective solutions based on IoT. They stated that IoT can be very effective in the waste water treatment and process monitoring.

Agriculture is one of the important domain around the world. Agriculture depends on several factors i.e. geographical, ecological etc. Qiu et al. [ 31 ] stated that technology that is being used for ecosystem control is immature with low intelligence level. They mentioned that it could be a good application area for IoT developers and researchers.

Qiu et al. [ 31 ] proposed an intelligent monitoring platform framework for facility agriculture ecosystem based on IoT that consists of four layer mechanism to manage the agriculture ecosystem. Each layer is responsible for specific task and together the framework is able to achieve a better ecosystem with reduced human intervention.

Another important concern around the world is climate change due to global warming. Fang et al. [ 32 ] introduced an integrated information system (IIS) that integrates IoT, geo-informatics, cloud computing, global positioning system (GPS), geographical information system (GIS) and e-science in order to provide an effective environmental monitoring and control system. They mentioned that the proposed IIS provides improved data collection, analysis and decision making for climate control. Air pollution is another important concern worldwide. Various tools and techniques are available to air quality measures and control. Cheng et al. [ 33 ] proposed AirCloud which is a cloud based air quality and monitoring system. They deployed AirCloud and evaluated its performance using 5 months data for the continuous duration of 2 months.

Temglit et al. [ 34 ] considered Quality of Service (QoS) as an important challenge and a complex task in evaluation and selection of IoT devices, protocols and services. QoS is very important criteria to attract and gain trust of users towards IoT services and devices. They came up with an interesting distributed QoS selection approach. This approach was based on distributed constraint optimization problem and multi-agent paradigm. Further, the approach was evaluated based on several experiments under realistic distributed environments. Another important aspect of IoT is its applicability to the environmental and agriculture standards. Talavera et al. [ 35 ] focused in this direction and presented the fundamental efforts of IoT for agro-industrial and environmental aspects in a survey study. They mentioned that the efforts of IoT in these areas are noticeable. IoT is strengthening the current technology and benefiting the farmers and society. Jara et al. [ 36 ] discussed the importance of IoT based monitoring of patients health. They suggested that IoT devices and sensors with the help of internet can assist health monitoring of patients. They also proposed a framework and protocol to achieve their objective. Table 1 provides a summary of the important studies and the direction of research with a comparison of studies on certain evaluation parameters.

IoT architecture and technologies

The IoT architecture consists of five important layers that defines all the functionalities of IoT systems. These layers are perception layer, network layer, middleware layer, application layer, business layer. At the bottom of IoT architecture, perception layer exists that consists of physical devices i.e. sensors, RFID chips, barcodes etc. and other physical objects connected in IoT network. These devices collects information in order to deliver it to the network layer. Network layer works as a transmission medium to deliver the information from perception layer to the information processing system. This transmission of information may use any wired/wireless medium along with 3G/4G, Wi-Fi, Bluetooth etc. Next level layer is known as middleware layer. The main task of this layer is to process the information received from the network layer and make decisions based on the results achieved from ubiquitous computing. Next, this processed information is used by application layer for global device management. On the top of the architecture, there is a business layer which control the overall IoT system, its applications and services. The business layer visualizes the information and statistics received from the application layer and further used this knowledge to plan future targets and strategies. Furthermore, the IoT architectures can be modified according to the need and application domain [ 19 , 20 , 37 ]. Besides layered framework, IoT system consists of several functional blocks that supports various IoT activities such as sensing mechanism, authentication and identification, control and management [ 38 ]. Figure  6 illustrates such functional blocks of IoT architecture.

figure 6

A generic function module of IoT system

There are several important functional blocks responsible for I/O operations, connectivity issues, processing, audio/video monitoring and storage management. All these functional block together incorporates an efficient IoT system which are important for optimum performance. Although, there are several reference architectures proposed with the technical specifications, but these are still far from the standard architecture that is suitable for global IoT [ 39 ]. Therefore, a suitable architecture is still needsvk to be designed that could satisfy the global IoT needs. The generic working structure of IoT system is shown in Fig.  7 . Figure  7 shows a dependency of IoT on particular application parameters. IoT gateways have an important role in IoT communication as it allows connectivity between IoT servers and IoT devices related to several applications [ 40 ].

figure 7

Working structure of IoT

Scalability, modularity, interoperability and openness are the key design issues for an efficient IoT architecture in a heterogenous environment. The IoT architecture must be designed with an objective to fulfil the requirements of cross domain interactions, multi-system integration with the potential of simple and scalable management functionalities, big data analytics and storage, and user friendly applications. Also, the architecture should be able to scaleup the functionality and add some intelligence and automation among the IoT devices in the system.

Moreover, increasing amount of massive data being generated through the communication between IoT sensors and devices is a new challenge. Therefore, an efficient architecture is required to deal with massive amount of streaming data in IoT system. Two popular IoT system architectures are cloud and fog/edge computing that supports with the handling, monitoring and analysis of huge amount of data in IoT systems. Therefore, a modern IoT architecture can be defined as a 4 stage architecture as shown in Fig.  8 .

figure 8

Four stage IoT architecture to deal with massive data

In stage 1 of the architecture, sensors and actuators plays an important role. Real world is comprised of environment, humans, animals, electronic gadgets, smart vehicles, and buildings etc. Sensors detect the signals and data flow from these real world entities and transforms into data which could further be used for analysis. Moreover, actuators is able to intervene the reality i.e. to control the temperature of the room, to slow down the vehicle speed, to turn off the music and light etc. Therefore, stage 1 assist in collecting data from real world which could be useful for further analysis. Stage 2 is responsible to collaborate with sensors and actuators along with gateways and data acquisition systems. In this stage, massive amount of data generated in stage 1 is aggregated and optimized in a structured way suitable for processing. Once the massive amount of data is aggregated and structured then it is ready to be passed to stage 3 which is edge computing. Edge computing can be defined as an open architecture in distributed fashion which allows use of IoT technologies and massive computing power from different locations worldwide. It is very powerful approach for streaming data processing and thus suitable for IoT systems. In stage 3, edge computing technologies deals with massive amount of data and provides various functionalities such as visualization, integration of data from other sources, analysis using machine learning methods etc. The last stage comprises of several important activities such as in depth processing and analysis, sending feedback to improve the precision and accuracy of the entire system. Everything at this stage will be performed on cloud server or data centre. Big data framework such as Hadoop and Spark may be utilized to handle this large streaming data and machine learning approaches can be used to develop better prediction models which could help in a more accurate and reliable IoT system to meet the demand of present time.

Major key issues and challenges of IoT

The involvement of IoT based systems in all aspects of human lives and various technologies involved in data transfer between embedded devices made it complex and gave rise to several issues and challenges. These issues are also a challenge for the IoT developers in the advanced smart tech society. As technology is growing, challenges and need for advanced IoT system is also growing. Therefore, IoT developers need to think of new issues arising and should provide solutions for them.

Security and privacy issues

One of the most important and challenging issues in the IoT is the security and privacy due to several threats, cyber attacks, risks and vulnerabilities [ 41 ]. The issues that give rise to device level privacy are insufficient authorization and authentication, insecure software, firmware, web interface and poor transport layer encryption [ 42 ]. Security and privacy issues are very important parameters to develop confidence in IoT Systems with respect to various aspects [ 43 ]. Security mechanisms must be embedded at every layer of IoT architecture to prevent security threats and attacks [ 23 ]. Several protocols are developed and efficiently deployed on every layer of communication channel to ensure the security and privacy in IoT based systems [ 44 , 45 ]. Secure Socket Layer (SSL) and Datagram Transport Layer Security (DTLS) are one of the cryptographic protocols that are implemented between transport and application layer to provide security solutions in various IoT systems [ 44 ]. However, some IoT applications require different methods to ensure the security in communication between IoT devices. Besides this, if communication takes place using wireless technologies within the IoT system, it becomes more vulnerable to security risks. Therefore, certain methods should be deployed to detect malicious actions and for self healing or recovery. Privacy on the other hand is another important concern which allows users to feel secure and comfortable while using IoT solutions. Therefore, it is required to maintain the authorization and authentication over a secure network to establish the communication between trusted parties [ 46 ]. Another issue is the different privacy policies for different objects communicating within the IoT system. Therefore, each object should be able to verify the privacy policies of other objects in IoT system before transmitting the data.

Interoperability/standard issues

Interoperability is the feasibility to exchange the information among different IoT devices and systems. This exchange of information does not rely on the deployed software and hardware. The interoperability issue arises due to the heterogeneous nature of different technology and solutions used for IoT development. The four interoperability levels are technical, semantic, syntactic and organizational [ 47 ]. Various functionalities are being provided by IoT systems to improve the interoperability that ensures communication between different objects in a heterogeneous environment. Additionally, it is possible to merge different IoT platforms based on their functionalities to provide various solutions for IoT users [ 48 ]. Considering interoperability an important issue, researchers approved several solutions that are also know as interoperability handling approaches [ 49 ]. These solutions could be adapaters/gateways based, virtual networks/overlay based, service oriented architecture based etc. Although interoperability handling approaches ease some pressure on IoT systems but there are still certain challenges remain with interoperability that could be a scope for future studies [ 25 ].

Ethics, law and regulatory rights

Another issue for IoT developers is the ethics, law and regulatory rights. There are certain rules and regulations to maintain the standard, moral values and to prevent the people from violating them. Ethics and law are very similar term with the only difference is that ethics are standards that people believes and laws are certain restrictions decided by the government. However, both ethics and laws are designed to maintain the standard, quality and prevent people from illegal use. With the development of IoT, several real life problems are solved but it has also given rise to critical ethical and legal challenges [ 50 ]. Data security, privacy protection, trust and safety, data usability are some of those challenges. It has also been observed that majority of IoT users are supporting government norms and regulations with respect to data protection, privacy and safety due to the lack of trust in IoT devices. Therefore, this issue must be taken into consideration to maintain and improve the trust among people for the use of IoT devices and systems.

Scalability, availability and reliability

A system is scalable if it is possible to add new services, equipments and devices without degrading its performance. The main issue with IoT is to support a large number of devices with different memory, processing, storage power and bandwidth [ 28 ]. Another important issue that must be taken into consideration is the availability. Scalability and availability both should be deployed together in the layered framework of IoT. A great example of scalability is cloud based IoT systems which provide sufficient support to scale the IoT network by adding up new devices, storage and processing power as required.

However, this global distributed IoT network gives rise to a new research paradigm to develop a smooth IoT framework that satisfy global needs [ 51 ]. Another key challenge is the availability of resources to the authentic objects regardless of their location and time of the requirement. In a distributed fashion, several small IoT networks are timely attached to the global IoT platforms to utilize their resources and services. Therefore, availability is an important concern [ 52 ]. Due to the use of different data transmission channels i.e. satellite communication, some services and availability of resources may be interrupted. Therefore, an independent and reliable data transmission channel is required for uninterrupted availability of resources and services.

Quality of Service (QoS)

Quality of Service (QoS) is another important factor for IoT. QoS can be defined as a measure to evaluate the quality, efficiency and performance of IoT devices, systems and architecture [ 34 ]. The important and required QoS metrics for IoT applications are reliability, cost, energy consumption, security, availability and service time [ 53 ]. A smarter IoT ecosystem must fulfill the requirements of QoS standards. Also, to ensure the reliability of any IoT service and device, its QoS metrics must be defined first. Further, users may also be able to specifiy their needs and requirements accordingly. Several approaches can be deployed for QoS assessment, however as mentioned by White et al. [ 54 ] there is a trade-off between quality factors and approaches. Therefore, good quality models must be deployed to overcome this trade-off. There are certain good quality models available in literature such as ISO/IEC25010 [ 55 ] and OASIS-WSQM [ 56 ] which can be used to evaluate the approaches used for QoS assessment. These models provides a wide range of quality factors that is quite sufficient for QoS assessment for IoT services. Table  2 summarizes the different studies with respect to IoT key challenges and issues discussed above.

Major IoT applications

Emerging economy, environmental and health-care.

IoT is completely devoted to provide emerging public and financial benefits and development to the society and people. This includes a wide range of public facilities i.e. economic development, water quality maintenance, well-being, industrialization etc. Overall, IoT is working hard to accomplish the social, health and economic goals of United Nations advancement step. Environmental sustainability is another important concern. IoT developers must be concerned about environmental impact of the IoT systems and devices to overcome the negative impact [ 48 ]. Energy consumption by IoT devices is one of the challenges related to environmental impact. Energy consumption is increasing at a high rate due to internet enabled services and edge cutting devices. This area needs research for the development of high quality materials in order to create new IoT devices with lower energy consumption rate. Also, green technologies can be adopted to create efficient energy efficient devices for future use. It is not only environmental friendly but also advantageous for human health. Researchers and engineers are engaged in developing highly efficient IoT devices to monitor several health issues such as diabetes, obesity or depression [ 57 ]. Several issues related to environment, energy and healthcare are considered by several studies.

Smart city, transport and vehicles

IoT is transforming the traditional civil structure of the society into high tech structure with the concept of smart city, smart home and smart vehicles and transport. Rapid improvements are being done with the help of supporting technologies such as machine learning, natural language processing to understand the need and use of technology at home [ 58 ]. Various technologies such as cloud server technology, wireless sensor networks that must be used with IoT servers to provide an efficient smart city. Another important issue is to think about environmental aspect of smart city. Therefore, energy efficient technologies and Green technologies should also be considered for the design and planning of smart city infrastructure. Further, smart devices which are being incorporated into newly launched vehicles are able to detect traffic congestions on the road and thus can suggest an optimum alternate route to the driver. This can help to lower down the congestion in the city. Furthermore, smart devices with optimum cost should be designed to be incorporated in all range vehicles to monitor the activity of engine. IoT is also very effective in maintaining the vehicle’s health. Self driving cars have the potential to communicate with other self driving vehicles by the means of intelligent sensors. This would make the traffic flow smoother than human-driven cars who used to drive in a stop and go manner. This procedure will take time to be implemented all over the world. Till the time, IoT devices can help by sensing traffic congestion ahead and can take appropriate actions. Therefore, a transport manufacturing company should incorporate IoT devices into their manufactured vehicles to provide its advantage to the society.

Agriculture and industry automation

The world’s growing population is estimated to reach approximate 10 billion by 2050. Agriculture plays an important role in our lives. In order to feed such a massive population, we need to advance the current agriculture approaches. Therefore, there is a need to combine agriculture with technology so that the production can be improved in an efficient way. Greenhouse technology is one of the possible approaches in this direction. It provides a way to control the environmental parameters in order to improve the production. However, manual control of this technology is less effective, need manual efforts and cost, and results in energy loss and less production. With the advancement of IoT, smart devices and sensors makes it easier to control the climate inside the chamber and monitor the process which results in energy saving and improved production (Fig.  9 ). Automatization of industries is another advantage of IoT. IoT has been providing game changing solutions for factory digitalization, inventory management, quality control, logistics and supply chain optimization and management.

figure 9

A working structure of IoT system in agriculture production

Importance of big data analytics in IoT

An IoT system comprises of a huge number of devices and sensors that communicates with each other. With the extensive growth and expansion of IoT network, the number of these sensors and devices are increasing rapidly. These devices communicate with each other and transfer a massive amount of data over internet. This data is very huge and streaming every second and thus qualified to be called as big data. Continuous expansion of IoT based networks gives rise to complex issue such as management and collection of data, storage and processing and analytics. IoT big data framework for smart buildings is very useful to deal with several issues of smart buildings such as managing oxygen level, to measure the smoke/hazardous gases and luminosity [ 59 ]. Such framework is capable to collect the data from the sensors installed in the buildings and performs data analytics for decision making. Moreover, industrial production can be improved using an IoT based cyber physical system that is equipped with an information analysis and knowledge acquisition techniques [ 60 ]. Traffic congestion is an important issue with smart cities. The real time traffic information can be collected through IoT devices and sensors installed in traffic signals and this information can be analyzed in an IoT based traffic management system [ 61 ]. In healthcare analysis, the IoT sensors used with patients generate a lot of information about the health condition of patients every second. This large amount of information needs to be integrated at one database and must be processed in real time to take quick decision with high accuracy and big data technology is the best solution for this job [ 62 ]. IoT along with big data analytics can also help to transform the traditional approaches used in manufacturing industries into the modern one [ 63 ]. The sensing devices generates information which can be analyzed using big data approaches and may help in various decision making tasks. Furthermore, use of cloud computing and analytics can benefit the energy development and conservation with reduced cost and customer satisfaction [ 64 ]. IoT devices generate a huge amount of streaming data which needs to be stored effectively and needs further analysis for decision making in real time. Deep learning is very effective to deal with such a large information and can provide results with high accuracy [ 65 ]. Therefore, IoT, Big data analytics and Deep learning together is very important to develop a high tech society.

Conclusions

Recent advancements in IoT have drawn attention of researchers and developers worldwide. IoT developers and researchers are working together to extend the technology on large scale and to benefit the society to the highest possible level. However, improvements are possible only if we consider the various issues and shortcomings in the present technical approaches. In this survey article, we presented several issues and challenges that IoT developer must take into account to develop an improved model. Also, important application areas of IoT is also discussed where IoT developers and researchers are engaged. As IoT is not only providing services but also generates a huge amount of data. Hence, the importance of big data analytics is also discussed which can provide accurate decisions that could be utilized to develop an improved IoT system.

Availability of data and materials

Not applicable.

