Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

citation in quantitative research

  • Leigh A. Wilson 2 , 3  

4407 Accesses

4 Citations

Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. High-quality quantitative research is characterized by the attention given to the methods and the reliability of the tools used to collect the data. The ability to critique research in a systematic way is an essential component of a health professional’s role in order to deliver high quality, evidence-based healthcare. This chapter is intended to provide a simple overview of the way new researchers and health practitioners can understand and employ quantitative methods. The chapter offers practical, realistic guidance in a learner-friendly way and uses a logical sequence to understand the process of hypothesis development, study design, data collection and handling, and finally data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Babbie ER. The practice of social research. 14th ed. Belmont: Wadsworth Cengage; 2016.

Google Scholar  

Descartes. Cited in Halverston, W. (1976). In: A concise introduction to philosophy, 3rd ed. New York: Random House; 1637.

Doll R, Hill AB. The mortality of doctors in relation to their smoking habits. BMJ. 1954;328(7455):1529–33. https://doi.org/10.1136/bmj.328.7455.1529 .

Article   Google Scholar  

Liamputtong P. Research methods in health: foundations for evidence-based practice. 3rd ed. Melbourne: Oxford University Press; 2017.

McNabb DE. Research methods in public administration and nonprofit management: quantitative and qualitative approaches. 2nd ed. New York: Armonk; 2007.

Merriam-Webster. Dictionary. http://www.merriam-webster.com . Accessed 20th December 2017.

Olesen Larsen P, von Ins M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics. 2010;84(3):575–603.

Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25. https://doi.org/10.1097/PRS.0b013e3181de24bc .

Petrie A, Sabin C. Medical statistics at a glance. 2nd ed. London: Blackwell Publishing; 2005.

Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. New Jersey: Pearson Publishing; 2009.

Sheehan J. Aspects of research methodology. Nurse Educ Today. 1986;6:193–203.

Wilson LA, Black DA. Health, science research and research methods. Sydney: McGraw Hill; 2013.

Download references

Author information

Authors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Leigh A. Wilson

Faculty of Health Science, Discipline of Behavioural and Social Sciences in Health, University of Sydney, Lidcombe, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Leigh A. Wilson .

Editor information

Editors and affiliations.

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Wilson, L.A. (2019). Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_54

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_54

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Ashland University wordmark

Archer Library

Quantitative research: citations & reference.

  • Archer Library This link opens in a new window
  • Research Resources handout This link opens in a new window
  • Locating Books
  • Library eBook Collections This link opens in a new window
  • A to Z Database List This link opens in a new window
  • Research & Statistics
  • Literature Review Resources
  • Citations & Reference

Citation Resources

Cover Art

  • APA Style: American Psychological Association
  • Purdue OWL: APA Style
  • Purdue OWL: APA Formatting & Style Guide

Cover Art

  • MLA Style Center: Works Cited Guide
  • Purdue OWL: MLA Style

Chicago Style

Cover Art

  • The Chicago Manual of Style Online
  • Chicago Manual of Style: Video Tutorials
  • Purdue OWL: Chicago Manual of Style (CMOS)

Purdue OWL: Research Resources

  • Writing a Literature Review: Purdue OWL "A literature review is a document or section of a document that collects key sources on a topic and discusses those sources in conversation with each other (also called synthesis)."
  • Research Overview: Types of Sources "This section lists the types of sources most frequently used in academic research and describes the sort of information that each commonly offers"
  • Citation: URLs vs. DOIs "This resource explains the difference between URLs and DOIs and briefly describes how to incorporate either form of information into your citations."

General Reference

Reference resources: ebooks.

Cover Art

Library Databases

eBook

  • << Previous: Literature Review Resources
  • Last Updated: Apr 23, 2024 3:36 PM
  • URL: https://libguides.ashland.edu/quantitative

Archer Library • Ashland University © Copyright 2023. An Equal Opportunity/Equal Access Institution.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 21 May 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Mardigian Library Text Logo

  • Mardigian Library
  • Subject Guides

HHS 410: Quantitative Research and Statistics

  • Cite and format using APA Style
  • Getting started @ Mardigian Library
  • Find Journal Articles
  • American Community Survey (ACS)
  • National Crime Victimization Survey (NCVS)
  • National Health Interview Survey (NHIS)
  • Recommended Library Databases for Data Sources
  • Federal health data (USA)
  • State and local health data
  • More sources of publicly available data
  • Citation Management Tools

APA Style Template for Google Docs

Here is a Google Docs template that you can use for APA formatted student papers. The template is View Only, so you will need to make a copy to use it. Click the  Use Template  button in the upper right corner to make a copy. 

