• TheFreeDictionary
  • Word / Article
  • Starts with
  • Free toolbar & extensions
  • Word of the Day
  • Free content

hy·poth·e·sis

Significance .

  • ad hoc hypothesis
  • alpha error
  • alternative hypothesis
  • APUD hypothesis
  • Avogadro law
  • Avogadro number
  • Avogadro, Amadeo
  • background level
  • Bayes theorem
  • Bayesian hypothesis
  • Beadle, George Wells
  • bread mould
  • capillarity
  • chi squared test
  • cohesion-tension hypothesis
  • hypotensive
  • hypotensive anesthesia
  • hypothalamic amenorrhea
  • hypothalamic dysfunction
  • hypothalamic fever
  • hypothalamic infundibulum
  • hypothalamic obesity
  • hypothalamic sulcus
  • hypothalamic-pituitary axis
  • hypothalamic-pituitary-adrenal axis
  • hypothalamocerebellar fibers
  • hypothalamo-hypophyseal portal system
  • hypothalamohypophysial
  • hypothalamospinal fibers
  • Hypothalamus
  • hypothenar eminence
  • hypothenar fascia
  • hypothermal
  • hypothermia
  • hypothermia therapy
  • hypothermia treatment
  • hypothermic anesthesia
  • hypothermic circulatory arrest
  • hypothesis test
  • hypothesis to test
  • hypothetic mean organism
  • hypothetic mean strain
  • hypothetical mean organism
  • hypothrombinemia
  • hypothromboplastinemia
  • hypothymism
  • hypothyroid
  • hypothyroid dwarf
  • hypothyroidism
  • hypothyroxinemia
  • hypotonia-cystinuria syndrome
  • Hypotonic Duodenography
  • hypotonic labor
  • hypotonic saline
  • hypotonicity
  • hypotoxicity
  • hypotransferrinemia
  • hypotrichiasis
  • Hypothermia After Cardiac Arrest
  • Hypothermia After Cardiac Arrest Registry
  • hypothermic
  • hypothermicly
  • Hypothèse Extraterrestre
  • Hypothesis Driven Lexical Adaptation
  • Hypothesis test
  • Hypothesis testing
  • hypothesis testing sampling
  • Hypothesis-Based Testing
  • Hypothesis-Oriented Algorithm for Clinicians
  • hypothesise
  • hypothesised
  • hypothesiser
  • hypothesisers
  • hypothesises
  • Facebook Share
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Medical Terminology DB

Medical Terms & Definitions Glossary

  • Medical Terms A to Z
  • Cancer Dictionary
  • Drug Dictionary
  • Medical Conditions
  • Statistical Terms
  • Search Terms

Definition / meaning of hypothesis

A tentative proposal made to explain certain observations or facts that requires further investigation to be verified.

Was this definition helpful?

Listed under:, find more about 'hypothesis', leave a comment cancel reply.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Share & Recommend Our Site!

Jobs in health care.

Return to top of page

Medical Terminology DB · Copyright © 2024 · Privacy · Terms of Use · Disclaimer · XML Sitemap

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

flow chart of scientific method

  • Where was science invented?
  • When did science begin?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Education Resources Information Center - Understanding Hypotheses, Predictions, Laws, and Theories
  • Simply Psychology - Research Hypothesis: Definition, Types, & Examples
  • Cornell University - The Learning Strategies Center - Hypothesis
  • Washington State University - Developing a Hypothesis
  • Verywell Mind - Forming a Good Hypothesis for Scientific Research
  • BCCampus Publishing - Research Methods for the Social Sciences: An Introduction - Hypotheses

flow chart of scientific method

hypothesis , something supposed or taken for granted, with the object of following out its consequences (Greek hypothesis , “a putting under,” the Latin equivalent being suppositio ).