Abbreviations

Internet of Things

Quality of Service

Web of Things

Cloud of Things

Smart Home System

Smart Health Sensing System

Sfar AR, Zied C, Challal Y. A systematic and cognitive vision for IoT security: a case study of military live simulation and security challenges. In: Proc. 2017 international conference on smart, monitored and controlled cities (SM2C), Sfax, Tunisia, 17–19 Feb. 2017. https://doi.org/10.1109/sm2c.2017.8071828 .

Gatsis K, Pappas GJ. Wireless control for the IoT: power spectrum and security challenges. In: Proc. 2017 IEEE/ACM second international conference on internet-of-things design and implementation (IoTDI), Pittsburg, PA, USA, 18–21 April 2017. INSPEC Accession Number: 16964293.

Zhou J, Cap Z, Dong X, Vasilakos AV. Security and privacy for cloud-based IoT: challenges. IEEE Commun Mag. 2017;55(1):26–33. https://doi.org/10.1109/MCOM.2017.1600363CM .

Article   Google Scholar  

Sfar AR, Natalizio E, Challal Y, Chtourou Z. A roadmap for security challenges in the internet of things. Digit Commun Netw. 2018;4(1):118–37.

Minoli D, Sohraby K, Kouns J. IoT security (IoTSec) considerations, requirements, and architectures. In: Proc. 14th IEEE annual consumer communications & networking conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017. https://doi.org/10.1109/ccnc.2017.7983271 .

Gaona-Garcia P, Montenegro-Marin CE, Prieto JD, Nieto YV. Analysis of security mechanisms based on clusters IoT environments. Int J Interact Multimed Artif Intell. 2017;4(3):55–60.

Behrendt F. Cycling the smart and sustainable city: analyzing EC policy documents on internet of things, mobility and transport, and smart cities. Sustainability. 2019;11(3):763.

IoT application areas. https://iot-analytics.com/top-10-iot-project-application-areas-q3-2016/ . Accessed 05 Apr 2019.

Zanella A, Bui N, Castellani A, Vangelista L, Zorgi M. Internet of things for smart cities. IEEE IoT-J. 2014;1(1):22–32.

Google Scholar  

Khajenasiri I, Estebsari A, Verhelst M, Gielen G. A review on internet of things for intelligent energy control in buildings for smart city applications. Energy Procedia. 2017;111:770–9.

Internet of Things. http://www.ti.com/technologies/internet-of-things/overview.html . Accessed 01 Apr 2019.

Liu T, Yuan R, Chang H. Research on the internet of things in the automotive industry. In: ICMeCG 2012 international conference on management of e-commerce and e-Government, Beijing, China. 20–21 Oct 2012. p. 230–3.

Alavi AH, Jiao P, Buttlar WG, Lajnef N. Internet of things-enabled smart cities: state-of-the-art and future trends. Measurement. 2018;129:589–606.

Weber RH. Internet of things-new security and privacy challenges. Comput Law Secur Rev. 2010;26(1):23–30.

Article   MathSciNet   Google Scholar  

Heer T, Garcia-Morchon O, Hummen R, Keoh SL, Kumar SS, Wehrle K. Security challenges in the IP based internet of things. Wirel Pers Commun. 2011;61(3):527–42.

Liu J, Xiao Y, Philip-Chen CL. Authentication and access control in the internet of things. In: 32nd international conference on distributed computing systems workshops, Macau, China. IEEE xplore; 2012. https://doi.org/10.1109/icdcsw.2012.23 .

Kothmayr T, Schmitt C, Hu W, Brunig M, Carle G. DTLS based security and two-way authentication for the internet of things. Ad Hoc Netw. 2013;11:2710–23.

Li Y, et al. IoT-CANE: a unified knowledge management system for data centric internet of things application systems. J Parallel Distrib Comput. 2019;131:161–72.

Olivier F, Carlos G, Florent N. New security architecture for IoT network. In: International workshop on big data and data mining challenges on IoT and pervasive systems (BigD2M 2015), procedia computer science, vol. 52; 2015. p. 1028–33.

Luk M, Mezzour G, Perrig A, Gligor V. MiniSec: a secure sensor netowrk communication architecture. In: Proc: 6th international symposium on information processing in sensor networks, Cambridge, MA, USA, 25–27 April 2007.

Karlof C, Sastry N, Wagner D. TinySec: a link layer security architecture for wireless sensor networks. In: Proceedings of the second ACM conference on embedded networked sensor systems (SenSys 2004), November 2004.

ZigBee Alliance. Zigbee specification. Technical Report Document 053474r06, Version 1.0, ZigBee Alliance, June 2005.

Yan Z, Zhang P, Vasilakos AV. A survey on trust management for internet of things. J Netw Comput Appl. 2014;42:120–34.

Bao F, Chen I-R, Guo J. Scalable, adaptive and survivable trust management for community of interest based internet of things systems. In: Proc. IEEE 11th international symposium on autonomous decentralized systems (ISADS); 2013. p. 1–7.

Noura M, Atiquazzaman M, Gaedke M. Interoperability in internet of things: taxonomies and open challenges. Mob Netw Appl. 2019;24(3):796–809.

Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: a survey, on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor. 2015;17(June):2347–76.

Palattella MR, Dohler M, Grieco A, Rizzo G, Torsner J, Engel T, Ladid L. Internet of things in the 5G era: enablers, architecture and business models. IEEE J Sel Areas Commun. 2016;34(3):510–27.

Pereira C, Aguiar A. Towards efficient mobile M2M communications: survey and open challenges. Sensors. 2014;14(10):19582–608.

Kim NS, Lee K, Ryu JH. Study on IoT based wild vegetation community ecological monitoring system. In: Proc. 2015 7th international conference on ubiquitous and future networks, Sapporo, Japan, 7–10 July 2015. IEEE.

Wang JY, Cao Y, Yu GP, Yuan M. Research on applications of IoT in domestic waste treatment and disposal. In: Proc. 11th World congress on intelligent control and automation, Shenyang, China, 2014. IEEE.

Qiu T, Xiao H, Zhou P. Framework and case studies of intelligent monitoring platform in facility agriculture ecosystem. In: Proc. 2013 second international conference on agro-geoinformatics (agro-geoinformatics), Fairfax, VA, USA, 12–16 Aug 2013. IEEE.

Fang S, et al. An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans Ind Inf. 2014;10(2):1596–605.

Cheng Y, et al. AirCloud: a cloud based air-quality monitoring system for everyone. In: Proceedings of the 12th ACM conference on embedded network sensor systems, ACM, Memphis, Tennessee, 03–06 Nov 2014. p. 251–65.

Temglit N, Chibani A, Djouani K, Nacer MA. A distributed agent-based approach for optimal QoS selection in web of object choreography. IEEE Syst J. 2018;12(2):1655–66.

Talavera JM, et al. Review of IoT applications in agro-industrial and environmental fields. Comput Electron Agric. 2017;142(7):283–97.

Jara AJ, Zamora-Izquierdo MA, Skarmeta AF. Interconnection framework for mHealth and remote monitoring based in the internet of things. IEEE J Sel Areas Commun. 2013;31(9):47–65.

Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29(7):1645–60.

Sebastian S, Ray PP. Development of IoT invasive architecture for complying with health of home. In: Proc: I3CS, Shillong; 2015. p. 79–83.

Nicolescu R, Huth M, Radanliev P, Roure DD. Mapping the values of IoT. J Inf Technol. 2018;33(4):345–60.

Hu P, Ning H, Qiu T, Xu Y, Luo X, Sangaiah AK. A unified face identification and resolutions scheme using cloud computing in internet of things. Future Gener Comput Syst. 2018;81:582–92.

Babovic ZB, Protic V, Milutinovic V. Web performance evaluation for internet of things applications. IEEE Access. 2016;4:6974–92.

Internet of Things research study: Hewlett Packard Enterprise Report. 2015. http://www8.hp.com/us/en/hp-news/press-release.html?id=1909050#.WPoNH6KxWUk .

Xu LD, He W, Li S. Internet of things in industries: a survey. IEEE Trans Ind Inf. 2014;10(4):2233–43.

Dierks T, Allen C. The TLS protocol version 1.0, IETF RFC, 2246; 1999. https://www.ietf.org/rfc/rfc2246.txt .

Pei M, Cook N, Yoo M, Atyeo A, Tschofenig H. The open trust protocol (OTrP). IETF 2016. https://tools.ietf.org/html/draft-pei-opentrustprotocol-00 .

Roman R, Najera P, Lopez J. Securing the internet of things. Computer. 2011;44(9):51–8.

Van-der-Veer H, Wiles A. Achieving technical, interoperability-the ETSI approach, ETSI White Paper No. 3. 2008. http://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf .

Colacovic A, Hadzialic M. Internet of things (IoT): a review of enabling technologies, challenges and open research issues. Comput Netw. 2018;144:17–39.

Noura M, Atiquazzaman M, Gaedke M. Interoperability in internet of things infrastructure: classification, challenges and future work. In: Third international conference, IoTaaS 2017, Taichung, Taiwan. 20–22 September 2017.

Tzafestad SG. Ethics and law in the internet of things world. Smart Cities. 2018;1(1):98–120.

Mosko M, Solis I, Uzun E, Wood C. CCNx 1.0 protocol architecture. A Xerox company, computing science laboratory PARC; 2017.

Wu Y, Li J, Stankovic J, Whitehouse K, Son S, Kapitanova K. Run time assurance of application-level requirements in wireless sensor networks. In: Proc. 9th ACM/IEEE international conference on information processing in sensor networks, Stockholm, Sweden, 21–16 April 2010. p. 197–208.

Huo L, Wang Z. Service composition instantiation based on cross-modified artificial Bee Colony algorithm. Chin Commun. 2016;13(10):233–44.

White G, Nallur V, Clarke S. Quality of service approaches in IoT: a systematic mapping. J Syst Softw. 2017;132:186–203.

ISO/IEC 25010—Systems and software engineering—systems and software quality requirements and evaluation (SQuaRE)—system and software quality models, Technical Report; 2010.

Oasis. Web services quality factors version 1.0. 2012. http://docs.oasis-open.org/wsqm/wsqf/v1.0/WS-Quality-Factors.pdf .

Fafoutis X, et al. A residential maintenance-free long-term activity monitoring system for healthcare applications. EURASIP J Wireless Commun Netw. 2016. https://doi.org/10.1186/s13638-016-0534-3 .

Park E, Pobil AP, Kwon SJ. The role of internet of things (IoT) in smart cities: technology roadmap-oriented approaches. Sustainability. 2018;10:1388.

Bashir MR, Gill AQ. Towards an IoT big data analytics framework: smart buildings system. In: IEEE 18th international conference on high performance computing and communications; IEEE 14th international conference on smart city; IEEE 2nd international conference on data science and systems; 2016. p. 1325–32.

Lee C, Yeung C, Cheng M. Research on IoT based cyber physical system for industrial big data analytics. In: 2015 IEEE international conference on industrial engineering and engineering management (IEEM). New York: IEEE; 2015. p. 1855–9.

Rizwan P, Suresh K, Babu MR. Real-time smart traffic management system for smart cities by using internet of things and big data. In: International conference on emerging techno-logical trends (ICETT). New York: IEEE; 2016. p. 1–7.

Vuppalapati C, Ilapakurti A, Kedari S. The role of big data in creating sense EHR, an integrated approach to create next generation mobile sensor and wear-able data driven electronic health record (EHR). In: 2016 IEEE second international conference on big data computing service and applications (BigDataService). New York: IEEE; 2016. p. 293–6.

Mourtzis D, Vlachou E, Milas N. Industrial big data as a result of IoT adoption in manufacturing. Procedia CIRP. 2016;55:290–5.

Ramakrishnan R, Gaur L. Smart electricity distribution in residential areas: Internet of things (IoT) based advanced metering infrastructure and cloud analytics. In: International Conference on internet of things and applications (IOTA). New York: IEEE; 2016. p. 46–51.

Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun Surv Tutor. 2018;20(4):2923–60.

Clausen T, Herberg U, Philipp M. A critical evaluation of the IPv6 routing protocol for low power and lossy networks (RPL). In: 2011 IEEE 7th international conference on wireless and mobile computing, networking and communications (WiMob), Wuhan, China, 10–12 Oct 2011.

Li H, Wang H, Yin W, Li Y, Qian Y, Hu F. Development of remote monitoring system for henhouse based on IoT technology. Future Internet. 2015;7(3):329–41.

Zhang L. An IoT system for environmental monitoring and protecting with heterogeneous communication networks. In: Proc. 2011 6th international ICST conference on communications and networking in China (CHINACOM), Harbin, China, 17–19 Aug 2011. IEEE.

Montori F, Bedogni L, Bononi L. A collaborative internet of things architecture for smart cities and environmental monitoring. IEEE Internet Things J. 2018;5(2):592–605.

Distefano S, Longo F, Scarpa M. QoS assessment of mobile crowd sensing services. J Grid Comput. 2015;13(4):629–50.

Stankovic JA. Research directions for the internet of things. IEEE Internet Things J. 2014;1(1):3–9.

Al-Fuqaha A, Khreishah A, Guizani M, Rayes A, Mohammadi M. Toward better horizontal integration among IoT services. IEEE Commun Mag. 2015;53(9):72–9.

Chen IR, Guo J, Bao F. Trust management for SOA-based IoT and its application to service composition. IEEE Trans Serv Comput. 2016;9(3):482–95.

Sarkar C, et al. DIAT: a scalable distributed architecture for IoT. IEEE Internet Things J. 2014;2(3):230–9.

Chen S, Xu H, Liu D, Hu B, Wang H. A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 2014;1(4):349–59.

Kang K, Pang J, Xu LD, Ma L, Wang C. An interactive trust model for application market of the internet of things. IEEE Trans Ind Inf. 2014;10(2):1516–26.

Gupta A, Jha RK. A survey of 5G network: architecture and emerging technologies. IEEE Access. 2015;3:1206–32.

Vlacheas P, et al. Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun Mag. 2013;51(6):102–11.

Bizanis N, Kuipers FA. SDN and virtualization solutions for the internet of things: a survey. IEEE Access. 2016;4:5591–606.

Zeng X, et al. IOTSim: a simulator for analyzing IoT applications. J Syst Architect. 2017;72:93–107.

Fantacci R, Pecorella T, Viti R, Carlini C. A network architecture solutions for efficient IOT WSN backhauling: challenges and opportunities. IEEE Wirel Commun. 2014;21(4):113–9.

Kim M, Ahn H, Kim KP. Process-aware internet of things: a conceptual extension of the internet of things framework and architecture. KSII Trans Internet Inf Syst. 2016;10(8):4008–22.

Hsieh H-C, Chang K-D, Wang L-F, Chen J-L, Chao H-C. ScriptIoT: a script framework for and internet of things applications. IEEE Internet Things J. 2015;3(4):628–36.

Kiljander J, et al. Semantic interoperability architecture for pervasive computing and internet of things. IEEE Access. 2014;2:856–73.

Ye J, Chen B, Liu Q, Fang Y. A precision agriculture management system based on internet of things and WebGIS. In: Proc. 2013 21st international conference on geoinformatics, Kaifeng, China, 20–22 June 2013. IEEE.

Jara AJ, Martinez-Julia P, Skarmeta A. Light-weight multicast DNS and DNS-SD (ImDNS-SD): IPv6-based resource and service discovery for web of things. In: Proc. sixth international conference on innovative mobile and internet services in ubiquitous computing, Palermo, Italy, 4–6 July 2012.

Diaz M, Martin C, Rubio B. State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing. J Netw Comput Appl. 2016;67:99–117.

Lo A, Law YW, Jacobsson M. A cellular-centric service architecture for machine to machine (M2M) communications. IEEE Wirel Commun. 2013;20(5):143–51.

Kecskemeti G, Casale G, Jha DN, Lyon J, Ranjan R. Modeling and simulation challenges in internet of things. IEEE Cloud Comput. 2017;4(1):62–9.

Cuomo S, Somma VD, Sica F. An application of the one-factor HullWhite model in an IoT financial scenario. Sustain Cities Soc. 2018;38:18–20.

Liu J, et al. A cooperative evolution for QoS-driven IOT service composition. Autom J Control Meas Electron Comput Commun. 2013;54(4):438–47.

Huo Y, et al. Multi-objective service composition model based on cost-effective optimization. Appl Intell. 2017;48(3):651–69.

Han SN, Crespi N. Semantic service provisioning for smart objects: integrating IoT applications into the web. Future Gener Comput Syst. 2017;76:180–97.

Alodib M. QoS-aware approach to monitor violations of SLAs in the IoT. J Innov Digit Ecosyst. 2016;3(2):197–207.

Rizzardi A, Sicari S, Miorandi D, Coen-Porisini A. AUPS: an open source authenticated publish/subscribe system for internet of things. Inf Syst. 2016;62:29–41.

Fenye B, Ing-Ray C, Jia G. Scalable, adaptive and survivable trust management for community of interest based internet of things systems. In: Proc. IEEE eleventh international symposium on autonomous decentralized systems (ISADS), Mexico City, Mexico, 6–8 March 2013.

Tehrani MN, Uysal M, Yanikomeroglu H. Device to device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag. 2014;52(5):86–92.

Zhu C, Leung VCM, Shu L, Ngai ECH. Green internet of things for smart world. IEEE Access. 2015;3:2151–62.