APA template image

These template has headers, page numbers, margins, fonts and line spacing already set up for you. Just make a copy and type over the filler text. 

APA Template Google Doc

Finding quick Citation Info

Apa style resources.

Here are some general APA Style resources. Scroll down further to see more details about citations and paper formatting. 

  • APA Style Website The APA Style Website is the official website for APA 7th edition, and includes formatting guidelines for formatting your overall paper including title page setup, tables and figures, as well as guidelines for formatting reference citations. Sample papers are included.
  • Excelsior Online Writing Lab: APA Style The Excelsior OWL is an excellent resource for how to write and cite your academic work in APA Style. This is a recommended starting point if you're not sure how to use APA style in your work, and includes helpful multimedia elements.

Several print copies of the APA 7th edition Publication Manual are available for checkout at the Mardigian Library.

(Sorry, APA does not provide an eBook version of this for libraries at the present time.)

Cover Art

APA Style 7th edition Citations (References and In-Text Citations)

If you're new to citation, this brief video will cover an introduction to in-text citations and reference lists in APA 7th edition. Scroll down for more recommended resources about citations. 

More information including examples and sample papers can be found at the recommended websites below: 

  • APA Style Website: Reference Examples Guidelines about references from the official APA Style website.
  • APA Style Website: In-text Citations Guidelines for in-text citations from the official APA Style website.
  • APA 7th edition quick reference handout This quick reference guide to APA 7th edition citations is handy and includes many commonly cited source types and corresponding in-text citations.
  • APA In-text Citation Checklist APA's official In-text citation checklist for the 7th edition.

APA Style 7th edition Formatting for Student Papers

APA Style is more than just citations--it includes guidelines on how you entire paper should be formatted! Here are some quick tutorials and resources for formatting a student paper in APA 7th edition style. (Note that for more formal assignments, like a thesis or dissertation, you should instead follow the formatting guidelines for Professional papers.)

The video below will show you how to format an APA 7th edition student paper using Microsoft Word. Scroll down for more recommended resources about formatting. 

  • APA Style Website: Paper Format The APA Style website's paper format page includes all of the elements of paper format that you need to follow, including information about the title page, margins and spacing, fonts and headings. Sample papers are included.
  • APA Style Website: Academic Writer Tutorial This tutorial is designed for writers new to APA Style. Learn the basics of seventh edition APA Style, including paper elements, format, and organization; academic writing style; grammar and usage; bias-free language; mechanics of style; tables and figures; in-text citations, paraphrasing, and quotations; and reference list format and order.
  • Excelsior OWL: APA Formatting Guide The Excelsior OWL includes this great APA 7th edition formatting guide featuring a handy checklist.
  • Student Paper Formatting Checklist APA's official student paper formatting checklist.
  • << Previous: More sources of publicly available data
  • Next: Citation Management Tools >>
  • Last Updated: Mar 10, 2024 2:54 PM
  • URL: https://guides.umd.umich.edu/healthstatistics

Call us at 313-593-5559

Chat with us

Text us: 313-486-5399

Email us your question

University of Michigan - Dearborn Logo

  • 4901 Evergreen Road Dearborn, MI 48128, USA
  • Phone: 313-593-5000
  • Maps & Directions
  • M+Google Mail
  • Emergency Information
  • UM-Dearborn Connect
  • Wolverine Access

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 22, 2024 12:03 PM
  • URL: https://libguides.usc.edu/writingguide

East Carolina University Libraries

  • Joyner Library
  • Laupus Health Sciences Library
  • Music Library
  • Digital Collections
  • Special Collections
  • North Carolina Collection
  • Teaching Resources
  • The ScholarShip Institutional Repository
  • Country Doctor Museum

PADM 6102: Quantitative Research for Public Administration

  • General National/International Statistics
  • Specialized Data
  • North Carolina Statistics
  • APA Citation
  • Chicago Citation
  • MLA Citation

APA Style Guide

APA Formatting and Style courtesy of OWL at Purdue

RefWorks Guide

  • RefWorks Research Guide RefWorks is a citation management software that you can use to simplify the research process. You can keep citations to articles in RefWorks, access journal articles in databases without searching for them again, cite sources in your paper, and create a bibliography with RefWorks. This software is available to all students at ECU during the duration of their time at ECU Want to become more familiar with RefWorks? Then, click on this link!