Discussion with Kara Rogers of how the scientific model is used to test a hypothesis or represent a theory

In planning a course of action, one may consider various alternatives , working out each in detail. Although the word hypothesis is not typically used in this case, the procedure is virtually the same as that of an investigator of crime considering various suspects. Different methods may be used for deciding what the various alternatives may be, but what is fundamental is the consideration of a supposal as if it were true, without actually accepting it as true. One of the earliest uses of the word in this sense was in geometry . It is described by Plato in the Meno .

The most important modern use of a hypothesis is in relation to scientific investigation . A scientist is not merely concerned to accumulate such facts as can be discovered by observation: linkages must be discovered to connect those facts. An initial puzzle or problem provides the impetus , but clues must be used to ascertain which facts will help yield a solution. The best guide is a tentative hypothesis, which fits within the existing body of doctrine. It is so framed that, with its help, deductions can be made that under certain factual conditions (“initial conditions”) certain other facts would be found if the hypothesis were correct.

The concepts involved in the hypothesis need not themselves refer to observable objects. However, the initial conditions should be able to be observed or to be produced experimentally, and the deduced facts should be able to be observed. William Harvey ’s research on circulation in animals demonstrates how greatly experimental observation can be helped by a fruitful hypothesis. While a hypothesis can be partially confirmed by showing that what is deduced from it with certain initial conditions is actually found under those conditions, it cannot be completely proved in this way. What would have to be shown is that no other hypothesis would serve. Hence, in assessing the soundness of a hypothesis, stress is laid on the range and variety of facts that can be brought under its scope. Again, it is important that it should be capable of being linked systematically with hypotheses which have been found fertile in other fields.

If the predictions derived from the hypothesis are not found to be true, the hypothesis may have to be given up or modified. The fault may lie, however, in some other principle forming part of the body of accepted doctrine which has been utilized in deducing consequences from the hypothesis. It may also lie in the fact that other conditions, hitherto unobserved, are present beside the initial conditions, affecting the result. Thus the hypothesis may be kept, pending further examination of facts or some remodeling of principles. A good illustration of this is to be found in the history of the corpuscular and the undulatory hypotheses about light .

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Problem statement

Problem Statement – Writing Guide, Examples and...

Research Summary

Research Summary – Structure, Examples and...

Research Problem

Research Problem – Examples, Types and Guide

Limitations in Research

Limitations in Research – Types, Examples and...

References in Research

References in Research – Types, Examples and...

Research Project

Research Project – Definition, Writing Guide and...

medical terminology hypothesis definition

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

medical terminology hypothesis definition

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

medical terminology hypothesis definition

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

17 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Editorial Team
  • Exclusive Interviews
  • In the News
  • Newsletters
  • Partners & Affiliates
  • Advertise With Us