Adame T, Bel A, Bellalta B, Barcelo J, Oliver M. IEEE 802.11AH: the WiFi approach for M2M communications. IEEE Wirel Commun. 2014;21(6):144–52.

Shaikh FK, Zeadally S, Exposito E. Enabling technologies for green internet of things. IEEE Syst J. 2015;99:1–12.

Palattella MR, et al. Standardized protocol stack for the internet of (important) things. IEEE Commun Surv Tutor. 2012;15(3):1389–406.

Vatari S, Bakshi A, Thakur T. Green house by using IoT and cloud computing. In: Proc. 2016 IEEE international conference on recent trends in electronic, information & communication technology (RTEICT), Bangalore, India, 20–21 May 2016.

Chiang M, Zhang T. Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 2016;3(6):854–64.

Elkhodr M, Shahrestani S, Cheung H. A smart home application based on the internet of things management platform. In: Proc. 2015 IEEE international conference on data science and data intensive systems, Sydney, Australia, 11–13 Dec 2015.

Talari S, et al. A review of smart cities based on the internet of things concept. Energies. 2017;10(4):421–43.

Burange AW, Misalkar HD. Review of internet of things in development of smart cities with data management & privacy. In: Proc. 2015 international conference on advances in computer engineering and applications, Ghaziabad, India, 19–20 March 2015.

Zia T, Liu P, Han W. Application-specific digital forensics investigative model in internet of things (IoT). In: Proc. 12th international conference on availability, reliability and security, Reggio Calabria, Italy; 2017.

Lingling H, Haifeng L, Xu X, Jian L. An intelligent vehicle monitoring system based on internet of things. In: Proc. 7th international conference on computational intelligence and security, Hainan, China, 3–4 Dec 2011. IEEE.

Duttagupta S, Kumar M, Ranjan R, Nambiar M. Performance prediction of IoT application: an experimental analysis. In: Proc. 6th international conference on the internet of things, Stuttgart, Germany, 07–09 Nov 2016. p. 43–51.

Chen S, Liu B, Chen X, Zhang Y, Huang G. Framework for adaptive computation offloading in IoT applications. In: Proc. 9th Asia-Pacific symposium on internetware, Shanghai, China, 23 Sep 2017. ACM.

Li Q, Dou R, Chen F, Nan G. A QoS-oriented web service composition approach based on multi-population genetic algorithm for internet of things. Int J Comput Intell Syst. 2014;7(Sup2):26–34.

Urbieta A, Gonzalez-Beltran A, Mokhtar SB, Hossain MA, Capra L. Adaptive and context-aware service composition for IoT-based smart cities. Future Gener Comput Syst. 2017;76:262–74.

Krishna GG, Krishna G, Bhalaji N. Analysis of routing protocol for low-power and lossy networks in IoT real time applications. Procedia Comput Sci. 2016;87:270–4.

Singh D, Tripathi G, Jara AJ. A survey of internet of things: future vision, architecture, challenge and services. In: Proc. IEEE world forum on internet of things, Seoul, South Korea; 2014. p. 287–92.

Jara AJ, Ladid L, Skarmeta A. The internet of everything through Ipv6: an analysis of challenges, solutions and opportunities. J Wirel Mob Netw Ubiquitous Comput Dependable Appl. 2013;4(3):97–118.

Madsen H, Burtschy B, Albeanu G, Popentiu-Vladicescu Fl. Reliability in the utility computing era: towards reliable Fog computing. In: Proc. 20th international conference on systems, signals, and image processing (IWSSIP); 2013. p. 43–6.

Soret B, Pedersen KI, Jorgensen NTK, Fernandez-Lopez V. Interference coordination for dense wireless networks. IEEE Commun Mag. 2015;53(1):102–9.

Andrews JG. Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag. 2013;51(3):136–44.

Jaber M, Imran MA, Tafazolli R, Tukmanov A. 5G Backhaul challenges and emerging research directions: a survey. IEEE Access. 2016;4:1743–66.

Choi S, Koh S-J. Use of proxy mobile IPv6 for mobility management in CoAP-based internet of things networks. IEEE Commun Lett. 2016;20(11):2284–7.

Maier M, Chowdhury M, Rimal BP, Van DP. The tactile internet: vision, recent progress, and open challenges. IEEE Commun Mag. 2016;54(5):138–45.

Fernandes JL, Lopes IC, Rodrigues JJPC, Ullah S. Performance evaluations of RESTful web services and AMQP protocol. In: 5th international conference on ubiquitous and future networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013.

Download references

Acknowledgements

This work was financially supported by the Ministry of Education and Science of Russian Federation (government order 2.7905.2017/8.9).

The research received no external funding.

Author information

Authors and affiliations.

Department of Computer Science, South Ural State University, Chelyabinsk, Russian Federation

Sachin Kumar & Mikhail Zymbler

Department of Information Engineering, University of Padova, Padua, Italy

Prayag Tiwari

You can also search for this author in PubMed   Google Scholar

Contributions

SK and PT prepared the draft and Idea. SK wrote the manuscript. MZ prepared the tables, references and checked the English. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sachin Kumar .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Kumar, S., Tiwari, P. & Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: a review. J Big Data 6 , 111 (2019). https://doi.org/10.1186/s40537-019-0268-2

Download citation

Received : 24 July 2019

Accepted : 10 November 2019

Published : 09 December 2019

DOI : https://doi.org/10.1186/s40537-019-0268-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Internet of Things (IoT)
  • IoT architecture
  • IoT challenges
  • IoT applications

research paper about internet of things

Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Med Internet Res
  • v.22(11); 2020 Nov

Logo of jmir

The Internet of Things: Impact and Implications for Health Care Delivery

Jaimon t kelly.

1 Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia

2 Centre of Applied Health Economics, Griffith University, Brisbane, Australia

Katrina L Campbell

3 Metro North Hospital and Health Service, Brisbane, Australia

Enying Gong

4 School of Population and Global Health, The University of Melbourne, Melbourne, Australia

Paul Scuffham

Associated data.

Examples of Internet of Things devices that can support health service delivery.

Examples of how smart homes can improve health care delivery.

Scenarios where Internet of Things can be used to improve health system efficiency.

The Internet of Things (IoT) is a system of wireless, interrelated, and connected digital devices that can collect, send, and store data over a network without requiring human-to-human or human-to-computer interaction. The IoT promises many benefits to streamlining and enhancing health care delivery to proactively predict health issues and diagnose, treat, and monitor patients both in and out of the hospital. Worldwide, government leaders and decision makers are implementing policies to deliver health care services using technology and more so in response to the novel COVID-19 pandemic. It is now becoming increasingly important to understand how established and emerging IoT technologies can support health systems to deliver safe and effective care. The aim of this viewpoint paper is to provide an overview of the current IoT technology in health care, outline how IoT devices are improving health service delivery, and outline how IoT technology can affect and disrupt global health care in the next decade. The potential of IoT-based health care is expanded upon to theorize how IoT can improve the accessibility of preventative public health services and transition our current secondary and tertiary health care to be a more proactive, continuous, and coordinated system. Finally, this paper will deal with the potential issues that IoT-based health care generates, barriers to market adoption from health care professionals and patients alike, confidence and acceptability, privacy and security, interoperability, standardization and remuneration, data storage, and control and ownership. Corresponding enablers of IoT in current health care will rely on policy support, cybersecurity-focused guidelines, careful strategic planning, and transparent policies within health care organizations. IoT-based health care has great potential to improve the efficiency of the health system and improve population health.

Introduction

The challenges presented by an aging population with multiple chronic conditions are ubiquitous worldwide [ 1 ]. The medical, lifestyle, and personal health needs across aging populations will continue to place a burden on health care resources. Meeting these challenges requires a focus on empowering populations to self-manage their health through health innovation to improve well-being and attenuate health resource burden [ 2 ].

Background of Digital Devices and the Internet of Things

Entering the 2020 decade, more devices are connected to the internet than ever before, and this will continue to grow at a rapid trajectory. Worldwide, more than 21 billion devices have been estimated to be connected to the internet in 2020, which is 5 times the number of devices 4 years prior [ 3 ]. The Internet of Things (IoT) can be defined in its simplest scenario as a network that connects uniquely identifiable devices (or things ) to the internet, enabling them to collect, send, store, and receive data [ 4 ]. From a health care perspective, IoT can be considered as any device that can collect health-related data from individuals, including computing devices, mobile phones, smart bands and wearables, digital medications, implantable surgical devices, or other portable devices, which can measure health data and connect to the internet [ 5 ].

The growth of IoT technology has driven interest in a wide range of health practices to improve population health more specifically [ 6 ]. Recent reviews have overviewed the various services and applications of IoT in health care (eg, eHealth, mobile health [mHealth], ambient assisted living, semantic devices, wearable devices and smartphones, and community-based health care) [ 5 , 7 ]. These services have been detailed extensively and can have many applications across single condition and cluster condition management, including, for example, the ability to track and monitor health progress remotely by health care professionals, improve self-management of chronic conditions, assist in the early detection of abnormalities, fast-track symptom identification and clinical diagnoses, deliver early intervention, and improve adherence to prescriptions [ 8 ]. These applications can make better use of health care resources and provide quality and low-cost medical care.

Health Systems Are Changing

With the 2020 public health response to the novel COVID-19 pandemic to effectively shut down traditional modes of health service delivery worldwide, efforts to reduce implementation barriers to technology-supported health delivery highlight the potential to reframe traditional models of care into virtual and distance modalities [ 9 ]. In response, many countries have successfully implemented technology-supported services to maintain health care practices and social distancing [ 10 ]. As global leaders consider policies that potentially provide more access to technology-supported health services in response to (and considerations post) the current COVID-19 crisis, it is becoming increasingly important to understand how established and emerging IoT technologies can support health systems to deliver safe and effective care in either a complementary or an alternative way during times of crisis or health epidemics [ 11 ].

This viewpoint paper will overview current technologies in health care, outline how IoT devices are improving health service delivery, and outline how IoT technologies can affect global health care in the next decade. This viewpoint paper also overviews how the disruption in health care from IoT can lead to improved access and equitable primary, secondary, and tertiary smart health care, which is more proactive, continuous, and coordinated.

IoT-Based Health Care Architecture

The architecture of IoT in health care delivery essentially consists of 3 basic layers [ 12 ]: (1) the perception layer, (2) the network layer, and (3) the application layer. It is not our intention to extensively detail these layers; however, a summary and the related health implications are provided in the following sections.

Perception Layer: Sensing Systems That Collect Data

Perception and identification technologies are the foundation of IoT. Sensors are devices that can perceive changes in an environment and can include, for example, radio frequency identification (RFID), infrared sensors, cameras, GPS, medical sensors, and smart device sensors. These sensors allow for comprehensive perception through object recognition, location recognition, and geographic recognition and can convert this information to digital signals, which is more convenient for network transmission [ 12 , 13 ]. Sensor technologies allow for treatments to be monitored in real time and facilitate the acquisition of a multitude of physiological parameters about a patient so that diagnoses and high-quality treatment can be fast-tracked. There are many examples of potentially lifesaving IoT sensor devices; however, not all devices are clinically tested or have been proved to be safe or effective. A summary of IoT devices that may support and improve health service delivery is provided in Multimedia Appendix 1 [ 14 - 47 ].

Network Layer: Data Communication and Storage

The network level of IoT technologies includes wired and wireless networks, which communicate and store processed (layer 1) information either locally or at a centralized location. Communication between things can occur over low, medium, and high frequencies, the latter being the predominant focus of IoT. These include short-range communication technologies, such as RFID, wireless sensor networks, Bluetooth, Zigbee, low-power Wi-Fi, and global system for mobile communications [ 12 ]. High-frequency fourth-generation (4G) cellular networks have seen even more communication potential, and evolving 5G networks are becoming more readily available and are expected to be a major driver of the growth of IoT applications for health care, with the potential to provide reliable connection up to thousands of devices at the same time [ 48 ].

Communicated data are stored locally (often decentralized) or sent to a centralized cloud server. Cloud-based computing to support the delivery of health services has many benefits, as it is ubiquitous, flexible, and scalable in terms of data acquisition, storage, and transmission between devices connected to the cloud [ 49 ]. The use of the cloud can be foreseen to support data-intensive electronic medical records (EMRs), patient portals, medical IoT devices (which can include smartphone apps), and the big data analytics driving decision support systems and therapeutic strategies [ 5 ]. However, with more cloud apps entering the health market, it is just as important that an evidence base supports its effectiveness and safety and can deal with the security of health data and the reliability and transparency of that data by third parties. Furthermore, it has been suggested that centralized cloud storage will present issues in the future to users, such as excessive data accumulation and latency because of the distance between IoT devices and data centers.

Decentralized data processing and networking approaches may improve the scalability of IoT in health care. Edge cloud is a newer cloud computing concept that allows IoT sensors and network gateways to process and analyze data themselves (ie, at the edge ) in a decentralized fashion, reducing the amount of data required to be communicated and managed at a centralized location [ 12 , 50 ]. Similarly, blockchain storage uses a decentralized approach to data storage, creating independent blocks containing individual sets of information, which forms a dependent link in a collective block, which in turn creates a network regulated by patients rather than a third party [ 51 ]. There are examples of platforms engineering blockchain for medical practice already [ 51 , 52 ]; however, research on edge cloud and blockchains in health care is still limited and is an important area for future research.

Application Layer

The application layer interprets and applies data and is responsible for delivering application-specific services to the user [ 12 ]. Some of the most promising medical applications that IoT provides are through artificial intelligence (AI). The scientific applications of AI have proliferated, including image analysis, text recognition with natural language processing, drug activity design, and prediction of gene mutation expression [ 53 ]. AI has the capability to read available EMR data, including medical history, physical, laboratory, imaging, and medications, and contextualize these data to generate treatment and/or diagnosis decisions and/or possibilities. For example, IBM Watson uses AI to read both structured and unstructured text in the EMR, read images to highlight primary and incidental findings, and compile relevant medical literature in response to clinical queries [ 54 ].

IoT-based health care and use of deep machine learning can assist health professionals in seeing the unseeable and providing new and enhanced diagnostic capability. Although diagnostic confidence may never reach 100%, combining machines and clinician expertise reliably enhances system performance. For example, compared with the diagnostic evaluation by 54 ophthalmologists and senior residents, applying AI to retinal images improved the detection and grading of diabetic retinopathy and macular edema, achieving high specificities (98%) and sensitivities (90%) [ 55 ]. AI and deep learning can also optimize disease management, can provide big data and analysis generated from mHealth apps and IoT devices, and are starting to see adoption in health care [ 56 ]. Some examples of this include predicting risk, future medical outcomes, and care decisions in diabetes and mental health [ 57 ] and predicting the progression of congestive heart failure [ 58 , 59 ], bone disease [ 60 ], Alzheimer disease [ 61 ], benign and malignant tumor classification [ 62 , 63 ], and cardiac arrhythmias [ 64 ].

Expanding the Functions and Scope of IoT to Provide Smart Health Care

IoT is an infrastructure that enables smart health services to operate. When health data are collected by IoT sensors, communicated, and stored, this enables data analytics and smart health care, which can improve risk factor identification, disease diagnoses, treatment, and remote monitoring and empower people to self-manage.

Smart health care services make use of advancements in information technologies, such as IoT, big data analytics, cloud computing, AI, and deep machine learning, to transform traditional health care delivery to be a more efficient, convenient, and a more personalized system [ 65 ]. Current developments in information computer technologies have allowed the development of health care solutions with more intelligent prediction capabilities both in and out of the hospital. We are seeing the use of virtual models to transfer care provided in hospitals to the home through the use of sensors and devices that allow remote review and monitoring of patients in their homes or treated in hospitals and creates a continuum among these through cloud access [ 7 ]. More recently, the 2020 public health efforts around the world to mitigate the spread of COVID-19 have (at least temporarily) led governments and policy makers to remove implementation and remuneration barriers to enable health care professionals to use virtual models of care for people who need it [ 9 ]. IoT also provides the opportunity to improve the quality and efficiency of the entire ecosystem of service delivery, including hospital management, medical asset management, monitoring of the workflow of staff, and optimization of medical resources based on patient flow [ 66 , 67 ].

How IoT Can Improve Health Service Delivery

Primary health care becoming more accessible.

A focus on disease prevention must become a priority this decade, as the burden of disease attributable to modifiable risk factors is greater than ever before [ 1 , 68 ]. IoT in health care has the potential to improve population health and transition our health care model to a true hybrid model of primary, secondary, and tertiary care, where the health system can use its existing workforce in new and more efficient ways. Transforming health delivery in this way is crucial to improving self-management for people with chronic conditions, as even among high health care users, more than 90% of lifestyle self-management is done by patients themselves, outside of hospitals, and in clinical settings [ 69 , 70 ].

There is a clear public demand for easy-to-access health information. For example, in a 2015 US survey, 58% (931/1604) of smartphone users downloaded a health-related app for their lifestyle self-management [ 71 ]. AI has also driven the availability of point-of-care health information, such as chatbots (or AI doctors), which can deliver lifestyle and medical advice. Examples of these established AI bots are Woebot, Your.Md, Babylon, and HealthTap, where a patient can input their symptoms and advice is generated instantly [ 72 ]. However, more than half of the most highly rated apps make medical claims that are not approved [ 73 ], with no formal process of approving apps or informing consumer choice [ 74 ], and much remains to be done to understand the potential of chatbots to improve health. Therefore, a reliable digital health evidence base is essential [ 75 ]. If health professionals have evidence-based digital resources, devices, and mobile apps readily at their disposal, digital prescriptions could become an enabler of wider adoption of IoT in health care and facilitate a wider population focus on disease prevention.