Constructing a Citation

Now that you have the different elements of a citation written down, try to create citations for each of the different kinds of materials. Here is the format:

Author, A. A., & Author, B. B. (Date of publication). Title of article. Title of Journal, volume number (issue). doi:0000000/000000000000

Author, A. A., & Author, B. B. (Date of publication). Title of document. Retrieved from http://Web address

Author, A. A. (Year of publication). Title of work: Capital letter also for subtitle . Location: Publisher.

  Not the style you are looking for?  MLA Guide | Chicago Guide | AMA Guide   | ACS Guide | CSE Guide

Rather use a citation generator?            KnightCite      |     NCSU Citation Builder

Want to learn about RefWorks Citation Software?  RefWorks Guide

  • << Previous: North Carolina Statistics
  • Next: Chicago Citation >>
  • Last Updated: Apr 15, 2024 4:52 PM
  • URL: https://libguides.ecu.edu/c.php?g=612936
  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Advertisement

Issue Cover

  • Previous Issue

Research Articles

On the shoulders of fallen giants: what do references to retracted research tell us about citation behaviors, completeness degree of publication metadata in eight free-access scholarly databases, opencitations meta, examining the quality of the corresponding authorship field in web of science and scopus, the challenge of assessing academic books: the u.k. and lithuanian cases through the isbn lens, individual and gender inequality in computer science: a career study of cohorts from 1970 to 2000, large-scale text analysis using generative language models: a case study in discovering public value expressions in ai patents, technological impact of funded research: a case study of nonpatent references, keeping a close watch on innovation studies: opening the black box of journal editorships, exploring evidence selection with the inclusion network, scholarly publications and data set evidence for the human reference atlas, the gendered structure of science does not transpire in an experimental vacuum, are open access fees a good use of taxpayers’ money, product(s) added to cart, email alerts, affiliations.

  • Online ISSN 2641-3337

A product of The MIT Press

Mit press direct.

  • About MIT Press Direct

Information

  • Accessibility
  • For Authors
  • For Customers
  • For Librarians
  • Direct to Open
  • Open Access
  • Media Inquiries
  • Rights and Permissions
  • For Advertisers
  • About the MIT Press
  • The MIT Press Reader
  • MIT Press Blog
  • Seasonal Catalogs
  • MIT Press Home
  • Give to the MIT Press
  • Direct Service Desk
  • Terms of Use
  • Privacy Statement
  • Crossref Member
  • COUNTER Member  
  • The MIT Press colophon is registered in the U.S. Patent and Trademark Office

This Feature Is Available To Subscribers Only

Sign In or Create an Account

citation in quantitative research

  • Follow us on Facebook
  • Follow us on Twitter
  • Follow us on LinkedIn
  • Watch us on Youtube
  • Latest Explore all the latest news and information on Physics World
  • Research updates Keep track of the most exciting research breakthroughs and technology innovations
  • News Stay informed about the latest developments that affect scientists in all parts of the world
  • Features Take a deeper look at the emerging trends and key issues within the global scientific community
  • Opinion and reviews Find out whether you agree with our expert commentators
  • Interviews Discover the views of leading figures in the scientific community
  • Analysis Discover the stories behind the headlines
  • Blog Enjoy a more personal take on the key events in and around science
  • Physics World Live
  • Impact Explore the value of scientific research for industry, the economy and society
  • Events Plan the meetings and conferences you want to attend with our comprehensive events calendar
  • Innovation showcases A round-up of the latest innovation from our corporate partners
  • Collections Explore special collections that bring together our best content on trending topics
  • Artificial intelligence Explore the ways in which today’s world relies on AI, and ponder how this technology might shape the world of tomorrow
  • #BlackInPhysics Celebrating Black physicists and revealing a more complete picture of what a physicist looks like
  • Nanotechnology in action The challenges and opportunities of turning advances in nanotechnology into commercial products
  • The Nobel Prize for Physics Explore the work of recent Nobel laureates, find out what happens behind the scenes, and discover some who were overlooked for the prize
  • Revolutions in computing Find out how scientists are exploiting digital technologies to understand online behaviour and drive research progress
  • The science and business of space Explore the latest trends and opportunities associated with designing, building, launching and exploiting space-based technologies
  • Supercool physics Experiments that probe the exotic behaviour of matter at ultralow temperatures depend on the latest cryogenics technology
  • Women in physics Celebrating women in physics and their contributions to the field
  • Audio and video Explore the sights and sounds of the scientific world
  • Podcasts Our regular conversations with inspiring figures from the scientific community
  • Video Watch our specially filmed videos to get a different slant on the latest science
  • Webinars Tune into online presentations that allow expert speakers to explain novel tools and applications
  • IOP Publishing
  • Enter e-mail address
  • Show Enter password
  • Remember me Forgot your password?
  • Access more than 20 years of online content
  • Manage which e-mail newsletters you want to receive
  • Read about the big breakthroughs and innovations across 13 scientific topics
  • Explore the key issues and trends within the global scientific community
  • Choose which e-mail newsletters you want to receive