Careers

  • हिन्दी
  • français
  • Español
  • 中文

medindia

  • Health Centers
  • Information by Medical Specialty
  • Health Websites
  • Medical Education
  • Medicine & Movies
  • Health Videos
  • Health Laws
  • Buy & Sell
  • Medindia on Mobile
  • Anxiety & Depression
  • Child Health
  • Healthy Heart
  • Health and Wellness
  • Health Insurance
  • Gastroenterology
  • Health Tools
  • Create Health Record
  • Health Calculators
  • Medical Equipment Store
  • Health Websites - Categories
  • AIDS and HIV
  • Complementary Medicine
  • Disease and disorder
  • Infographics
  • Know Your Body
  • Endocrine System
  • Digestive System
  • Reproductive System
  • Urinary System
  • Health Tips
  • Lifestyle and Wellness
  • Nutrition Facts
  • Beauty Tips
  • Home Remedies
  • Travel & Health
  • Consumer Health
  • Diet and Nutrition
  • Senior Health
  • Baked Products
  • Breakfast Cereals
  • Diet during Typhoid
  • Health Benefits of Soybean
  • Dark Circles
  • Deep Sunken Eyes
  • Eye Puffiness
  • Anti-ageing Foods
  • Best Foods That Aid Digestion
  • Bone Strengthening Foods
  • Obesity and Weight Loss
  • Obesity and Carbohydrates
  • Obesity and Malnutrition
  • Acupuncture
  • Aromatherapy
  • Health News A-Z
  • Health News Central
  • Latest Health News
  • Popular Health News
  • Health Special Reports
  • Interviews and In depth Reports
  • Health Watch
  • Health In Focus
  • India Special
  • Press Releases
  • Latest Press Releases
  • Press Releases A-Z
  • Press Release Archive
  • Submit Press Releases
  • Writing a Press Release
  • Health Topics
  • Health Encyclopedia
  • First Aid Guide
  • Health Facts
  • Health Quiz
  • Blood Tests
  • Health Care Glossary
  • Insurance Glossary
  • Medical Acronyms
  • Medical Aphorism
  • Medical Mnemonics
  • Health Guide
  • Health News
  • Health News RSS
  • Medical Lab Test
  • Medical Humour
  • Press Release
  • Surgical Procedures
  • Drug Information
  • Drug Price List
  • Drug Brands in India
  • Drug Toxicity
  • Drugs by Conditions
  • Drug Interaction with Foods
  • Therapeutic Drug Classification
  • Search Info
  • Doctor Homepage
  • Hospital Homepage
  • Indian Doctors
  • Online Search
  • Open Access Journals
  • Universities In India
  • Disease & Condition
  • Diet & Nutrition
  • Surgical Procedure
  • Investigation and Procedure Articles
  • Preventive Health
  • Symptom Articles
  • Drug Related Articles
  • Health Screening Test
  • Condition By Specialty
  • Color Therapy
  • Laboratory Test
  • Medical Procedures
  • Travel and Health
  • Yoga and Lifestyle
  • Health Statistics
  • Web Stories
  • Diabetes Risk Assessment Calculator
  • Pediatric Calculators
  • Height and Weight Calculator
  • Health Risk Assessment Tools
  • Clinical Tools
  • Cardiac Risk Calculator
  • Lifestyle Interactive Tools
  • Miscellaneous Tools
  • Women's Health Calculator
  • Men's Health Calculators
  • Nutrition Calculator
  • Pharma Tools
  • Health Clock
  • Conversion Calculators
  • Latest Health Calculators
  • Popular Health Calculators
  • Diabetes Tools
  • Blood Sugar-Conversion
  • Blood Sugar Chart
  • Height and Weight for Children
  • Development Milestone
  • Immunisation
  • Men's Health
  • Check Your Prostate Gland
  • Depression Calculator
  • Preventive Health - Screening Tests
  • Women's Health
  • Multiple Pregnancy Calculator
  • Ovulation Calculator