At the individual level, IoT offers the opportunity to link and potentially learn from nonhealth IoT technologies to monitor daily activities, provide support with information, and promote behavior changes ( Multimedia Appendix 2 ). In addition, IoT and data linkage create great potential of transparent, evidence-based decision making, which may be able to drive the shift of disease patterns and increase the well-being of citizens at scale. The integration of urban infrastructures, IoT technologies, and cloud computing allows the collection and analysis of a vast quantity of different human and non–human-related data. These data could provide valuable information about population-level surveillance in diseases and accidents, risk factors, and environmental conditions [ 76 ], which is difficult to collect through the traditional human-reported disease surveillance system and can be of particular benefit in pandemic responses [ 77 ]. For example, in Taiwan, big data analytics applied to electronic data (GPS, closed-circuit television surveillance, and credit card payments) in the community and personal mobile data have been effectively used to contact trace, communicate, and isolate potential contacts during the global COVID-19 pandemic [ 78 ]. Through IoT and data linkage, decision makers are likely to be able to make evidence-based decisions in promoting healthy social and built environments, safe transportation systems, high-quality public services, and smart health care and emergency response systems [ 76 , 79 , 80 ].

Secondary and Tertiary Health Care That Is Proactive, Continuous, and Coordinated

An IoT-based health care system enables the overall health care systems to move past a traditional model of service delivery, which is often reactive, intermittent, and uncoordinated, to a more proactive, continuous, and coordinated approach [ 81 ]. Such an approach is favorable because it offers the opportunity to provide high-quality care that is less invasive and appealing to patients and health care professionals. This change in the health care system landscape is also highly appealing for policy makers because it can greatly enhance the efficiency (and subsequently reduce resource use) of the health system [ 82 ] and also provide the health system flexibility to shift its models of care and delivery of services as required on an individual or population-wide basis. Multimedia Appendix 3 summarizes 7 examples of how IoT can improve the coordination of health services and likely improve our health system efficiency.

Enablers and Barriers to Address for IoT-Based Health Care

Policy support.

Policy support is one of the most important environmental enablers of IoT. Many countries already have policies in place for eHealth (eg, web-based and software programs to deliver health services) [ 83 , 84 ] and either have or are in the process of developing policies for IoT infrastructure, investment, and/or implementation in health care. For example, China, India, Indonesia, Japan, Malaysia, the Philippines, Singapore, Thailand, the European Union, the United States, and Vietnam currently have relevant policies in place for IoT [ 85 ]. Australia is also in the process of establishing a policy for IoT development and investment [ 86 ].

Technology That Is Accessible and Easy to Use

The ubiquitous nature of technology means that consumers and health care professionals have greater access to digital resources than ever before [ 87 ]. However, it is also important for health systems to be aware of the inequities that may eventuate from the widespread implementation of IoT for health care, including individuals who may not be able to afford or access technology hardware or reliable internet services because of geographic location or financial disadvantage. Similarly, if individuals do not perceive the technology as user friendly , experience poor connections, or do not feel the initiative has been designed in consultation with them (both patients and health professionals), then this often results in frustration and reluctance to use such services [ 88 , 89 ].

Cybersecurity-Focused Guidelines for Robust and Resilient Market Adoption

Cyber risk is a major obstacle to the broad adoption of IoT [ 90 ]. The privacy of patients must be ensured to prevent unauthorized identification and tracking. From this perspective, the higher the level of autonomy and intelligence of the things, the more the challenges for the protection of identities and privacy.

Confidence and Acceptability

There is a gap in public awareness and understanding of data safety in cloud-stored health information. This is of concern, as it is the single biggest threat to the adoption of IoT from a societal perspective. The premise of IoT is clear to society; however, what is not clear to people is the actual value that IoT delivers to them personally from a health care perspective [ 91 , 92 ]. The potential threat of breached confidentiality may never go away; however, the perceived value to consumers needs to outweigh these concerns to confidently engage with IoT-supported health infrastructure [ 90 ]. The confidence and acceptability of IoT by health care professionals are similarly important. There is a diverse range of factors that affect clinicians’ acceptability of technology-supported programs, including the characteristics of the technology (eg, accuracy, compatibility with usual systems, and ease of use), individual’s attitudes and knowledge (eg, familiarity and impact on professional security), external factors (eg, patient and health professional interaction), and organization readiness (eg, training and reimbursement) [ 93 ].

Privacy and Security

IoT might allow opportunities for cyberattacks and for personal data to be collected inappropriately. IoT-based applications are vulnerable to cyberattacks for 2 basic reasons: (1) most of the communications are wireless, which makes eavesdropping very easy; and (2) most of the IoT components are characterized by low energy, and therefore, they can hardly implement complex schemes on their own to ensure security. The National Institute of Standards and Technology has recently released a draft security guide and recommendations for IoT devices, which will see an emphasis on data security in IoT devices [ 94 ]; however, whether such a guideline can or will be enforced across IoT health devices is unclear.

Data Storage, Control, and Ownership

To move forward in IoT-based health care, transparency and enforced codes of practice regarding where centralized cloud data are stored and who owns the data, needs to be considered For example, does the data host have viewing rights to someone’s data and are these data completely controlled by individuals or are they never deleted from the cloud, despite a user’s request? Another important consideration is the sharing of data across states or territories and internationally. Privacy, security, and confidentiality of data control and storage should be federally enforced, but international hosts and suppliers may not be required to follow any such code. Therefore, the use of these platforms requires strategic planning and transparent guidelines to develop and implement robust IoT-based health care policies and models of care.

Interoperability and Standardization Protocols

Issues around the interoperability and standardization of IoT and health care systems are a big threat to the wider adoption of IoT for health care systems. Lack of standardization threatens the development of IoT in the health setting context, as the industry and manufacturers are yet to reach a consensus regarding wireless communication protocols and standards for machine-to-machine communication. Without a unified, standardized, and interoperable system, the adoption of IoT into health care will be greatly hindered and is unlikely to have international reach [ 95 ]. Semantic interoperability in IoT is a necessary condition for big data techniques to support decision-making processes [ 96 ]. It is increasingly common for each new technology startup, device, or system manufacturer to define their own specific architecture, protocols, and data formats, which are unable to communicate with the health care environment unless they are appreciably redeveloped or adapted to interoperate with hospital IoT platforms [ 96 ]. This creates Vertical Silos [ 97 ], which demands the development of new features for granting interoperability between different systems. The future and full potential of IoT-enabled health care relies on addressing interoperability, of which some frameworks do exist [ 98 ]. Achieving interoperability across IoT platforms can provide a safer, more accessible, productive, and satisfying experience for clinicians and patients alike.

Remuneration

Finally, remuneration for technology-assisted health care has historically been challenging [ 99 ] and differs appreciably across different countries. This is likely to be even more complex for IoT-delivered health care, where reimbursement considerations have not been established (and this is unlikely until the abovementioned points are addressed). As international health systems establish robust policies and guidelines on cybersecurity and address the issues surrounding interoperability and standardization protocols, reimbursement and regulatory considerations across single-payer and multipayer systems should become a key priority to ensuring successful, effective, and cost-effective IoT health care models can be implemented in practice.

Conclusions

From this viewpoint, the potential of IoT is summarized as a growing area of research in health care. These developments provide a great opportunity for health care systems to proactively predict health issues and diagnose, treat, and monitor patients both in and out of the hospital. As the adoption of technology-supported health services increases to enable health systems to deliver flexible models of care, an increasing number of traditional health service delivery practices will be complemented or replaced through IoT. However, the implementation of IoT in health care will rely on a clear and robust code of practice for the management of data, privacy, confidentiality, and cybersecurity concerning the supply and use of IoT devices in health care. There are still important gaps for future research to address, which relate to the IoT technology itself, the health system, and the users of IoT technology. Specific future research on IoT technology needs to address how IoT devices can be designed with standardized protocols and interoperability with international and cross-state health systems. More research is also needed on the efficiency of blockchain storage compared with centralized cloud-based storage solutions in the context of IoT-supported health care delivery. From a health system perspective, there is a need for clinical guidelines on digital health prescriptions and robust policy regarding remuneration for primary and secondary care services provided through IoT. Finally, more research is needed to determine the acceptability and digital literacy of consumers and clinicians in the context of using IoT to improve the delivery and overall experience of health care. Although this viewpoint is a summary of selected literature only and not based on an exhaustive systematic review of the literature, we believe that addressing these areas for future research will go a long way to enable a wider uptake of IoT, which can ultimately save health care dollars and improve patient-centered care.

Acknowledgments

This research received no specific funding. JK was supported through a Griffith University Postdoctoral Research Fellowship. PS was partially funded through a National Health and Medical Research Council Senior Research Fellowship (#1136923). EG was supported by the Melbourne Graduate Research Scholarship. The authors wish to thank Dr Tilman Dingler for his assistance in the network section of this paper.

Abbreviations

Multimedia appendix 1, multimedia appendix 2, multimedia appendix 3.

Authors' Contributions: Each author contributed to the conception and design of this paper. JK conducted the literature searches and drafted the first draft of the manuscript. EG, KC, and PS revised the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: None declared.

Help | Advanced Search

Computer Science > Machine Learning

Title: survey of graph neural network for internet of things and nextg networks.

Abstract: The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and meet the users' requirements. Graph Neural Networks (GNNs) have emerged as a promising paradigm for effectively modeling and extracting insights which inherently exhibit complex network structures due to its high performance and accuracy, scalability, adaptability, and resource efficiency. There is a lack of a comprehensive survey that focuses on the applications and advances GNN has made in the context of IoT and Next Generation (NextG) networks. To bridge that gap, this survey starts by providing a detailed description of GNN's terminologies, architecture, and the different types of GNNs. Then we provide a comprehensive survey of the advancements in applying GNNs for IoT from the perspective of data fusion and intrusion detection. Thereafter, we survey the impact GNN has made in improving spectrum awareness. Next, we provide a detailed account of how GNN has been leveraged for networking and tactical systems. Through this survey, we aim to provide a comprehensive resource for researchers to learn more about GNN in the context of wireless networks, and understand its state-of-the-art use cases while contrasting to other machine learning approaches. Finally, we also discussed the challenges and wide range of future research directions to further motivate the use of GNN for IoT and NextG Networks.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 October 2023

The impact of founder personalities on startup success

  • Paul X. McCarthy 1 , 2 ,
  • Xian Gong 3 ,
  • Fabian Braesemann 4 , 5 ,
  • Fabian Stephany 4 , 5 ,
  • Marian-Andrei Rizoiu 3 &
  • Margaret L. Kern 6  

Scientific Reports volume  13 , Article number:  17200 ( 2023 ) Cite this article

60k Accesses

2 Citations

305 Altmetric

Metrics details

  • Human behaviour
  • Information technology

An Author Correction to this article was published on 07 May 2024

This article has been updated

Startup companies solve many of today’s most challenging problems, such as the decarbonisation of the economy or the development of novel life-saving vaccines. Startups are a vital source of innovation, yet the most innovative are also the least likely to survive. The probability of success of startups has been shown to relate to several firm-level factors such as industry, location and the economy of the day. Still, attention has increasingly considered internal factors relating to the firm’s founding team, including their previous experiences and failures, their centrality in a global network of other founders and investors, as well as the team’s size. The effects of founders’ personalities on the success of new ventures are, however, mainly unknown. Here, we show that founder personality traits are a significant feature of a firm’s ultimate success. We draw upon detailed data about the success of a large-scale global sample of startups (n = 21,187). We find that the Big Five personality traits of startup founders across 30 dimensions significantly differ from that of the population at large. Key personality facets that distinguish successful entrepreneurs include a preference for variety, novelty and starting new things (openness to adventure), like being the centre of attention (lower levels of modesty) and being exuberant (higher activity levels). We do not find one ’Founder-type’ personality; instead, six different personality types appear. Our results also demonstrate the benefits of larger, personality-diverse teams in startups, which show an increased likelihood of success. The findings emphasise the role of the diversity of personality types as a novel dimension of team diversity that influences performance and success.

Similar content being viewed by others

research paper about internet of things

Predicting success in the worldwide start-up network

research paper about internet of things

The personality traits of self-made and inherited millionaires

research paper about internet of things

The nexus of top executives’ attributes, firm strategies, and outcomes: Large firms versus SMEs

Introduction.

The success of startups is vital to economic growth and renewal, with a small number of young, high-growth firms creating a disproportionately large share of all new jobs 1 , 2 . Startups create jobs and drive economic growth, and they are also an essential vehicle for solving some of society’s most pressing challenges.

As a poignant example, six centuries ago, the German city of Mainz was abuzz as the birthplace of the world’s first moveable-type press created by Johannes Gutenberg. However, in the early part of this century, it faced several economic challenges, including rising unemployment and a significant and growing municipal debt. Then in 2008, two Turkish immigrants formed the company BioNTech in Mainz with another university research colleague. Together they pioneered new mRNA-based technologies. In 2020, BioNTech partnered with US pharmaceutical giant Pfizer to create one of only a handful of vaccines worldwide for Covid-19, saving an estimated six million lives 3 . The economic benefit to Europe and, in particular, the German city where the vaccine was developed has been significant, with windfall tax receipts to the government clearing Mainz’s €1.3bn debt and enabling tax rates to be reduced, attracting other businesses to the region as well as inspiring a whole new generation of startups 4 .

While stories such as the success of BioNTech are often retold and remembered, their success is the exception rather than the rule. The overwhelming majority of startups ultimately fail. One study of 775 startups in Canada that successfully attracted external investment found only 35% were still operating seven years later 5 .

But what determines the success of these ‘lucky few’? When assessing the success factors of startups, especially in the early-stage unproven phase, venture capitalists and other investors offer valuable insights. Three different schools of thought characterise their perspectives: first, supply-side or product investors : those who prioritise investing in firms they consider to have novel and superior products and services, investing in companies with intellectual property such as patents and trademarks. Secondly, demand-side or market-based investors : those who prioritise investing in areas of highest market interest, such as in hot areas of technology like quantum computing or recurrent or emerging large-scale social and economic challenges such as the decarbonisation of the economy. Thirdly, talent investors : those who prioritise the foundation team above the startup’s initial products or what industry or problem it is looking to address.

Investors who adopt the third perspective and prioritise talent often recognise that a good team can overcome many challenges in the lead-up to product-market fit. And while the initial products of a startup may or may not work a successful and well-functioning team has the potential to pivot to new markets and new products, even if the initial ones prove untenable. Not surprisingly, an industry ‘autopsy’ into 101 tech startup failures found 23% were due to not having the right team—the number three cause of failure ahead of running out of cash or not having a product that meets the market need 6 .

Accordingly, early entrepreneurship research was focused on the personality of founders, but the focus shifted away in the mid-1980s onwards towards more environmental factors such as venture capital financing 7 , 8 , 9 , networks 10 , location 11 and due to a range of issues and challenges identified with the early entrepreneurship personality research 12 , 13 . At the turn of the 21st century, some scholars began exploring ways to combine context and personality and reconcile entrepreneurs’ individual traits with features of their environment. In her influential work ’The Sociology of Entrepreneurship’, Patricia H. Thornton 14 discusses two perspectives on entrepreneurship: the supply-side perspective (personality theory) and the demand-side perspective (environmental approach). The supply-side perspective focuses on the individual traits of entrepreneurs. In contrast, the demand-side perspective focuses on the context in which entrepreneurship occurs, with factors such as finance, industry and geography each playing their part. In the past two decades, there has been a revival of interest and research that explores how entrepreneurs’ personality relates to the success of their ventures. This new and growing body of research includes several reviews and meta-studies, which show that personality traits play an important role in both career success and entrepreneurship 15 , 16 , 17 , 18 , 19 , that there is heterogeneity in definitions and samples used in research on entrepreneurship 16 , 18 , and that founder personality plays an important role in overall startup outcomes 17 , 19 .

Motivated by the pivotal role of the personality of founders on startup success outlined in these recent contributions, we investigate two main research questions:

Which personality features characterise founders?

Do their personalities, particularly the diversity of personality types in founder teams, play a role in startup success?

We aim to understand whether certain founder personalities and their combinations relate to startup success, defined as whether their company has been acquired, acquired another company or listed on a public stock exchange. For the quantitative analysis, we draw on a previously published methodology 20 , which matches people to their ‘ideal’ jobs based on social media-inferred personality traits.

We find that personality traits matter for startup success. In addition to firm-level factors of location, industry and company age, we show that founders’ specific Big Five personality traits, such as adventurousness and openness, are significantly more widespread among successful startups. As we find that companies with multi-founder teams are more likely to succeed, we cluster founders in six different and distinct personality groups to underline the relevance of the complementarity in personality traits among founder teams. Startups with diverse and specific combinations of founder types (e. g., an adventurous ‘Leader’, a conscientious ‘Accomplisher’, and an extroverted ‘Developer’) have significantly higher odds of success.

We organise the rest of this paper as follows. In the Section " Results ", we introduce the data used and the methods applied to relate founders’ psychological traits with their startups’ success. We introduce the natural language processing method to derive individual and team personality characteristics and the clustering technique to identify personality groups. Then, we present the result for multi-variate regression analysis that allows us to relate firm success with external and personality features. Subsequently, the Section " Discussion " mentions limitations and opportunities for future research in this domain. In the Section " Methods ", we describe the data, the variables in use, and the clustering in greater detail. Robustness checks and additional analyses can be found in the Supplementary Information.