Reset your password

Please enter the e-mail address you used to register to reset your password

Note: The verification e-mail to change your password should arrive immediately. However, in some cases it takes longer. Don't forget to check your spam folder.

If you haven't received the e-mail in 24 hours, please contact [email protected]

Registration complete

Thank you for registering with Physics World If you'd like to change your details at any time, please visit My account

‘Hidden’ citations conceal the true impact of scientific research

Papers introducing concepts that have since become common knowledge are often under cited by researchers, skewing those articles’ true impact. That’s the conclusion of new study using machine learning to identify “foundational” work in science that is often not properly cited. Being able to count such hidden citations could provide more accurate bibliometric measures of impact, the study says. ( PNAS Nexus 3 pgae155 ).

The number of times a paper is cited is widely seen as marker of its scientific credibility. But some concepts or ideas are so well known that no one cites them. It would be unusual for an article on, say, general relativity to refer to Albert Einstein’s original 1915 paper on the subject. Xiangyi Meng , a physicist at Northwestern University in the US, who led the new study, calls such non-references “hidden citations”.

In their work, Meng and colleagues used a machine-learning model to analyse one million papers on the arXiv preprint server . It detected catchphrases that suggest specific discoveries and then linked each to at least one foundational paper. The researchers identified 343 topics in physics that accumulate hidden citations, each of which has at least one catchphrase.

The researchers found that the ratio of hidden citations– i.e. citations that should have been made but were not   – to actual citations for foundation papers was, on average 0.98:1, suggesting that papers usually acquire hidden citations at the same rate as citations.

Some publications, however, acquire much higher rates of hidden citations. Alan Guth’s 1981 paper that introduced cosmological inflation theory, for example, has 8.8 times more hidden citations than actual citations.

In another example, their model predicts that the phrase “quantum discord” – a quantity that relates two subsystems of a quantum state – should in principle be accompanied by a reference to a 2001 paper by Harold Ollivier and Wojciech Zurek .   The algorithm found that hidden citations account for 34.6% of all detectable credit for the “quantum discord” paper.

Foundational papers that acquire hidden citations are nevertheless still highly cited, with an average of 434 citations, compared with an average of 1.4 citations for all physics papers.

Meng adds that when they count hidden citations, the order of the top 100 cited papers in physics changes. Many publications drop down the pecking order, such as Juan Maldacena’s 1999 work on anti-de Sitter/conformal field theory . Lying top for explicit citations, it falls to second in the revised charts mostly because it has a large number of hidden citations.

A few papers with high numbers of hidden citations show significant increases. Guth’s 1981 paper, for example, jumps from eighth place to top spot, overtaking Maldacena’s paper. “Without hidden citations, citation ranks don’t really mean anything,” Meng adds.

Community acceptance

To explore the impact of hidden citations on authors, the researchers used Microsoft Academic Graph ’s “author saliency” metric. It judges the academic impact of scientists using a range of metrics, such as the connectivity of articles, authors and journals as well an author’s citation count.

Global network

Citations in science are biased towards a handful of nations – and the gap is growing

The team found that authors with more hidden citations also have a higher author saliency, with this effect particularly notable for those with lower numbers of citations. In other words, while these authors have credibility and reputation, citation counts are not fully capturing the true impact of their work.

“Authors with more hidden citations actually have a higher impact, they appear to be more reputational than those authors with fewer hidden citations,” says Meng. “If you have hidden citations, it means that your concept, your work has been widely accepted by the community.”

Mang explains that hidden citations are also inevitable given that it is difficult for researchers to cite every paper or concept used in their work, which is why, he says, it is important that they are counted in some way.

Want to read more?