  • Pregnancy Due Date Calculator
  • Height Weight Tools
  • Frame Size Calculator
  • Ideal Baby Weight
  • Ideal Body Weight
  • Cardiac Tools
  • Activity Calorie Calculator
  • Blood Pressure Chart
  • Cholesterol Risk Calculator
  • Drugs Interaction Finder
  • Drug Side Effects Calculator
  • Travel Vaccination Calculator
  • Wellness Interactive Tools
  • Anxiety Screening Test
  • Depression Screening Test
  • Periodic Self Assessment
  • Test Your Happiness Score
  • Drugs by Condition
  • Indian Drug Manufacturers
  • Drugs - Side Effects
  • How to Take Drugs
  • Drugs by Specialty
  • Health Conditions Due to Drugs
  • FDA Labeling Changes
  • Ayurveda Drug Manufacturers
  • Banned Drugs in India
  • Drug Policy
  • Drug Price - Act
  • Pharma Councils
  • Associations
  • Pharma Links
  • Aceclofenac
  • Albendazole
  • Albuterol (Salbutamol)
  • Abdominal Pain
  • Drug Price List - Brand Names
  • Manforce (100 mg)
  • Drug Interaction with Food
  • Amisulpride
  • Drug Price List - Generic Names
  • Acetaminophen
  • Aclarubicin
  • Drug Videos
  • Drug Database
  • Master Healthcare Directory
  • Doctors Master Directory
  • Doctor Directory
  • Hospital Directory
  • Chemist Directory
  • Emergency Services
  • Pharma Directory
  • Surgical Suppliers
  • NGO Directory
  • International Hospital Directory
  • Pincode Directory
  • Ayuveda Colleges
  • Dental Colleges
  • Homepathy Colleges
  • Medical Colleges
  • Nursing Colleges
  • Pharma Colleges
  • Siddha Colleges
  • Unani Colleges
  • Book Teleconsultation
  • Allopathy Doctors
  • Allied Healthcare Members
  • Doctors by City
  • Search By Specialty
  • Diagnostic Lab Directory
  • Diagnostic Labs by City
  • Hospitals by City
  • Pharmacy/Chemist Directory
  • Add Pharmacy
  • Pharmacy/Chemist
  • Pharmacies by City
  • Medical Equipment Suppliers
  • Add Medical Equipment Suppliers
  • Medical Equipment Suppliers By City
  • Pharma Directory by City
  • Day and Night Pharmacy
  • Home Care Nursing
  • Trauma Care
  • Oxygen Services
  • Ministry of Health
  • MCI Guidelines
  • National Board of Examinations
  • Surgical Training In UK
  • CGFNS Centers
  • USMLE Centers
  • Distance Education Topics
  • International Journals
  • Indian Journals
  • Homeopathy Colleges
  • Ayurveda Colleges
  • PG Education
  • Bio Informatics
  • Degree Courses
  • Diploma Courses
  • Surgical Training in UK
  • Family Medicine
  • Biomedical Ethics
  • Classification of Burns
  • Fever in Children
  • Incision and Drainage of Abscess
  • Low Back Pain
  • Urinary Tract Infection
  • Conferences
  • Disease FAQs
  • Journals Open Access
  • Medical Dictionary
  • Other Resources
  • Education News
  • Medical Electives
  • Health Polls
  • Medindia Specials
  • Amazing Body Facts
  • Health Survey
  • World Health Days
  • Consumer Protection Act
  • Know your Body
  • Medicine, Art & Literature
  • Free Medical Downloads
  • Advertise on Medindia
  • Buy and Sell
  • E-Health Records
  • Free Home Pages
  • Mini Health Check up
  • Medical Jobs
  • Health Acts in India
  • Health Quotations
  • Medical Conference
  • Nobel Prize in Medicine
  • Ribbon for a Cause
  • Stamps on Doctors
  • Health Insurance News
  • Insurance Articles
  • Insurance Companies- India
  • Insurance Companies- United States
  • Insurance Brokers List
  • List of TPAs
  • Other Health Resources
  • Health Poll
  • Medical Dictionary / Glossary