Our analysis relies on two datasets. We infer individual personality facets via a previously published methodology 20 from Twitter user profiles. Here, we restrict our analysis to founders with a Crunchbase profile. Crunchbase is the world’s largest directory on startups. It provides information about more than one million companies, primarily focused on funding and investors. A company’s public Crunchbase profile can be considered a digital business card of an early-stage venture. As such, the founding teams tend to provide information about themselves, including their educational background or a link to their Twitter account.

We infer the personality profiles of the founding teams of early-stage ventures from their publicly available Twitter profiles, using the methodology described by Kern et al. 20 . Then, we correlate this information to data from Crunchbase to determine whether particular combinations of personality traits correspond to the success of early-stage ventures. The final dataset used in the success prediction model contains n = 21,187 startup companies (for more details on the data see the Methods section and SI section  A.5 ).

Revisions of Crunchbase as a data source for investigations on a firm and industry level confirm the platform to be a useful and valuable source of data for startups research, as comparisons with other sources at micro-level, e.g., VentureXpert or PwC, also suggest that the platform’s coverage is very comprehensive, especially for start-ups located in the United States 21 . Moreover, aggregate statistics on funding rounds by country and year are quite similar to those produced with other established sources, going to validate the use of Crunchbase as a reliable source in terms of coverage of funded ventures. For instance, Crunchbase covers about the same number of investment rounds in the analogous sectors as collected by the National Venture Capital Association 22 . However, we acknowledge that the data source might suffer from registration latency (a certain delay between the foundation of the company and its actual registration on Crunchbase) and success bias in company status (the likeliness that failed companies decide to delete their profile from the database).

The definition of startup success

The success of startups is uncertain, dependent on many factors and can be measured in various ways. Due to the likelihood of failure in startups, some large-scale studies have looked at which features predict startup survival rates 23 , and others focus on fundraising from external investors at various stages 24 . Success for startups can be measured in multiple ways, such as the amount of external investment attracted, the number of new products shipped or the annual growth in revenue. But sometimes external investments are misguided, revenue growth can be short-lived, and new products may fail to find traction.

Success in a startup is typically staged and can appear in different forms and times. For example, a startup may be seen to be successful when it finds a clear solution to a widely recognised problem, such as developing a successful vaccine. On the other hand, it could be achieving some measure of commercial success, such as rapidly accelerating sales or becoming profitable or at least cash positive. Or it could be reaching an exit for foundation investors via a trade sale, acquisition or listing of its shares for sale on a public stock exchange via an Initial Public Offering (IPO).

For our study, we focused on the startup’s extrinsic success rather than the founders’ intrinsic success per se, as its more visible, objective and measurable. A frequently considered measure of success is the attraction of external investment by venture capitalists 25 . However, this is not in and of itself a good measure of clear, incontrovertible success, particularly for early-stage ventures. This is because it reflects investors’ expectations of a startup’s success potential rather than actual business success. Similarly, we considered other measures like revenue growth 26 , liquidity events 27 , 28 , 29 , profitability 30 and social impact 31 , all of which have benefits as they capture incremental success, but each also comes with operational measurement challenges.

Therefore, we apply the success definition initially introduced by Bonaventura et al. 32 , namely that a startup is acquired, acquires another company or has an initial public offering (IPO). We consider any of these major capital liquidation events as a clear threshold signal that the company has matured from an early-stage venture to becoming or is on its way to becoming a mature company with clear and often significant business growth prospects. Together these three major liquidity events capture the primary forms of exit for external investors (an acquisition or trade sale and an IPO). For companies with a longer autonomous growth runway, acquiring another company marks a similar milestone of scale, maturity and capability.

Using multifactor analysis and a binary classification prediction model of startup success, we looked at many variables together and their relative influence on the probability of the success of startups. We looked at seven categories of factors through three lenses of firm-level factors: (1) location, (2) industry, (3) age of the startup; founder-level factors: (4) number of founders, (5) gender of founders, (6) personality characteristics of founders and; lastly team-level factors: (7) founder-team personality combinations. The model performance and relative impacts on the probability of startup success of each of these categories of founders are illustrated in more detail in section  A.6 of the Supplementary Information (in particular Extended Data Fig.  19 and Extended Data Fig.  20 ). In total, we considered over three hundred variables (n = 323) and their relative significant associations with success.

The personality of founders

Besides product-market, industry, and firm-level factors (see SI section  A.1 ), research suggests that the personalities of founders play a crucial role in startup success 19 . Therefore, we examine the personality characteristics of individual startup founders and teams of founders in relationship to their firm’s success by applying the success definition used by Bonaventura et al. 32 .

Employing established methods 33 , 34 , 35 , we inferred the personality traits across 30 dimensions (Big Five facets) of a large global sample of startup founders. The startup founders cohort was created from a subset of founders from the global startup industry directory Crunchbase, who are also active on the social media platform Twitter.

To measure the personality of the founders, we used the Big Five, a popular model of personality which includes five core traits: Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Emotional stability. Each of these traits can be further broken down into thirty distinct facets. Studies have found that the Big Five predict meaningful life outcomes, such as physical and mental health, longevity, social relationships, health-related behaviours, antisocial behaviour, and social contribution, at levels on par with intelligence and socioeconomic status 36 Using machine learning to infer personality traits by analysing the use of language and activity on social media has been shown to be more accurate than predictions of coworkers, friends and family and similar in accuracy to the judgement of spouses 37 . Further, as other research has shown, we assume that personality traits remain stable in adulthood even through significant life events 38 , 39 , 40 . Personality traits have been shown to emerge continuously from those already evident in adolescence 41 and are not significantly influenced by external life events such as becoming divorced or unemployed 42 . This suggests that the direction of any measurable effect goes from founder personalities to startup success and not vice versa.

As a first investigation to what extent personality traits might relate to entrepreneurship, we use the personality characteristics of individuals to predict whether they were an entrepreneur or an employee. We trained and tested a machine-learning random forest classifier to distinguish and classify entrepreneurs from employees and vice-versa using inferred personality vectors alone. As a result, we found we could correctly predict entrepreneurs with 77% accuracy and employees with 88% accuracy (Fig.  1 A). Thus, based on personality information alone, we correctly predict all unseen new samples with 82.5% accuracy (See SI section  A.2 for more details on this analysis, the classification modelling and prediction accuracy).

We explored in greater detail which personality features are most prominent among entrepreneurs. We found that the subdomain or facet of Adventurousness within the Big Five Domain of Openness was significant and had the largest effect size. The facet of Modesty within the Big Five Domain of Agreeableness and Activity Level within the Big Five Domain of Extraversion was the subsequent most considerable effect (Fig.  1 B). Adventurousness in the Big Five framework is defined as the preference for variety, novelty and starting new things—which are consistent with the role of a startup founder whose role, especially in the early life of the company, is to explore things that do not scale easily 43 and is about developing and testing new products, services and business models with the market.

Once we derived and tested the Big Five personality features for each entrepreneur in our data set, we examined whether there is evidence indicating that startup founders naturally cluster according to their personality features using a Hopkins test (see Extended Data Figure  6 ). We discovered clear clustering tendencies in the data compared with other renowned reference data sets known to have clusters. Then, once we established the founder data clusters, we used agglomerative hierarchical clustering. This ‘bottom-up’ clustering technique initially treats each observation as an individual cluster. Then it merges them to create a hierarchy of possible cluster schemes with differing numbers of groups (See Extended Data Fig.  7 ). And lastly, we identified the optimum number of clusters based on the outcome of four different clustering performance measurements: Davies-Bouldin Index, Silhouette coefficients, Calinski-Harabas Index and Dunn Index (see Extended Data Figure  8 ). We find that the optimum number of clusters of startup founders based on their personality features is six (labelled #0 through to #5), as shown in Fig.  1 C.

To better understand the context of different founder types, we positioned each of the six types of founders within an occupation-personality matrix established from previous research 44 . This research showed that ‘each job has its own personality’ using a substantial sample of employees across various jobs. Utilising the methodology employed in this study, we assigned labels to the cluster names #0 to #5, which correspond to the identified occupation tribes that best describe the personality facets represented by the clusters (see Extended Data Fig.  9 for an overview of these tribes, as identified by McCarthy et al. 44 ).

Utilising this approach, we identify three ’purebred’ clusters: #0, #2 and #5, whose members are dominated by a single tribe (larger than 60% of all individuals in each cluster are characterised by one tribe). Thus, these clusters represent and share personality attributes of these previously identified occupation-personality tribes 44 , which have the following known distinctive personality attributes (see also Table  1 ):

Accomplishers (#0) —Organised & outgoing. confident, down-to-earth, content, accommodating, mild-tempered & self-assured.

Leaders (#2) —Adventurous, persistent, dispassionate, assertive, self-controlled, calm under pressure, philosophical, excitement-seeking & confident.

Fighters (#5) —Spontaneous and impulsive, tough, sceptical, and uncompromising.

We labelled these clusters with the tribe names, acknowledging that labels are somewhat arbitrary, based on our best interpretation of the data (See SI section  A.3 for more details).

For the remaining three clusters #1, #3 and #4, we can see they are ‘hybrids’, meaning that the founders within them come from a mix of different tribes, with no one tribe representing more than 50% of the members of that cluster. However, the tribes with the largest share were noted as #1 Experts/Engineers, #3 Fighters, and #4 Operators.

To label these three hybrid clusters, we examined the closest occupations to the median personality features of each cluster. We selected a name that reflected the common themes of these occupations, namely:

Experts/Engineers (#1) as the closest roles included Materials Engineers and Chemical Engineers. This is consistent with this cluster’s personality footprint, which is highest in openness in the facets of imagination and intellect.

Developers (#3) as the closest roles include Application Developers and related technology roles such as Business Systems Analysts and Product Managers.

Operators (#4) as the closest roles include service, maintenance and operations functions, including Bicycle Mechanic, Mechanic and Service Manager. This is also consistent with one of the key personality traits of high conscientiousness in the facet of orderliness and high agreeableness in the facet of humility for founders in this cluster.

figure 1

Founder-Level Factors of Startup Success. ( A ), Successful entrepreneurs differ from successful employees. They can be accurately distinguished using a classifier with personality information alone. ( B ), Successful entrepreneurs have different Big Five facet distributions, especially on adventurousness, modesty and activity level. ( C ), Founders come in six different types: Fighters, Operators, Accomplishers, Leaders, Engineers and Developers (FOALED) ( D ), Each founder Personality-Type has its distinct facet.

Together, these six different types of startup founders (Fig.  1 C) represent a framework we call the FOALED model of founder types—an acronym of Fighters, Operators, Accomplishers, Leaders, Engineers and D evelopers.

Each founder’s personality type has its distinct facet footprint (for more details, see Extended Data Figure  10 in SI section  A.3 ). Also, we observe a central core of correlated features that are high for all types of entrepreneurs, including intellect, adventurousness and activity level (Fig.  1 D).To test the robustness of the clustering of the personality facets, we compare the mean scores of the individual facets per cluster with a 20-fold resampling of the data and find that the clusters are, overall, largely robust against resampling (see Extended Data Figure  11 in SI section  A.3 for more details).

We also find that the clusters accord with the distribution of founders’ roles in their startups. For example, Accomplishers are often Chief Executive Officers, Chief Financial Officers, or Chief Operating Officers, while Fighters tend to be Chief Technical Officers, Chief Product Officers, or Chief Commercial Officers (see Extended Data Fig.  12 in SI section  A.4 for more details).

The ensemble theory of success

While founders’ individual personality traits, such as Adventurousness or Openness, show to be related to their firms’ success, we also hypothesise that the combination, or ensemble, of personality characteristics of a founding team impacts the chances of success. The logic behind this reasoning is complementarity, which is proposed by contemporary research on the functional roles of founder teams. Examples of these clear functional roles have evolved in established industries such as film and television, construction, and advertising 45 . When we subsequently explored the combinations of personality types among founders and their relationship to the probability of startup success, adjusted for a range of other factors in a multi-factorial analysis, we found significantly increased chances of success for mixed foundation teams:

Initially, we find that firms with multiple founders are more likely to succeed, as illustrated in Fig.  2 A, which shows firms with three or more founders are more than twice as likely to succeed than solo-founded startups. This finding is consistent with investors’ advice to founders and previous studies 46 . We also noted that some personality types of founders increase the probability of success more than others, as shown in SI section  A.6 (Extended Data Figures  16 and 17 ). Also, we note that gender differences play out in the distribution of personality facets: successful female founders and successful male founders show facet scores that are more similar to each other than are non-successful female founders to non-successful male founders (see Extended Data Figure  18 ).

figure 2

The Ensemble Theory of Team-Level Factors of Startup Success. ( A ) Having a larger founder team elevates the chances of success. This can be due to multiple reasons, e.g., a more extensive network or knowledge base but also personality diversity. ( B ) We show that joint personality combinations of founders are significantly related to higher chances of success. This is because it takes more than one founder to cover all beneficial personality traits that ‘breed’ success. ( C ) In our multifactor model, we show that firms with diverse and specific combinations of types of founders have significantly higher odds of success.

Access to more extensive networks and capital could explain the benefits of having more founders. Still, as we find here, it also offers a greater diversity of combined personalities, naturally providing a broader range of maximum traits. So, for example, one founder may be more open and adventurous, and another could be highly agreeable and trustworthy, thus, potentially complementing each other’s particular strengths associated with startup success.

The benefits of larger and more personality-diverse foundation teams can be seen in the apparent differences between successful and unsuccessful firms based on their combined Big Five personality team footprints, as illustrated in Fig.  2 B. Here, maximum values for each Big Five trait of a startup’s co-founders are mapped; stratified by successful and non-successful companies. Founder teams of successful startups tend to score higher on Openness, Conscientiousness, Extraversion, and Agreeableness.

When examining the combinations of founders with different personality types, we find that some ensembles of personalities were significantly correlated with greater chances of startup success—while controlling for other variables in the model—as shown in Fig.  2 C (for more details on the modelling, the predictive performance and the coefficient estimates of the final model, see Extended Data Figures  19 , 20 , and 21 in SI section  A.6 ).

Three combinations of trio-founder companies were more than twice as likely to succeed than other combinations, namely teams with (1) a Leader and two Developers , (2) an Operator and two Developers , and (3) an Expert/Engineer , Leader and Developer . To illustrate the potential mechanisms on how personality traits might influence the success of startups, we provide some examples of well-known, successful startup founders and their characteristic personality traits in Extended Data Figure  22 .

Startups are one of the key mechanisms for brilliant ideas to become solutions to some of the world’s most challenging economic and social problems. Examples include the Google search algorithm, disability technology startup Fingerwork’s touchscreen technology that became the basis of the Apple iPhone, or the Biontech mRNA technology that powered Pfizer’s COVID-19 vaccine.

We have shown that founders’ personalities and the combination of personalities in the founding team of a startup have a material and significant impact on its likelihood of success. We have also shown that successful startup founders’ personality traits are significantly different from those of successful employees—so much so that a simple predictor can be trained to distinguish between employees and entrepreneurs with more than 80% accuracy using personality trait data alone.

Just as occupation-personality maps derived from data can provide career guidance tools, so too can data on successful entrepreneurs’ personality traits help people decide whether becoming a founder may be a good choice for them.

We have learnt through this research that there is not one type of ideal ’entrepreneurial’ personality but six different types. Many successful startups have multiple co-founders with a combination of these different personality types.

To a large extent, founding a startup is a team sport; therefore, diversity and complementarity of personalities matter in the foundation team. It has an outsized impact on the company’s likelihood of success. While all startups are high risk, the risk becomes lower with more founders, particularly if they have distinct personality traits.

Our work demonstrates the benefits of personality diversity among the founding team of startups. Greater awareness of this novel form of diversity may help create more resilient startups capable of more significant innovation and impact.

The data-driven research approach presented here comes with certain methodological limitations. The principal data sources of this study—Crunchbase and Twitter—are extensive and comprehensive, but there are characterised by some known and likely sample biases.

Crunchbase is the principal public chronicle of venture capital funding. So, there is some likely sample bias toward: (1) Startup companies that are funded externally: self-funded or bootstrapped companies are less likely to be represented in Crunchbase; (2) technology companies, as that is Crunchbase’s roots; (3) multi-founder companies; (4) male founders: while the representation of female founders is now double that of the mid-2000s, women still represent less than 25% of the sample; (5) companies that succeed: companies that fail, especially those that fail early, are likely to be less represented in the data.

Samples were also limited to those founders who are active on Twitter, which adds additional selection biases. For example, Twitter users typically are younger, more educated and have a higher median income 47 . Another limitation of our approach is the potentially biased presentation of a person’s digital identity on social media, which is the basis for identifying personality traits. For example, recent research suggests that the language and emotional tone used by entrepreneurs in social media can be affected by events such as business failure 48 , which might complicate the personality trait inference.

In addition to sampling biases within the data, there are also significant historical biases in startup culture. For many aspects of the entrepreneurship ecosystem, women, for example, are at a disadvantage 49 . Male-founded companies have historically dominated most startup ecosystems worldwide, representing the majority of founders and the overwhelming majority of venture capital investors. As a result, startups with women have historically attracted significantly fewer funds 50 , in part due to the male bias among venture investors, although this is now changing, albeit slowly 51 .