Note: The verification e-mail to complete your account registration should arrive immediately. However, in some cases it takes longer. Don't forget to check your spam folder.

If you haven't received the e-mail in 24 hours, please contact [email protected] .

  • E-mail Address

Michael Allen is a science writer based in the UK

citation in quantitative research

IOP Peer Review Excellence course

Graduate today with our comprehensive online course

  • Astronomy and space

European Space Agency releases first batch of spectacular science images from its Euclid mission

Discover more from physics world.

computer brain illustration

Researchers split on merits and pitfalls of AI in peer review, IOP Publishing survey finds

The cover of the 2024 Physics World Particle & Nuclear Briefing

  • Particle and nuclear

What’s hot in particle and nuclear physics? Find out in the latest Physics World Briefing

Alex and Neil 16.9

  • Business and innovation

Social media: making it work for physics-related businesses

Related jobs, writer (science writer), campaign manager, ebooks, associate editor, related events.

  • Quantum | Conference IQT Vancouver-Pacific Rim 4—6 June 2024 | Vancouver, Canada
  • Quantum | Symposium 3rd annual Commercialising Quantum Global 2024 5—6 June 2024 | London, UK
  • Astronomy and space | Conference SPIE Astronomical Telescopes + Instrumentation 2024 16—21 June 2024 | Yokohama, Japan

medRxiv

Quantification supports amyloid-PET visual assessment of challenging cases: results from the AMYPAD-DPMS study

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lyduine E Collij
  • For correspondence: [email protected]
  • ORCID record for Gerard N Bischof
  • ORCID record for Daniele Altomare
  • ORCID record for David Vallez Garcia
  • ORCID record for Andrew Stephens
  • ORCID record for Zuzana Walker
  • ORCID record for Philip Scheltens
  • ORCID record for Agneta Nordberg
  • ORCID record for Juan Domingo Gispert
  • ORCID record for Andres Perissinotti
  • ORCID record for Silvia Morbelli
  • ORCID record for Valentina Garibotto
  • ORCID record for Giovanni B Frisoni
  • ORCID record for Frederik Barkhof
  • Info/History
  • Supplementary material
  • Preview PDF

ABSTRACT Several studies have demonstrated the high agreement between routine clinical visual assessment and quantification, suggesting that quantification approaches could support the assessment of less experienced readers and/or in challenging cases. However, all studies to date have implemented a retrospective case collection and challenging cases were generally underrepresented. Methods: In this prospective study, we included all participants (N=741) from the AMYPAD Diagnostic and Patient Management Study (DPMS) with available baseline amyloid-PET quantification. Quantification was done with the PET-only AmyPype pipeline, providing global Centiloid (CL) and regional z-scores. Visual assessment was performed by local readers for the entire cohort. From the total cohort, we selected a subsample of 85 cases 1) for which the amyloid status based on the local reader s visual assessment and CL classification (cut-off=21) was discordant and/or 2) that were assessed with a low confidence (i.e. ≤3 on a 5-point scale) by the local reader. In addition, concordant negative (N=8) and positive (N=8) scans across tracers were selected. In this sample, (N=101 cases: ([18F]flutemetamol, N=48; [18F]florbetaben, N=53) the visual assessments and corresponding confidence by 5 certified independent central readers were captured before and after disclosure of the quantification results. Results: For the AMYPAD-DPMS whole cohort, the overall assessment of local readers highly agreed with CL status (κ=0.85, 92.3% agreement). This was consistently observed within disease stages (SCD+: κ=0.82/92.3%; MCI: κ=0.80/89.8%; dementia: κ=0.87/94.6%). Across all central reader assessments in the challenging subsample, global CL and regional z-scores quantification were considered supportive of visual read in 70.3% and 49.3% of assessments, respectively. After disclosure of quantitative results, we observed an improvement in concordance between the 5 readers (κbaseline=0.65/65.3%; κpost-disclosure=0.74/73.3%) and a significant increase in reader confidence (Mbaseline=4.0 vs. Mpost-disclosure=4.34, W=101056, p<0.001). Conclusion: In this prospective study enriched for challenging amyloid-PET cases, we demonstrate the value of quantification to support visual assessment. After disclosure, both inter-reader agreement and confidence showed a significant improvement. These results are important considering the arrival of anti-amyloid therapies, which utilized the Centiloid metric for trial inclusion and target-engagement. Moreover, quantification could support determining Aβ status with high certainty, an important factor for treatment initiation.