Hypothesis - Glossary

A+

Medical Word - Hypothesis

Browse the medical dictionary alphabetically.

  • Hu14.18-Interleukin-2 Fusion Protein
  • Human chorionic gonadotropin
  • Human insulin
  • Human leukocyte antigen
  • Human leukocyte antigen system (HLA) Ver 2
  • Human Papillomavirus
  • Human T-cell lymphotrophic virus
  • Hyaline membrane disease
  • Hybrid Ver 2
  • Hydatidiform mole
  • Hydrazine Sulfate
  • Hydrocephalus
  • Hydrocortisone
  • Hydrogen Peroxide
  • Hydrogenation
  • Hydromorphone
  • Hydronephrosis
  • Hydrophilic
  • Hydrophilicity
  • Hydrophobia
  • Hydrosalpinx
  • Hydrotherapy
  • Hydroxyurea
  • Hymenoptera
  • Hyper-Thyroidism
  • Hyperactivity
  • Hyperalimentation
  • Hyperbaric Oxygen
  • Hyperbilirubinemia
  • Hypercalcaemia
  • Hypercalcemia
  • Hypercapnia
  • Hypercholesterolemia
  • Hyperemesis gravidarum
  • Hyperextensibility, of joints
  • Hyperfractionated radiation
  • Hyperfractionation
  • Hyperglycemia
  • Hyperinsulinism
  • HYPERKALAEMIA
  • Hyperkalemic alkalosis
  • Hyperlipemia, hyperlipidemia
  • HYPERLIPIDAEMIA
  • HYPERMAGNESIMIA
  • Hyperosmolar coma
  • Hyperparathyroidism
  • Hyperphosphatemia
  • Hyperplasia
  • Hyperproliferative Ver 2
  • Hypersensitivity
  • Hypersomnia Ver 2
  • Hypersomnolence
  • Hypertelorism
  • Hypertension
  • Hyperthermia
  • Hyperthermic Perfusion
  • Hyperthyroidism
  • Hypertrophic
  • Hypertrophic cardiomyopathy
  • Hypertrophy
  • Hyperuricemia
  • Hypervascular
  • Hyperventilation
  • Hypnogogic and hypnopompic hallucinations Ver 2
  • Hypnotics Ver 2
  • HYPOALBUMINAEMIA
  • Hypocalcemia
  • Hypochondriasis
  • Hypocretin Ver 2
  • Hypodermic Needle
  • Hypoglycemia
  • HYPOKALAEMIA
  • Hypokalemia
  • Hypopharynx
  • Hypopnea Ver 2
  • Hyporeflexia
  • Hypotension
  • Hypothalamus
  • Hypothermia
  • Hypothyroidism
  • Hypoventilation
  • Hypovolemic Ver 2
  • Hypoxemia Ver 2
  • Hyrdrocephalus
  • Hysterectomy
  • Hysterosalpingogram
  • Hysteroscopy

Get Health and Wellness Secrets from Our Engaging eBooks

What's New on Medindia

Quiz on dentin hypersensitivity, parvovirus b19: from transmission to prevention, understanding daily water and beverage choices across different age groups, glossary a-z, glossary search, quick links, insurance links, health insurance companies, stay connected.

  • facebook Twitter Linked in Pinterest Instagram GoogleNews RSS

Available on the Android Market

Follow Us On :

  • Benefits of Registration
  • Advertising Policy
  • Partnership Inquiries
  • Request to Use Medindia Content
  • Refund & Cancellation Policy
  • Unsubscribe

Wildcard SSL

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

Advertise with us | Medindia Copyright | Privacy Policy | Terms of Use © All Rights Reserved 1997 - 2024

medical terminology hypothesis definition

Advertisement

Advertisement

The Logic of Medical Diagnosis: Generating and Selecting Hypotheses

  • Published: 06 October 2017
  • Volume 38 , pages 437–446, ( 2019 )

Cite this article

medical terminology hypothesis definition

  • Donald E. Stanley 1  

Clinical diagnostic medicine is an experimental science based on observation, hypothesis making, and testing. It is an use dynamic process that involves observation and summary, diagnostic conjectures, testing, review, observation and summary, new or revised conjectures, i.e. it is an iterative process. It can then be said that diagnostic hypotheses are also ‘observation-laden’. My aim is to enlarge on the strategies of medical diagnosis as these are meshed in training and clinical experience—that is, to describe the patterns of reasoning used by experienced clinicians under different diagnostic circumstances and how these patterns of inquiry allow further insight into the evaluation and treatment of patients. I do not aim to present a theory and illustrate it with examples; I wish rather am to let a realistic example, similar to actual clinical scenarios, direct the exposition. To this end, I introduce an account of medical diagnosis—briefly comparing and contrasting it to other accounts—in order to focus on discussing the process of diagnosis through a detailed clinical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

medical terminology hypothesis definition

Causal and Probabilistic Inferences in Diagnostic Reasoning: Historical Insight into the Contemporary Debate