The research presented here provides quantitative evidence for the relevance of personality types and the diversity of personalities in startups. At the same time, it brings up other questions on how personality traits are related to other factors associated with success, such as:

Will the recent growing focus on promoting and investing in female founders change the nature, composition and dynamics of startups and their personalities leading to a more diverse personality landscape in startups?

Will the growth of startups outside of the United States change what success looks like to investors and hence the role of different personality traits and their association to diverse success metrics?

Many of today’s most renowned entrepreneurs are either Baby Boomers (such as Gates, Branson, Bloomberg) or Generation Xers (such as Benioff, Cannon-Brookes, Musk). However, as we can see, personality is both a predictor and driver of success in entrepreneurship. Will generation-wide differences in personality and outlook affect startups and their success?

Moreover, the findings shown here have natural extensions and applications beyond startups, such as for new projects within large established companies. While not technically startups, many large enterprises and industries such as construction, engineering and the film industry rely on forming new project-based, cross-functional teams that are often new ventures and share many characteristics of startups.

There is also potential for extending this research in other settings in government, NGOs, and within the research community. In scientific research, for example, team diversity in terms of age, ethnicity and gender has been shown to be predictive of impact, and personality diversity may be another critical dimension 52 .

Another extension of the study could investigate the development of the language used by startup founders on social media over time. Such an extension could investigate whether the language (and inferred psychological characteristics) change as the entrepreneurs’ ventures go through major business events such as foundation, funding, or exit.

Overall, this study demonstrates, first, that startup founders have significantly different personalities than employees. Secondly, besides firm-level factors, which are known to influence firm success, we show that a range of founder-level factors, notably the character traits of its founders, significantly impact a startup’s likelihood of success. Lastly, we looked at team-level factors. We discovered in a multifactor analysis that personality-diverse teams have the most considerable impact on the probability of a startup’s success, underlining the importance of personality diversity as a relevant factor of team performance and success.

Data sources

Entrepreneurs dataset.

Data about the founders of startups were collected from Crunchbase (Table  2 ), an open reference platform for business information about private and public companies, primarily early-stage startups. It is one of the largest and most comprehensive data sets of its kind and has been used in over 100 peer-reviewed research articles about economic and managerial research.

Crunchbase contains data on over two million companies - mainly startup companies and the companies who partner with them, acquire them and invest in them, as well as profiles on well over one million individuals active in the entrepreneurial ecosystem worldwide from over 200 countries and spans. Crunchbase started in the technology startup space, and it now covers all sectors, specifically focusing on entrepreneurship, investment and high-growth companies.

While Crunchbase contains data on over one million individuals in the entrepreneurial ecosystem, some are not entrepreneurs or startup founders but play other roles, such as investors, lawyers or executives at companies that acquire startups. To create a subset of only entrepreneurs, we selected a subset of 32,732 who self-identify as founders and co-founders (by job title) and who are also publicly active on the social media platform Twitter. We also removed those who also are venture capitalists to distinguish between investors and founders.

We selected founders active on Twitter to be able to use natural language processing to infer their Big Five personality features using an open-vocabulary approach shown to be accurate in the previous research by analysing users’ unstructured text, such as Twitter posts in our case. For this project, as with previous research 20 , we employed a commercial service, IBM Watson Personality Insight, to infer personality facets. This service provides raw scores and percentile scores of Big Five Domains (Openness, Conscientiousness, Extraversion, Agreeableness and Emotional Stability) and the corresponding 30 subdomains or facets. In addition, the public content of Twitter posts was collected, and there are 32,732 profiles that each had enough Twitter posts (more than 150 words) to get relatively accurate personality scores (less than 12.7% Average Mean Absolute Error).

The entrepreneurs’ dataset is analysed in combination with other data about the companies they founded to explore questions about the nature and patterns of personality traits of entrepreneurs and the relationships between these patterns and company success.

For the multifactor analysis, we further filtered the data in several preparatory steps for the success prediction modelling (for more details, see SI section  A.5 ). In particular, we removed data points with missing values (Extended Data Fig.  13 ) and kept only companies in the data that were founded from 1990 onward to ensure consistency with previous research 32 (see Extended Data Fig.  14 ). After cleaning, filtering and pre-processing the data, we ended up with data from 25,214 founders who founded 21,187 startup companies to be used in the multifactor analysis. Of those, 3442 startups in the data were successful, 2362 in the first seven years after they were founded (see Extended Data Figure  15 for more details).

Entrepreneurs and employees dataset

To investigate whether startup founders show personality traits that are similar or different from the population at large (i. e. the entrepreneurs vs employees sub-analysis shown in Fig.  1 A and B), we filtered the entrepreneurs’ data further: we reduced the sample to those founders of companies, which attracted more than US$100k in investment to create a reference set of successful entrepreneurs (n \(=\) 4400).

To create a control group of employees who are not also entrepreneurs or very unlikely to be of have been entrepreneurs, we leveraged the fact that while some occupational titles like CEO, CTO and Public Speaker are commonly shared by founders and co-founders, some others such as Cashier , Zoologist and Detective very rarely co-occur seem to be founders or co-founders. To illustrate, many company founders also adopt regular occupation titles such as CEO or CTO. Many founders will be Founder and CEO or Co-founder and CTO. While founders are often CEOs or CTOs, the reverse is not necessarily true, as many CEOs are professional executives that were not involved in the establishment or ownership of the firm.

Using data from LinkedIn, we created an Entrepreneurial Occupation Index (EOI) based on the ratio of entrepreneurs for each of the 624 occupations used in a previous study of occupation-personality fit 44 . It was calculated based on the percentage of all people working in the occupation from LinkedIn compared to those who shared the title Founder or Co-founder (See SI section  A.2 for more details). A reference set of employees (n=6685) was then selected across the 112 different occupations with the lowest propensity for entrepreneurship (less than 0.5% EOI) from a large corpus of Twitter users with known occupations, which is also drawn from the previous occupational-personality fit study 44 .

These two data sets were used to test whether it may be possible to distinguish successful entrepreneurs from successful employees based on the different patterns of personality traits alone.

Hierarchical clustering

We applied several clustering techniques and tests to the personality vectors of the entrepreneurs’ data set to determine if there are natural clusters and, if so, how many are the optimum number.

Firstly, to determine if there is a natural typology to founder personalities, we applied the Hopkins statistic—a statistical test we used to answer whether the entrepreneurs’ dataset contains inherent clusters. It measures the clustering tendency based on the ratio of the sum of distances of real points within a sample of the entrepreneurs’ dataset to their nearest neighbours and the sum of distances of randomly selected artificial points from a simulated uniform distribution to their nearest neighbours in the real entrepreneurs’ dataset. The ratio measures the difference between the entrepreneurs’ data distribution and the simulated uniform distribution, which tests the randomness of the data. The range of Hopkins statistics is from 0 to 1. The scores are close to 0, 0.5 and 1, respectively, indicating whether the dataset is uniformly distributed, randomly distributed or highly clustered.

To cluster the founders by personality facets, we used Agglomerative Hierarchical Clustering (AHC)—a bottom-up approach that treats an individual data point as a singleton cluster and then iteratively merges pairs of clusters until all data points are included in the single big collection. Ward’s linkage method is used to choose the pair of groups for minimising the increase in the within-cluster variance after combining. AHC was widely applied to clustering analysis since a tree hierarchy output is more informative and interpretable than K-means. Dendrograms were used to visualise the hierarchy to provide the perspective of the optimal number of clusters. The heights of the dendrogram represent the distance between groups, with lower heights representing more similar groups of observations. A horizontal line through the dendrogram was drawn to distinguish the number of significantly different clusters with higher heights. However, as it is not possible to determine the optimum number of clusters from the dendrogram, we applied other clustering performance metrics to analyse the optimal number of groups.

A range of Clustering performance metrics were used to help determine the optimal number of clusters in the dataset after an apparent clustering tendency was confirmed. The following metrics were implemented to evaluate the differences between within-cluster and between-cluster distances comprehensively: Dunn Index, Calinski-Harabasz Index, Davies-Bouldin Index and Silhouette Index. The Dunn Index measures the ratio of the minimum inter-cluster separation and the maximum intra-cluster diameter. At the same time, the Calinski-Harabasz Index improves the measurement of the Dunn Index by calculating the ratio of the average sum of squared dispersion of inter-cluster and intra-cluster. The Davies-Bouldin Index simplifies the process by treating each cluster individually. It compares the sum of the average distance among intra-cluster data points to the cluster centre of two separate groups with the distance between their centre points. Finally, the Silhouette Index is the overall average of the silhouette coefficients for each sample. The coefficient measures the similarity of the data point to its cluster compared with the other groups. Higher scores of the Dunn, Calinski-Harabasz and Silhouette Index and a lower score of the Davies-Bouldin Index indicate better clustering configuration.

Classification modelling

Classification algorithms.

To obtain a comprehensive and robust conclusion in the analysis predicting whether a given set of personality traits corresponds to an entrepreneur or an employee, we explored the following classifiers: Naïve Bayes, Elastic Net regularisation, Support Vector Machine, Random Forest, Gradient Boosting and Stacked Ensemble. The Naïve Bayes classifier is a probabilistic algorithm based on Bayes’ theorem with assumptions of independent features and equiprobable classes. Compared with other more complex classifiers, it saves computing time for large datasets and performs better if the assumptions hold. However, in the real world, those assumptions are generally violated. Elastic Net regularisation combines the penalties of Lasso and Ridge to regularise the Logistic classifier. It eliminates the limitation of multicollinearity in the Lasso method and improves the limitation of feature selection in the Ridge method. Even though Elastic Net is as simple as the Naïve Bayes classifier, it is more time-consuming. The Support Vector Machine (SVM) aims to find the ideal line or hyperplane to separate successful entrepreneurs and employees in this study. The dividing line can be non-linear based on a non-linear kernel, such as the Radial Basis Function Kernel. Therefore, it performs well on high-dimensional data while the ’right’ kernel selection needs to be tuned. Random Forest (RF) and Gradient Boosting Trees (GBT) are ensembles of decision trees. All trees are trained independently and simultaneously in RF, while a new tree is trained each time and corrected by previously trained trees in GBT. RF is a more robust and straightforward model since it does not have many hyperparameters to tune. GBT optimises the objective function and learns a more accurate model since there is a successive learning and correction process. Stacked Ensemble combines all existing classifiers through a Logistic Regression. Better than bagging with only variance reduction and boosting with only bias reduction, the ensemble leverages the benefit of model diversity with both lower variance and bias. All the above classification algorithms distinguish successful entrepreneurs and employees based on the personality matrix.

Evaluation metrics

A range of evaluation metrics comprehensively explains the performance of a classification prediction. The most straightforward metric is accuracy, which measures the overall portion of correct predictions. It will mislead the performance of an imbalanced dataset. The F1 score is better than accuracy by combining precision and recall and considering the False Negatives and False Positives. Specificity measures the proportion of detecting the true negative rate that correctly identifies employees, while Positive Predictive Value (PPV) calculates the probability of accurately predicting successful entrepreneurs. Area Under the Receiver Operating Characteristic Curve (AUROC) determines the capability of the algorithm to distinguish between successful entrepreneurs and employees. A higher value means the classifier performs better on separating the classes.

Feature importance

To further understand and interpret the classifier, it is critical to identify variables with significant predictive power on the target. Feature importance of tree-based models measures Gini importance scores for all predictors, which evaluate the overall impact of the model after cutting off the specific feature. The measurements consider all interactions among features. However, it does not provide insights into the directions of impacts since the importance only indicates the ability to distinguish different classes.

Statistical analysis

T-test, Cohen’s D and two-sample Kolmogorov-Smirnov test are introduced to explore how the mean values and distributions of personality facets between entrepreneurs and employees differ. The T-test is applied to determine whether the mean of personality facets of two group samples are significantly different from one another or not. The facets with significant differences detected by the hypothesis testing are critical to separate the two groups. Cohen’s d is to measure the effect size of the results of the previous t-test, which is the ratio of the mean difference to the pooled standard deviation. A larger Cohen’s d score indicates that the mean difference is greater than the variability of the whole sample. Moreover, it is interesting to check whether the two groups’ personality facets’ probability distributions are from the same distribution through the two-sample Kolmogorov-Smirnov test. There is no assumption about the distributions, but the test is sensitive to deviations near the centre rather than the tail.

Privacy and ethics

The focus of this research is to provide high-level insights about groups of startups, founders and types of founder teams rather than on specific individuals or companies. While we used unit record data from the publicly available data of company profiles from Crunchbase , we removed all identifiers from the underlying data on individual companies and founders and generated aggregate results, which formed the basis for our analysis and conclusions.

Data availability

A dataset which includes only aggregated statistics about the success of startups and the factors that influence is released as part of this research. Underlying data for all figures and the code to reproduce them are available on GitHub: https://github.com/Braesemann/FounderPersonalities . Please contact Fabian Braesemann ( [email protected] ) in case you have any further questions.

Change history

07 may 2024.

A Correction to this paper has been published: https://doi.org/10.1038/s41598-024-61082-7

Henrekson, M. & Johansson, D. Gazelles as job creators: A survey and interpretation of the evidence. Small Bus. Econ. 35 , 227–244 (2010).

Article   Google Scholar  

Davila, A., Foster, G., He, X. & Shimizu, C. The rise and fall of startups: Creation and destruction of revenue and jobs by young companies. Aust. J. Manag. 40 , 6–35 (2015).

Which vaccine saved the most lives in 2021?: Covid-19. The Economist (Online) (2022). noteName - AstraZeneca; Pfizer Inc; BioNTech SE; Copyright - Copyright The Economist Newspaper NA, Inc. Jul 14, 2022; Last updated - 2022-11-29.

Oltermann, P. Pfizer/biontech tax windfall brings mainz an early christmas present (2021). noteName - Pfizer Inc; BioNTech SE; Copyright - Copyright Guardian News & Media Limited Dec 27, 2021; Last updated - 2021-12-28.

Grant, K. A., Croteau, M. & Aziz, O. The survival rate of startups funded by angel investors. I-INC WHITE PAPER SER.: MAR 2019 , 1–21 (2019).

Google Scholar  

Top 20 reasons start-ups fail - cb insights version (2019). noteCopyright - Copyright Newstex Oct 21, 2019; Last updated - 2022-10-25.

Hochberg, Y. V., Ljungqvist, A. & Lu, Y. Whom you know matters: Venture capital networks and investment performance. J. Financ. 62 , 251–301 (2007).

Fracassi, C., Garmaise, M. J., Kogan, S. & Natividad, G. Business microloans for us subprime borrowers. J. Financ. Quantitative Ana. 51 , 55–83 (2016).

Davila, A., Foster, G. & Gupta, M. Venture capital financing and the growth of startup firms. J. Bus. Ventur. 18 , 689–708 (2003).

Nann, S. et al. Comparing the structure of virtual entrepreneur networks with business effectiveness. Proc. Soc. Behav. Sci. 2 , 6483–6496 (2010).

Guzman, J. & Stern, S. Where is silicon valley?. Science 347 , 606–609 (2015).

Article   ADS   CAS   PubMed   Google Scholar  

Aldrich, H. E. & Wiedenmayer, G. From traits to rates: An ecological perspective on organizational foundings. 61–97 (2019).

Gartner, W. B. Who is an entrepreneur? is the wrong question. Am. J. Small Bus. 12 , 11–32 (1988).

Thornton, P. H. The sociology of entrepreneurship. Ann. Rev. Sociol. 25 , 19–46 (1999).

Eikelboom, M. E., Gelderman, C. & Semeijn, J. Sustainable innovation in public procurement: The decisive role of the individual. J. Public Procure. 18 , 190–201 (2018).

Kerr, S. P. et al. Personality traits of entrepreneurs: A review of recent literature. Found. Trends Entrep. 14 , 279–356 (2018).

Hamilton, B. H., Papageorge, N. W. & Pande, N. The right stuff? Personality and entrepreneurship. Quant. Econ. 10 , 643–691 (2019).

Salmony, F. U. & Kanbach, D. K. Personality trait differences across types of entrepreneurs: A systematic literature review. RMS 16 , 713–749 (2022).

Freiberg, B. & Matz, S. C. Founder personality and entrepreneurial outcomes: A large-scale field study of technology startups. Proc. Natl. Acad. Sci. 120 , e2215829120 (2023).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Kern, M. L., McCarthy, P. X., Chakrabarty, D. & Rizoiu, M.-A. Social media-predicted personality traits and values can help match people to their ideal jobs. Proc. Natl. Acad. Sci. 116 , 26459–26464 (2019).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Dalle, J.-M., Den Besten, M. & Menon, C. Using crunchbase for economic and managerial research. (2017).

Block, J. & Sandner, P. What is the effect of the financial crisis on venture capital financing? Empirical evidence from us internet start-ups. Ventur. Cap. 11 , 295–309 (2009).

Antretter, T., Blohm, I. & Grichnik, D. Predicting startup survival from digital traces: Towards a procedure for early stage investors (2018).

Dworak, D. Analysis of founder background as a predictor for start-up success in achieving successive fundraising rounds. (2022).

Hsu, D. H. Venture capitalists and cooperative start-up commercialization strategy. Manage. Sci. 52 , 204–219 (2006).

Blank, S. Why the lean start-up changes everything (2018).

Kaplan, S. N. & Lerner, J. It ain’t broke: The past, present, and future of venture capital. J. Appl. Corp. Financ. 22 , 36–47 (2010).