Competing Interest Statement

DISCLOSURES DA, IB, DVG, ILA, AP, and GBF report no relevant disclosures. LEC has received research support from GE Healthcare and Springer Healthcare (funded by Eli Lilly), both paid to institution. Dr. Collij s salary is supported by the MSCA postdoctoral fellowship research grant (#101108819) and the Alzheimer Association Research Fellowship (AARF) grant (#23AARF-1029663). GNB is funded by the Deutsche Forschungsgemeinschaft (DFG) Project ID 431549029 - SFB 1451 and partially by DFG, DR 445/9 1. MB is employed by GE HealthCare. RW is employed by IXICO ltd. RG is employed by Life Molecular Imaging AWS is employed by Life Molecular Imaging ZW has received research support from GE Healthcare. PS is employed by EQT Life Sciences team. AN has received consulting fee from H Lundbeck AB, AVVA pharmaceuticals and honoraria for lecture from Hoffman La Roche. JDG has received research support from GE HealthCare, Roche Diagnostics and Hoffmann La Roche, speaker/consulting fees from Roche Diagnostics, Esteve, Philips Nederlands, Biogen and Life Molecular Imaging and serves in the Molecular Neuroimaging Advisory Board of Prothena Biosciences. AD has received research support from: Siemens Healthineers, Life Molecular Imaging, GE Healthcare, AVID Radiopharmaceuticals, Sofie, Eisai, Novartis/AAA, Ariceum Therapeutics, speaker Honorary/Advisory Boards: Siemens Healthineers, Sanofi, GE Healthcare, Biogen, Novo Nordisk, Invicro, Novartis/AAA, Bayer Vital, Lilly Stock: Siemens Healthineers, Lantheus Holding, Structured therapeutics, Lilly. Patents: Patent for 18F JK PSMA 7 (Patent No.: EP3765097A1; Date of patent: Jan. 20, 2021). SM received speaker honoraria from GE Healthcare, Eli Lilly and Life Molecular Imaging. CB is employed by GE HealthCare. VG is supported by the Swiss national science foundation (project n.320030_185028 and 320030_169876), the Aetas Foundation, the Schmidheiny Foundation, the Velux Foundation, the Fondation privee des HUG. She received support for research and speakers fees from Siemens Healthineers, GE HealthCare, Janssen, Novo Nordisk, all paid to institution. GF is employed by GE HealthCare. FB is supported by the NIHR biomedical research centre at UCLH. Steering committee or Data Safety Monitoring Board member for Biogen, Merck, Eisai and Prothena. Advisory board member for Combinostics, Scottish Brain Sciences. Consultant for Roche, Celltrion, Rewind Therapeutics, Merck, Bracco. Research agreements with ADDI, Merck, Biogen, GE Healthcare, Roche. Co-founder and shareholder of Queen Square Analytics LTD.

Funding Statement

ACKNOWLEDGMENTS The project leading to this paper has also received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115952. This Joint Undertaking receives the support from the European Union s Horizon 2020 research and innovation programme and EFPIA. This communication reflects the views of the authors and neither IMI nor the European Union and EFPIA are liable for any use that may be made of the information contained herein.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

All participants gave written informed consent. The trial was registered with EudraCT (2017-002527-21). The study was approved by the CCER (Commission Cantonale d Ethique de la Recherche) in Geneva Switzerland (#2017-01408).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

Data is available upon request through the ADDI platform

https://amypad.eu/

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Addiction Medicine (324)
  • Allergy and Immunology (632)
  • Anesthesia (168)
  • Cardiovascular Medicine (2398)
  • Dentistry and Oral Medicine (289)
  • Dermatology (207)
  • Emergency Medicine (381)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (850)
  • Epidemiology (11795)
  • Forensic Medicine (10)
  • Gastroenterology (705)
  • Genetic and Genomic Medicine (3766)
  • Geriatric Medicine (350)
  • Health Economics (637)
  • Health Informatics (2408)
  • Health Policy (939)
  • Health Systems and Quality Improvement (905)
  • Hematology (342)
  • HIV/AIDS (786)
  • Infectious Diseases (except HIV/AIDS) (13346)
  • Intensive Care and Critical Care Medicine (769)
  • Medical Education (368)
  • Medical Ethics (105)
  • Nephrology (401)
  • Neurology (3523)
  • Nursing (199)
  • Nutrition (528)
  • Obstetrics and Gynecology (679)
  • Occupational and Environmental Health (667)
  • Oncology (1832)
  • Ophthalmology (538)
  • Orthopedics (221)
  • Otolaryngology (287)
  • Pain Medicine (234)
  • Palliative Medicine (66)
  • Pathology (447)
  • Pediatrics (1037)
  • Pharmacology and Therapeutics (426)
  • Primary Care Research (424)
  • Psychiatry and Clinical Psychology (3187)
  • Public and Global Health (6178)
  • Radiology and Imaging (1290)
  • Rehabilitation Medicine and Physical Therapy (751)
  • Respiratory Medicine (832)
  • Rheumatology (380)
  • Sexual and Reproductive Health (373)
  • Sports Medicine (324)
  • Surgery (403)
  • Toxicology (50)
  • Transplantation (172)
  • Urology (147)