Hallen, B. L. & Eisenhardt, K. M. Catalyzing strategies and efficient tie formation: How entrepreneurial firms obtain investment ties. Acad. Manag. J. 55 , 35–70 (2012).

Gompers, P. A. & Lerner, J. The Venture Capital Cycle (MIT Press, 2004).

Shane, S. & Venkataraman, S. The promise of entrepreneurship as a field of research. Acad. Manag. Rev. 25 , 217–226 (2000).

Zahra, S. A. & Wright, M. Understanding the social role of entrepreneurship. J. Manage. Stud. 53 , 610–629 (2016).

Bonaventura, M. et al. Predicting success in the worldwide start-up network. Sci. Rep. 10 , 1–6 (2020).

Schwartz, H. A. et al. Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE 8 , e73791 (2013).

Plank, B. & Hovy, D. Personality traits on twitter-or-how to get 1,500 personality tests in a week. In Proceedings of the 6th workshop on computational approaches to subjectivity, sentiment and social media analysis , pp 92–98 (2015).

Arnoux, P.-H. et al. 25 tweets to know you: A new model to predict personality with social media. In booktitleEleventh international AAAI conference on web and social media (2017).

Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A. & Goldberg, L. R. The power of personality: The comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspect. Psychol. Sci. 2 , 313–345 (2007).

Article   PubMed   PubMed Central   Google Scholar  

Youyou, W., Kosinski, M. & Stillwell, D. Computer-based personality judgments are more accurate than those made by humans. Proc. Natl. Acad. Sci. 112 , 1036–1040 (2015).

Soldz, S. & Vaillant, G. E. The big five personality traits and the life course: A 45-year longitudinal study. J. Res. Pers. 33 , 208–232 (1999).

Damian, R. I., Spengler, M., Sutu, A. & Roberts, B. W. Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years. J. Pers. Soc. Psychol. 117 , 674 (2019).

Article   PubMed   Google Scholar  

Rantanen, J., Metsäpelto, R.-L., Feldt, T., Pulkkinen, L. & Kokko, K. Long-term stability in the big five personality traits in adulthood. Scand. J. Psychol. 48 , 511–518 (2007).

Roberts, B. W., Caspi, A. & Moffitt, T. E. The kids are alright: Growth and stability in personality development from adolescence to adulthood. J. Pers. Soc. Psychol. 81 , 670 (2001).

Article   CAS   PubMed   Google Scholar  

Cobb-Clark, D. A. & Schurer, S. The stability of big-five personality traits. Econ. Lett. 115 , 11–15 (2012).

Graham, P. Do Things that Don’t Scale (Paul Graham, 2013).

McCarthy, P. X., Kern, M. L., Gong, X., Parker, M. & Rizoiu, M.-A. Occupation-personality fit is associated with higher employee engagement and happiness. (2022).

Pratt, A. C. Advertising and creativity, a governance approach: A case study of creative agencies in London. Environ. Plan A 38 , 1883–1899 (2006).

Klotz, A. C., Hmieleski, K. M., Bradley, B. H. & Busenitz, L. W. New venture teams: A review of the literature and roadmap for future research. J. Manag. 40 , 226–255 (2014).

Duggan, M., Ellison, N. B., Lampe, C., Lenhart, A. & Madden, M. Demographics of key social networking platforms. Pew Res. Center 9 (2015).

Fisch, C. & Block, J. H. How does entrepreneurial failure change an entrepreneur’s digital identity? Evidence from twitter data. J. Bus. Ventur. 36 , 106015 (2021).

Brush, C., Edelman, L. F., Manolova, T. & Welter, F. A gendered look at entrepreneurship ecosystems. Small Bus. Econ. 53 , 393–408 (2019).

Kanze, D., Huang, L., Conley, M. A. & Higgins, E. T. We ask men to win and women not to lose: Closing the gender gap in startup funding. Acad. Manag. J. 61 , 586–614 (2018).

Fan, J. S. Startup biases. UC Davis Law Review (2022).

AlShebli, B. K., Rahwan, T. & Woon, W. L. The preeminence of ethnic diversity in scientific collaboration. Nat. Commun. 9 , 1–10 (2018).

Article   CAS   Google Scholar  

Żbikowski, K. & Antosiuk, P. A machine learning, bias-free approach for predicting business success using crunchbase data. Inf. Process. Manag. 58 , 102555 (2021).

Corea, F., Bertinetti, G. & Cervellati, E. M. Hacking the venture industry: An early-stage startups investment framework for data-driven investors. Mach. Learn. Appl. 5 , 100062 (2021).

Chapman, G. & Hottenrott, H. Founder personality and start-up subsidies. Founder Personality and Start-up Subsidies (2021).

Antoncic, B., Bratkovicregar, T., Singh, G. & DeNoble, A. F. The big five personality-entrepreneurship relationship: Evidence from slovenia. J. Small Bus. Manage. 53 , 819–841 (2015).

Download references

Acknowledgements

We thank Gary Brewer from BuiltWith ; Leni Mayo from Influx , Rachel Slattery from TeamSlatts and Daniel Petre from AirTree Ventures for their ongoing generosity and insights about startups, founders and venture investments. We also thank Tim Li from Crunchbase for advice and liaison regarding data on startups and Richard Slatter for advice and referrals in Twitter .

Author information

Authors and affiliations.

The Data Science Institute, University of Technology Sydney, Sydney, NSW, Australia

Paul X. McCarthy

School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia

Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia

Xian Gong & Marian-Andrei Rizoiu

Oxford Internet Institute, University of Oxford, Oxford, UK

Fabian Braesemann & Fabian Stephany

DWG Datenwissenschaftliche Gesellschaft Berlin, Berlin, Germany

Melbourne Graduate School of Education, The University of Melbourne, Parkville, VIC, Australia

Margaret L. Kern

You can also search for this author in PubMed   Google Scholar

Contributions

All authors designed research; All authors analysed data and undertook investigation; F.B. and F.S. led multi-factor analysis; P.M., X.G. and M.A.R. led the founder/employee prediction; M.L.K. led personality insights; X.G. collected and tabulated the data; X.G., F.B., and F.S. created figures; X.G. created final art, and all authors wrote the paper.

Corresponding author

Correspondence to Fabian Braesemann .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this Article was revised: The Data Availability section in the original version of this Article was incomplete, the link to the GitHub repository was omitted. Full information regarding the corrections made can be found in the correction for this Article.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

McCarthy, P.X., Gong, X., Braesemann, F. et al. The impact of founder personalities on startup success. Sci Rep 13 , 17200 (2023). https://doi.org/10.1038/s41598-023-41980-y

Download citation

Received : 15 February 2023

Accepted : 04 September 2023

Published : 17 October 2023

DOI : https://doi.org/10.1038/s41598-023-41980-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

research paper about internet of things

The state of AI in early 2024: Gen AI adoption spikes and starts to generate value

If 2023 was the year the world discovered generative AI (gen AI) , 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey  on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our previous survey just ten months ago. Respondents’ expectations for gen AI’s impact remain as high as they were last year , with three-quarters predicting that gen AI will lead to significant or disruptive change in their industries in the years ahead.

About the authors

This article is a collaborative effort by Alex Singla , Alexander Sukharevsky , Lareina Yee , and Michael Chui , with Bryce Hall , representing views from QuantumBlack, AI by McKinsey, and McKinsey Digital.

Organizations are already seeing material benefits from gen AI use, reporting both cost decreases and revenue jumps in the business units deploying the technology. The survey also provides insights into the kinds of risks presented by gen AI—most notably, inaccuracy—as well as the emerging practices of top performers to mitigate those challenges and capture value.

AI adoption surges

Interest in generative AI has also brightened the spotlight on a broader set of AI capabilities. For the past six years, AI adoption by respondents’ organizations has hovered at about 50 percent. This year, the survey finds that adoption has jumped to 72 percent (Exhibit 1). And the interest is truly global in scope. Our 2023 survey found that AI adoption did not reach 66 percent in any region; however, this year more than two-thirds of respondents in nearly every region say their organizations are using AI. 1 Organizations based in Central and South America are the exception, with 58 percent of respondents working for organizations based in Central and South America reporting AI adoption. Looking by industry, the biggest increase in adoption can be found in professional services. 2 Includes respondents working for organizations focused on human resources, legal services, management consulting, market research, R&D, tax preparation, and training.

Also, responses suggest that companies are now using AI in more parts of the business. Half of respondents say their organizations have adopted AI in two or more business functions, up from less than a third of respondents in 2023 (Exhibit 2).

Gen AI adoption is most common in the functions where it can create the most value

Most respondents now report that their organizations—and they as individuals—are using gen AI. Sixty-five percent of respondents say their organizations are regularly using gen AI in at least one business function, up from one-third last year. The average organization using gen AI is doing so in two functions, most often in marketing and sales and in product and service development—two functions in which previous research  determined that gen AI adoption could generate the most value 3 “ The economic potential of generative AI: The next productivity frontier ,” McKinsey, June 14, 2023. —as well as in IT (Exhibit 3). The biggest increase from 2023 is found in marketing and sales, where reported adoption has more than doubled. Yet across functions, only two use cases, both within marketing and sales, are reported by 15 percent or more of respondents.

Gen AI also is weaving its way into respondents’ personal lives. Compared with 2023, respondents are much more likely to be using gen AI at work and even more likely to be using gen AI both at work and in their personal lives (Exhibit 4). The survey finds upticks in gen AI use across all regions, with the largest increases in Asia–Pacific and Greater China. Respondents at the highest seniority levels, meanwhile, show larger jumps in the use of gen Al tools for work and outside of work compared with their midlevel-management peers. Looking at specific industries, respondents working in energy and materials and in professional services report the largest increase in gen AI use.

Investments in gen AI and analytical AI are beginning to create value

The latest survey also shows how different industries are budgeting for gen AI. Responses suggest that, in many industries, organizations are about equally as likely to be investing more than 5 percent of their digital budgets in gen AI as they are in nongenerative, analytical-AI solutions (Exhibit 5). Yet in most industries, larger shares of respondents report that their organizations spend more than 20 percent on analytical AI than on gen AI. Looking ahead, most respondents—67 percent—expect their organizations to invest more in AI over the next three years.

Where are those investments paying off? For the first time, our latest survey explored the value created by gen AI use by business function. The function in which the largest share of respondents report seeing cost decreases is human resources. Respondents most commonly report meaningful revenue increases (of more than 5 percent) in supply chain and inventory management (Exhibit 6). For analytical AI, respondents most often report seeing cost benefits in service operations—in line with what we found last year —as well as meaningful revenue increases from AI use in marketing and sales.

Inaccuracy: The most recognized and experienced risk of gen AI use

As businesses begin to see the benefits of gen AI, they’re also recognizing the diverse risks associated with the technology. These can range from data management risks such as data privacy, bias, or intellectual property (IP) infringement to model management risks, which tend to focus on inaccurate output or lack of explainability. A third big risk category is security and incorrect use.

Respondents to the latest survey are more likely than they were last year to say their organizations consider inaccuracy and IP infringement to be relevant to their use of gen AI, and about half continue to view cybersecurity as a risk (Exhibit 7).

Conversely, respondents are less likely than they were last year to say their organizations consider workforce and labor displacement to be relevant risks and are not increasing efforts to mitigate them.

In fact, inaccuracy— which can affect use cases across the gen AI value chain , ranging from customer journeys and summarization to coding and creative content—is the only risk that respondents are significantly more likely than last year to say their organizations are actively working to mitigate.

Some organizations have already experienced negative consequences from the use of gen AI, with 44 percent of respondents saying their organizations have experienced at least one consequence (Exhibit 8). Respondents most often report inaccuracy as a risk that has affected their organizations, followed by cybersecurity and explainability.

Our previous research has found that there are several elements of governance that can help in scaling gen AI use responsibly, yet few respondents report having these risk-related practices in place. 4 “ Implementing generative AI with speed and safety ,” McKinsey Quarterly , March 13, 2024. For example, just 18 percent say their organizations have an enterprise-wide council or board with the authority to make decisions involving responsible AI governance, and only one-third say gen AI risk awareness and risk mitigation controls are required skill sets for technical talent.

Bringing gen AI capabilities to bear

The latest survey also sought to understand how, and how quickly, organizations are deploying these new gen AI tools. We have found three archetypes for implementing gen AI solutions : takers use off-the-shelf, publicly available solutions; shapers customize those tools with proprietary data and systems; and makers develop their own foundation models from scratch. 5 “ Technology’s generational moment with generative AI: A CIO and CTO guide ,” McKinsey, July 11, 2023. Across most industries, the survey results suggest that organizations are finding off-the-shelf offerings applicable to their business needs—though many are pursuing opportunities to customize models or even develop their own (Exhibit 9). About half of reported gen AI uses within respondents’ business functions are utilizing off-the-shelf, publicly available models or tools, with little or no customization. Respondents in energy and materials, technology, and media and telecommunications are more likely to report significant customization or tuning of publicly available models or developing their own proprietary models to address specific business needs.

Respondents most often report that their organizations required one to four months from the start of a project to put gen AI into production, though the time it takes varies by business function (Exhibit 10). It also depends upon the approach for acquiring those capabilities. Not surprisingly, reported uses of highly customized or proprietary models are 1.5 times more likely than off-the-shelf, publicly available models to take five months or more to implement.

Gen AI high performers are excelling despite facing challenges

Gen AI is a new technology, and organizations are still early in the journey of pursuing its opportunities and scaling it across functions. So it’s little surprise that only a small subset of respondents (46 out of 876) report that a meaningful share of their organizations’ EBIT can be attributed to their deployment of gen AI. Still, these gen AI leaders are worth examining closely. These, after all, are the early movers, who already attribute more than 10 percent of their organizations’ EBIT to their use of gen AI. Forty-two percent of these high performers say more than 20 percent of their EBIT is attributable to their use of nongenerative, analytical AI, and they span industries and regions—though most are at organizations with less than $1 billion in annual revenue. The AI-related practices at these organizations can offer guidance to those looking to create value from gen AI adoption at their own organizations.

To start, gen AI high performers are using gen AI in more business functions—an average of three functions, while others average two. They, like other organizations, are most likely to use gen AI in marketing and sales and product or service development, but they’re much more likely than others to use gen AI solutions in risk, legal, and compliance; in strategy and corporate finance; and in supply chain and inventory management. They’re more than three times as likely as others to be using gen AI in activities ranging from processing of accounting documents and risk assessment to R&D testing and pricing and promotions. While, overall, about half of reported gen AI applications within business functions are utilizing publicly available models or tools, gen AI high performers are less likely to use those off-the-shelf options than to either implement significantly customized versions of those tools or to develop their own proprietary foundation models.

What else are these high performers doing differently? For one thing, they are paying more attention to gen-AI-related risks. Perhaps because they are further along on their journeys, they are more likely than others to say their organizations have experienced every negative consequence from gen AI we asked about, from cybersecurity and personal privacy to explainability and IP infringement. Given that, they are more likely than others to report that their organizations consider those risks, as well as regulatory compliance, environmental impacts, and political stability, to be relevant to their gen AI use, and they say they take steps to mitigate more risks than others do.

Gen AI high performers are also much more likely to say their organizations follow a set of risk-related best practices (Exhibit 11). For example, they are nearly twice as likely as others to involve the legal function and embed risk reviews early on in the development of gen AI solutions—that is, to “ shift left .” They’re also much more likely than others to employ a wide range of other best practices, from strategy-related practices to those related to scaling.

In addition to experiencing the risks of gen AI adoption, high performers have encountered other challenges that can serve as warnings to others (Exhibit 12). Seventy percent say they have experienced difficulties with data, including defining processes for data governance, developing the ability to quickly integrate data into AI models, and an insufficient amount of training data, highlighting the essential role that data play in capturing value. High performers are also more likely than others to report experiencing challenges with their operating models, such as implementing agile ways of working and effective sprint performance management.

About the research

The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. Of those respondents, 981 said their organizations had adopted AI in at least one business function, and 878 said their organizations were regularly using gen AI in at least one function. To adjust for differences in response rates, the data are weighted by the contribution of each respondent’s nation to global GDP.

Alex Singla and Alexander Sukharevsky  are global coleaders of QuantumBlack, AI by McKinsey, and senior partners in McKinsey’s Chicago and London offices, respectively; Lareina Yee  is a senior partner in the Bay Area office, where Michael Chui , a McKinsey Global Institute partner, is a partner; and Bryce Hall  is an associate partner in the Washington, DC, office.

They wish to thank Kaitlin Noe, Larry Kanter, Mallika Jhamb, and Shinjini Srivastava for their contributions to this work.

This article was edited by Heather Hanselman, a senior editor in McKinsey’s Atlanta office.

Explore a career with us

Related articles.

One large blue ball in mid air above many smaller blue, green, purple and white balls

Moving past gen AI’s honeymoon phase: Seven hard truths for CIOs to get from pilot to scale

A thumb and an index finger form a circular void, resembling the shape of a light bulb but without the glass component. Inside this empty space, a bright filament and the gleaming metal base of the light bulb are visible.

A generative AI reset: Rewiring to turn potential into value in 2024

High-tech bees buzz with purpose, meticulously arranging digital hexagonal cylinders into a precisely stacked formation.

Implementing generative AI with speed and safety

BOINC

News from BOINC Projects

[odlk1] electrical work 3, [nfs@home] boinc pentathlon - thank you, [odlk] the odlk project is 7 years old.