Help | Advanced Search

Quantitative Biology > Quantitative Methods

Title: unraveling the autism spectrum heterogeneity: insights from abide i database using data/model-driven permutation testing approaches.

Abstract: Autism Spectrum Condition (ASC) is a neurodevelopmental condition characterized by impairments in communication, social interaction and restricted or repetitive behaviors. Extensive research has been conducted to identify distinctions between individuals with ASC and neurotypical individuals. However, limited attention has been given to comprehensively evaluating how variations in image acquisition protocols across different centers influence these observed differences. This analysis focuses on structural magnetic resonance imaging (sMRI) data from the Autism Brain Imaging Data Exchange I (ABIDE I) database, evaluating subjects' condition and individual centers to identify disparities between ASC and control groups. Statistical analysis, employing permutation tests, utilizes two distinct statistical mapping methods: Statistical Agnostic Mapping (SAM) and Statistical Parametric Mapping (SPM). Results reveal the absence of statistically significant differences in any brain region, attributed to factors such as limited sample sizes within certain centers, noise effects and the problem of multicentrism in a heterogeneous condition such as autism. This study indicates limitations in using the ABIDE I database to detect structural differences in the brain between neurotypical individuals and those diagnosed with ASC. Furthermore, results from the SAM mapping method show greater consistency with existing literature.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. (PDF) A qualitative and quantitative citation analysis toward retracted

    citation in quantitative research

  2. 10 Easy Steps to Find a Quantitative Article

    citation in quantitative research

  3. (PDF) Quantitative Research Method

    citation in quantitative research

  4. Quantitative Research Hypothesis Examples Pdf / Quantitative Research

    citation in quantitative research

  5. PPT

    citation in quantitative research

  6. Figure 1 from Using Quantitative Research Methods to Determine the

    citation in quantitative research

VIDEO

  1. What is Citation?

  2. Quantitative & Qualitative Research Design and Citation, Impact Factor

  3. RESEARCH INFORMATION AND CITATION MANAGEMENT (REVISION CLASSES) AMIT TIWARI

  4. Citing and Citation Management: Tips and Tricks

  5. Drafting Manuscript for Scopus Free Publication

  6. What is Citation and How to increase the Citation Score

COMMENTS

  1. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  2. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  3. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  4. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  5. Quantitative Research: Citations & Reference

    Purdue OWL: Research Resources. Writing a Literature Review: Purdue OWL. "A literature review is a document or section of a document that collects key sources on a topic and discusses those sources in conversation with each other (also called synthesis)." Research Overview: Types of Sources. "This section lists the types of sources most ...

  6. Citations, Citation Indicators, and Research Quality: An Overview of

    Accordingly, citation analyses may lack justification in these fields, and some countries such as Italy, which have used quantitative indicators in their national research assessments, have not included metrics in the assessments of social sciences and humanities (Ancaiani et al., 2015).

  7. What Is Quantitative Research?

    Revised on 10 October 2022. Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and ...

  8. Cite and format using APA Style

    HHS 410: Quantitative Research and Statistics; Cite and format using APA Style; Search this Guide Search. HHS 410: Quantitative Research and Statistics. Find some good statistical data to use in your quantitative research methods course. Since this is a health policy course, the data in this guide will be focused on health.

  9. Quantitative Research Excellence: Study Design and Reliable and Valid

    If you have citation software installed, you can download article citation data to the citation manager of your choice. Select your citation manager software: Direct import ... Quantitative Research for the Qualitative Researcher. 2014. SAGE Knowledge. Book chapter . Issues in Validity and Reliability. Show details Hide details.