View article · Sun, 19 May 2024 01:53:54 +0000 ... more

Copyright © 2024 University of California. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.

An empirical intelligent water irrigation system using soft computing and IoT

  • Original Research
  • Published: 31 May 2024

Cite this article

research paper about internet of things

  • Warish Patel 1 ,
  • Y. Sangeetha 2 ,
  • Deepa Rani Gopagoni 3 ,
  • D. M. Arvind Mallik 4 ,
  • Rakshal Agrawal 5 ,
  • Saket Mishra 6 ,
  • M. P. Sunil 7 &
  • Raenu Kolandaisamy 8  

Explore all metrics

Water loss from fruit and vegetable production is mostly caused by leakage in the transportation system and handling of land, as well as by using traditional processing techniques. In order to increase the wellness of plants, save power, and optimize consumption of water, information should be widely applied in designing intelligent irrigation systems, which is possible with the help of the Internet of Things (IoT). In the given paper, an IoT-based soft computing recommendation framework is proposed for performing irrigation in a smarter way. The system works in such a way that IoT devices are positioned in the field to gather information about crops and groundwater levels. The acquired data is then fed to a cloud repository, which makes use of soft computing techniques such as neural networks for analysing and providing effective recommendations to farmers on their smartphones. In this way, the framework is tuned and the farmers are also updated from time to time regarding judicious irrigation processes. Lastly, the performance of the proposed system is validated against traditional techniques by taking crop datasets into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research paper about internet of things

Similar content being viewed by others

research paper about internet of things

Internet of things driven multilinear regression technique for fertilizer recommendation for precision agriculture

research paper about internet of things

Cost-effective IoT-based intelligent irrigation system

research paper about internet of things

Automated Precision Irrigation System Using Machine Learning and IoT

Islam SF, Akter M, Uddin MS (2021) Design and implementation of an internet of things based low-cost smart weather prediction system. Int J Inf Technol 13:2001–2010. https://doi.org/10.1007/s41870-021-00732-9

Article   Google Scholar  

Jani KA, Chaubey NK (2024) SMAIoT-ferti: a smart cropland monitoring and optimal fertigation IoT system. Int J Inf Technol. https://doi.org/10.1007/s41870-024-01731-2

Murthy BYSS, Reddy CBK, Jilani S, Sindhwani M (2022) Smart irrigation system. In: 2022 1st International conference on sustainable technology for power and energy systems (STPES), Srinagar, India, pp 1–4. https://doi.org/10.1109/STPES54845.2022.10006434

Tephila MB, Sri RA, Abinaya R, Lakshmi JA, Divya V (2022) Automated smart irrigation system using IoT with sensor parameter. In: 2022 International conference on electronics and renewable systems (ICEARS), Tuticorin, India, pp 543–549. https://doi.org/10.1109/ICEARS53579.2022.9751993

Ambikapathy A, Singh G, Tiwari P (2017) Multi- level inverter for Grid connected PV system with PID controller. Int J Control Theory Appl 10(6):215–222 ( ISSN 0974-5572 )

Google Scholar  

Kirtana RN, Bharathi B, Priya SK, Kavitha S, Keerthana B, Kripa K (2018) Smart irrigation system using Zigbee technology and machine learning techniques. In: 2018 International conference on intelligent computing and communication for smart world (I2C2SW), Erode, India, pp 78–82. https://doi.org/10.1109/I2C2SW45816.2018.8997121

Prakash BR, Kulkarni SS (2020) Super smart irrigation system using internet of things. In: 2020 7th International conference on smart structures and systems (ICSSS), Chennai, India, pp 1–5. https://doi.org/10.1109/ICSSS49621.2020.9202361

Kaur S, Deepali (2017) An automatic irrigation system for different crops with WSN. In: 2017 6th International conference on reliability, Infocom technologies and optimization (trends and future directions) (ICRITO), Noida, India, pp 406–411. https://doi.org/10.1109/ICRITO.2017.8342460

Qiong D, Hao P (2021) Design and implementation of irrigation water saving control system based on WSN. In: 2021 International conference on intelligent transportation, big data & smart city (ICITBS), Xi’an, China, pp 75–78. https://doi.org/10.1109/ICITBS53129.2021.00027

Aggarwal S, Kumar A (2019) A smart irrigation system to automate irrigation process using IOT and artificial neural network. In: 2019 2nd International conference on signal processing and communication (ICSPC), Coimbatore, India, pp. 310–314. https://doi.org/10.1109/ICSPC46172.2019.8976631

Stolojescu-Crisan C, Butunoi B-P, Crisan C (2022) An IoT based smart irrigation system. IEEE Consum Electron Mag 11(3):50–58. https://doi.org/10.1109/MCE.2021.3084123

Hazarika KM et al (2023) Smart wireless irrigation system—a prototype. In: 2023 IEEE Silchar subsection conference (SILCON), Silchar, India, pp 1–6. https://doi.org/10.1109/SILCON59133.2023.10404825

Gokuldhev M, Raju DN, Rajan RA et al (2022) Darts game optimization with intuitionistic fuzzy kernel ridge regression for IoT based smart farming model. Int J Inf Technol 14:3123–3131. https://doi.org/10.1007/s41870-022-01021-9

Feng R, Li S, Xiao Y, Xu M (2022) Photovoltaic power generation technology for smart agriculture systems: a review. In: 2022 41st Chinese control conference (CCC), Hefei, China, pp 5333–5338. https://doi.org/10.23919/CCC55666.2022.9902513

Priya PK, Blessy PM, Suguna RK, Narmada C, Devi G, Kalyan GR (2023) Intelligent irrigation management: an IoT-driven approach with real-time data integration. In: 2023 International conference on innovative computing, intelligent communication and smart electrical systems (ICSES), Chennai, India, pp 1–9. https://doi.org/10.1109/ICSES60034.2023.10465371

Kamienski C et al (2018) SWAMP: an IoT-based smart water management platform for precision irrigation in agriculture. In: 2018 Global internet of things summit (GIoTS), Bilbao, Spain, pp 1–6. https://doi.org/10.1109/GIOTS.2018.8534541

Saini M, Choudhary R, Kumar A et al (2023) Mathematical modeling and RAMD investigation of cloud infrastructure. Int J Inf Technol 15:3157–3168. https://doi.org/10.1007/s41870-023-01382-9

https://www.kaggle.com/datasets/chineduchukwuemeka/smart-irrigation-data-derive-dataset . Accessed April 2024

Narula GS, Wason R, Jain V, Baliyan A (2018) Ontology mapping and merging aspects in semantic web. Int Rob Auto J 4(1):00087. https://doi.org/10.15406/iratj.2018.04.00087

Chand R, Nijjer S, Jandwani A et al (2024) A novel funnel and ontological mechanism for sustainable green human resource management (GHRM). Int J Inf Technol 16:369–374. https://doi.org/10.1007/s41870-023-01622-y

Download references

The writers have not received any financial support from the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Department of Computer Science and Engineering, Faculty of Engineering and Technology, Parul University, Gujarat, India

Warish Patel

Department of Information Technology, VR Siddhartha Engineering College, Vijayawada, Andhra Pradesh, India

Y. Sangeetha

Department of Computer Science and Engineering, Vardhaman College of Engineering, Hyderabad, India

Deepa Rani Gopagoni

PES Institute of Technology and Management, Shivamogga, Karnataka, India

D. M. Arvind Mallik

Department of Industrial Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, Maharashtra, India

Rakshal Agrawal

Centre of Interdisciplinary Research in Business and Technology, Chitkara Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

Saket Mishra

Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru, Karnataka, India

M. P. Sunil

Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia

Raenu Kolandaisamy

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Y. Sangeetha .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflicts of interest to report regarding the present study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Patel, W., Sangeetha, Y., Gopagoni, D.R. et al. An empirical intelligent water irrigation system using soft computing and IoT. Int. j. inf. tecnol. (2024). https://doi.org/10.1007/s41870-024-01920-z

Download citation

Received : 31 January 2024

Accepted : 02 May 2024

Published : 31 May 2024

DOI : https://doi.org/10.1007/s41870-024-01920-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Intelligent devices
  • Smart irrigation
  • Soft computing
  • Efficient water management
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (DOC) Research Paper on Internet of Things

    research paper about internet of things

  2. Research Paper

    research paper about internet of things

  3. (PDF) Internet of Things (IoT): Definitions, Challenges, and Recent

    research paper about internet of things

  4. (PDF) A Review on Internet of Things (IoT)

    research paper about internet of things

  5. (PDF) A review on Internet of Things (IoT), Internet of Everything (IoE

    research paper about internet of things

  6. Top 50 Research Papers in Industrial Internet of Things

    research paper about internet of things

VIDEO

  1. How has the Internet of Things evolved into the Internet of Everything?

  2. Internet of Robotic Things

  3. The Impact of 5G on the Internet of Things (IoT)

  4. Introduction to Internet of Things|| WEEK-10 Quiz assignment Answers 2024||NPTEL||IoT||#SKumarEdu

  5. What is Internet of Things (IoT) ?

  6. Guess paper of Internet Technology| BCA 6th sem| DSE course| Framed by Eng. Arshid| KU

COMMENTS

  1. Internet of Things (IoT): Definitions, Challenges, and Recent Research Directions

    2005 this name was changed to "Internet of things". The. vision of IoT according to Kevin's vision was to enable. networked devices to propagate their information about. physical world ...

  2. (Pdf) Internet of Things (Iot): an Overview on Research Challenges and

    This paper focus on future applications of Internet of Things. The Internet of things (IoT) describes the network of physical objects—"things"—that are embedded with sensors, software, and ...

  3. Internet of things (IoT): Applications, trends, issues and challenges

    The Internet of things is a new revolution that has shifted people's lifestyles from conventional to high-tech. Smart cities, smart homes, pollution management, energy conservation, smart transportation and smart industries are examples of IoT-driven developments. A lot of critical research studies and inspections have existed exhausted order ...

  4. The Internet of Things: Review and theoretical framework

    A five-step approach was used to identify relevant literature: First, using the key terms Internet of Things and IoT, a database search of Google Scholar, and because of the nature and timeliness of the topic, Google was also searched for IoT business related literature including those with research results. Practitioner papers from reputable ...

  5. The evolution of the Internet of Things (IoT) over the past 20 years

    Abstract. To reveal the origin of the IoT, evaluate its mainstream research topics, and discuss the challenges facing the IoT in the future, this paper conducts a bibliometric study of the IoT from 2000 to 2019. First, this paper presents a basic bibliometric overview of the IoT. Second, co-citation, coupling and cluster analysis methods are ...

  6. Internet of Things (IoT), Applications and Challenges: A ...

    During recent years, one of the most familiar names scaling new heights and creating a benchmark in the world is the Internet of Things (IoT). It is indeed the future of communication that has transformed things (objects) of the real-world into smart objects. The functional aspect of IoT is to unite every object of the world under one common infrastructure; in such a manner that humans not ...

  7. The Internet of Things: Definitions, Key Concepts, and Reference

    First, we will explore perspectives on the definition of the Internet of Things (IoT) followed by key constructs and concepts underlying IoT including a general research framework for conceptualising IoT. Then, we will delve into a further level of granularity and present a selection of IoT Reference Architectures before concluding.

  8. Internet of things technology, research, and challenges: a survey

    The world of digitization is growing exponentially; data optimization, security of a network, and energy efficiency are becoming more prominent. The Internet of Things (IoT) is the core technology of modern society. This paper is based on a survey of recent and past technologies used for IoT optimization models, such as IoT with Blockchain, IoT with WSN, IoT with ML, and IoT with big data ...

  9. Internet of Things is a revolutionary approach for future technology

    Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a ...

  10. A Comprehensive Review of Internet of Things: Technology Stack ...

    The Internet of Things (IoT) is an extensive network of heterogeneous devices that provides an array of innovative applications and services. ... We found a slew of surveys and research papers focusing on the IoT technology stack, integration with existing systems, and highly specialised application domains like the Industrial Internet of ...

  11. The 10 Research Topics in the Internet of Things

    Abstract: Since the term first coined in 1999 by Kevin Ashton, the Internet of Things (IoT) has gained significant momentum as a technology to connect physical objects to the Internet and to facilitate machine-to-human and machine-to-machine communications. Over the past two decades, IoT has been an active area of research and development endeavors by many technical and commercial communities.

  12. Internet of Things: Latest Advances

    Topic Information. Dear Colleagues, The Internet of Things (IoT) is one of the most prominent tech trends to have emerged in recent years. It refers to the fact that while the word "internet" initially referred to the wide-scale networking of computers, today, devices of every size and shape - from cars to kitchen appliances to industrial machinery - are connected and sharing information ...

  13. Internet of Things (IoT): Opportunities, issues and challenges towards

    This review paper discussed and presented latest research findings that were included within the JCELPRO VSI SpliTech2019 and dedicated to the 4th International Conference on Smart and Sustainable Technologies (SpliTech 2019). ... This work has been supported in part by Croatian Science Foundation under the project "Internet of Things ...

  14. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of

    The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing ...

  15. Artificial intelligence Internet of Things: A new paradigm of

    The result is a new interdisciplinary field and paradigm termed as the artificial intelligence Internet of Things (AIoT). 1 The AIoT is beginning to receive a significant amount of interest from the research communities and industries. The widespread acceptance and penetration of artificial intelligence (AI) technology have resulted in more ...

  16. The Internet of Things: Impact and Implications for Health Care

    The Internet of Things (IoT) is a system of wireless, interrelated, and connected digital devices that can collect, send, and store data over a network without requiring human-to-human or human-to-computer interaction. The IoT promises many benefits to streamlining and enhancing health care delivery to proactively predict health issues and ...

  17. Internet of Things

    Engineering Cyber Physical Human Systems Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal ...

  18. The 10 Research Topics in the Internet of Things

    The 10 Research Topics in the Internet of Things Wei Emma Zhang1, Quan Z. Sheng 2, Adnan Mahmood , Dai Hoang Tran 2, Munazza Zaib , Salma Abdalla Hamad 2, Abdulwahab Aljubairy , Ahoud Abdulrahmn F. Alhazmi , Subhash Sagar2, and Congbo Ma1 1School of Computer Science, The University of Adelaide, SA 5005, Australia Email: [email protected] 2Department of Computing, Macquarie University ...

  19. Integration of Internet of Things and cloud computing: a systematic

    Internet of Things (IoT) prototype is composed of smart and self-configuring sensors (objects) connected to an active and universal network infrastructure . In IoT, 'things' refers to every object, from a communicative gadget to a non-communicating dull thing. ... Section 4 provides the terminologies of the research and mechanisms of paper ...

  20. Internet of Things: Current Research, Challenges, Trends and

    The Internet of Things (IoT) has provided a viable opportunity to develop powerful applications for both consumer and industrial use. Since its inception, a wide range of IoT applications have been developed and deployed and their integration with other state-of-the-art technologies has increased many-fold. The main objective of this paper is ...

  21. Big data applications on the Internet of Things: A systematic

    The International Journal of Communication Systems is a communications journal publishing research papers on public and private communication technology systems. Summary The Internet of Things (IoT) is a system of physical objects embedded with various sensors to receive information, software, chips, and other technologies that allow connecting ...

  22. [2405.17309] Survey of Graph Neural Network for Internet of Things and

    The exponential increase in Internet of Things (IoT) devices coupled with 6G pushing towards higher data rates and connected devices has sparked a surge in data. Consequently, harnessing the full potential of data-driven machine learning has become one of the important thrusts. In addition to the advancement in wireless technology, it is important to efficiently use the resources available and ...

  23. What Is the Internet of Things (IoT)?

    The Internet of Things, or IoT, is a network of physical devices that can transfer data to one another without human intervention. IoT devices are not limited to computers or machinery; they can include anything with a sensor assigned a unique identifier (UID). The primary goal of the IoT is to create self-reporting devices that can communicate ...

  24. Internet of things: Vision, applications and research challenges

    Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internet-of-Things.

  25. The impact of founder personalities on startup success

    Here, we show that founder personality traits are a significant feature of a firm's ultimate success. We draw upon detailed data about the success of a large-scale global sample of startups (n ...

  26. (PDF) The U.S TikTok Case -Will a Unified Federal Data ...

    The amount of data collected and processed by smart objects has increased exponentially over the last few years. The use of this technology, known as the Internet of Things or IoT, leads to new ...

  27. The state of AI in early 2024: Gen AI adoption spikes and starts to

    About the research. The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. Of those respondents, 981 said their organizations had adopted AI in at least one business function, and ...

  28. The Internet of Medical Things (IoMT): opportunities and challenges

    The Internet of Medical Things (IoMT) is a transformative concept in healthcare, leveraging the power of connected devices and technology to improve patient care and health outcomes. These devices are typically connected to the internet or a network and can communicate with each other to exchange data and provide insights to healthcare providers, patients, and other stakeholders. Advanced ...

  29. BOINC

    Compute for Science. BOINC lets you help cutting-edge science research using your computer. The BOINC app, running on your computer, downloads scientific computing jobs and runs them invisibly in the background. It's easy and safe. About 30 science projects use BOINC. They investigate diseases, study climate change, discover pulsars, and do ...

  30. An empirical intelligent water irrigation system using soft ...

    In order to increase the wellness of plants, save power, and optimize consumption of water, information should be widely applied in designing intelligent irrigation systems, which is possible with the help of the Internet of Things (IoT). In the given paper, an IoT-based soft computing recommendation framework is proposed for performing ...