  10. Quantitative and Qualitative Research

    Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population. Allen, M. (2017). The SAGE encyclopedia ...

  11. MLA Citation

    It includes interactive tutorials to teach you to cite. On this page, you will find: Links to the MLA Style Guide (left column) Three interactive tutorials that allow you to locate the pieces of a citation for a book, article, and webpage (right column) The format of three common MLA citations to help you cite your sources (right column)

  12. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...

  13. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques.Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  14. APA Citation

    RefWorks is a citation management software that you can use to simplify the research process. You can keep citations to articles in RefWorks, access journal articles in databases without searching for them again, cite sources in your paper, and create a bibliography with RefWorks.

  15. (PDF) Quantitative Research Methods : A Synopsis Approach

    Quantitative research design contracts with numeric information (numbers) and often utilises information assortment practices such as a survey or 85 statistics scrutiny system such as graphs ...

  16. Quantitative Research

    Here are some key characteristics of quantitative research: Numerical data: Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.

  17. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  18. (PDF) Quantitative Research Method

    PDF | On Apr 12, 2020, Olasile Babatunde Adedoyin published Quantitative Research Method | Find, read and cite all the research you need on ResearchGate

  19. The History of Quantification in History: The JIH as a Case Study

    Thus, a citation index of 200 means that an article had twice as many citations as the average article of its decade, and a citation index of 50 means that the article had half as many citations as the average article of that decade. Figure 8 compares the citation indexes for quantitative and non-quantitative JIH articles and research notes. In ...

  20. (PDF) Quantitative Research Designs

    2.3+ billion citations; Join for free. Public Full-text 1. Content uploaded by Darrin Thomas. Author content. ... Using quantitative research design, 500 university students in Cambodia were ...

  21. Mixed Methods Research

    Mixed Methods Research | Definition, Guide & Examples. Published on August 13, 2021 by Tegan George.Revised on June 22, 2023. Mixed methods research combines elements of quantitative research and qualitative research in order to answer your research question.Mixed methods can help you gain a more complete picture than a standalone quantitative or qualitative study, as it integrates benefits of ...

  22. Volume 5 Issue 1

    Sergio Pelaez, Gaurav Verma, Barbara Ribeiro, Philip Shapira. Quantitative Science Studies (2024) 5 (1): 153-169. Abstract. View article titled, Large-scale text analysis using generative language models: A case study in discovering public value expressions in AI patents. Supplementary data.

  23. Quantitative measurement of urban spatial vitality by integrating

    Quantitative measurement of urban spatial vitality by integrating physical built environment and subjective perception dimensions. ... Transportation Research Part D: Transport and Environment 41: 318-329. Crossref. ... If you have citation software installed, you can download article citation data to the citation manager of your choice ...

  24. 'Hidden' citations conceal the true impact of scientific research

    The algorithm found that hidden citations account for 34.6% of all detectable credit for the "quantum discord" paper. Foundational papers that acquire hidden citations are nevertheless still highly cited, with an average of 434 citations, compared with an average of 1.4 citations for all physics papers. Meng adds that when they count hidden ...

  25. A Step Forward in Quantitative Automated Mineralogy in 2D and 3D

    Critically, the use of quantitative geochemical data means that mineral classifications are based on their quantitatively measured chemistry. By making both the chemical and textural analysis quantitative, automated mineralogy can become highly flexible and provide a unique system for petrologists in both industry and academia.

  26. Quantification supports amyloid-PET visual assessment of challenging

    ABSTRACT Several studies have demonstrated the high agreement between routine clinical visual assessment and quantification, suggesting that quantification approaches could support the assessment of less experienced readers and/or in challenging cases. However, all studies to date have implemented a retrospective case collection and challenging cases were generally underrepresented. Methods ...

  27. Research on multi-factor quantitative investment strategy of SVM model

    Research on quantitative stock selection based on machine learning. Shandong University. Google Scholar; Li Qi, Yang Junqi. 2017. Application of random forest algorithm in multi-factor stock selection. ... copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first ...

  28. [2405.12225] Unraveling the Autism spectrum heterogeneity: Insights

    Autism Spectrum Condition (ASC) is a neurodevelopmental condition characterized by impairments in communication, social interaction and restricted or repetitive behaviors. Extensive research has been conducted to identify distinctions between individuals with ASC and neurotypical individuals. However, limited attention has been given to comprehensively evaluating how variations in image ...