medical terminology hypothesis definition

Clinical Reasoning

medical terminology hypothesis definition

Applying Medical Knowledge: Diagnosing Disease

Ross Upshur has argued previously that the “dispute between the proponents of clinical common sense and evidence-based medicine can likely find common ground in the philosophy of C.S. Peirce” ( 1903 ). He advised that “circumspection must accompany the use of statistical models in clinical reasoning” and claimed that Peirce’s logic provides “a promising framework in which to develop a theory of clinical reasoning that is both rigorous and probabilistic, [while also being] able to recognize the uncertainties and particularities of day-to-day clinical practice” (1997, p. 205). He did not develop, however, a detailed account of this theory of clinical reasoning. In an article on the selective stage of diagnostic reasoning (Stanley and Campos 2015 ), we built on Upshur’s position, and developed one important aspect of a logical account of clinical reasoning by expounding the theory and illustrating the practice of diagnosis selection. In this diagnostic process, clinicians must have recourse to a variety of logical strategies in which clinical acumen, insight, and experience play a central role to guide statistical, economic, and other considerations.

We have discussed each of these methods in more depth, with several detailed illustrations, in (Stanley and Campos 2015 ).

See (Campos 2011 ) for one explanation and references to further relevant literature.

For the classical exposition, see (Hempel 1966 ).

For an exposition of how this process works semiotically—that is, by the creation of mental signs such as pictures, diagrams, schemata, and so on—see (Silveira 2005 ).

For a thorough presentation of prevalence and predictive value, see (Galen and Gambino 1975 , pp. 167–264).

Black ER, Bordley DR, Tape TG, Panzer RJ (1999) Diagnostic strategies for common medical problems, 2nd edn. American College of Physicians, Philadelphia

Google Scholar  

Campos DG (2011) On the distinction between Peirce’s abduction and Lipton’s inference to the best explanation. Synthese 180(3):419–442

Article   Google Scholar  

Festa R, Cevolani G (2017) Unfolding the grammar of bayesian confirmation: likelihood and antililkelihood principles. Philos Sci 84(1):56–81

Galen RS, Gambino SR (1975) Beyond normality: the predictive value and efficiency of medical diagnoses. Wiley, New York

Hamm RM (1999) Clinical decision making calculators http://www.fammed.ouhsc.edu/robhamm/cdmcalc.htm . Accessed 30 Aug 2017

Hamm RM, Beasley WH (2014) The balance beam metaphor: a perspective on clinical diagnosis. Med Decis Making 34(7):841–853

Hempel C (1966) Philosophy of natural science. Prentice Hall, Upper Saddle River

Lipton P (1991) Inference to the best explanation. Routledge, New York

Book   Google Scholar  

Lipton P (2004) Contrastive inference. In: Inference to the best explanation, 2nd edn. Routledge, New York, pp 71–90

Minnamaier G (2004) Peirce-suit of truth-why interference to the best explanation and abduction ought not to be confused. Erkenntnis 60:75–105

Paavola S (2006) Hansonian and Harmanian abduction as models of discovery. Int Stud Philos Sci 20(1):93–108

Peirce CS (1903) The nature of meaning in collected papers of Peirce CS, Weiss P, Burks A (eds), Harvard University Press, Cambridge, MA, pp 151–179

Peirce CS (1998) The essential Peirce: selected philosophical writings, vol 2. Indiana University Press, Indianapolis

Sehon S, Stanley DE (2003) A philosophical analysis of the evidence-based medicine debate. BMC Health Serv Res 3:14. https://doi.org/10.1186/1472-6963-3-14

Semigran HL, Levine DM, Nundy S, Mehrotra A (2016) Comparison of physician and computer diagnostic accuracy. JAMA Intern Med. 176(12):1860–1861

Silveira L (2005) Análise semiótica da diagnose médica. Cognitio: Revista de Filosofia 6(1):94–101

Stanley DE, Campos DG (2013) The logic of medical diagnosis. Perspect Biol Med 56(2):300–315

Stanley DE, Campos DG (2015) Selecting clinical diagnoses: logical strategies informed by experience. J Eval Clin Pract 22(4):588–597

Tversky A, Kahneman D (1974) Judgment under uncertainty heuristics and biases. Science 185:1124–1131

Tversky A, Kahneman D (1982) The framing of decisions and the psychology of choice. Science 211(4481):453–458

Upshur R (1997) Certainty, probability and abduction: why we should look to C.S. Peirce rather than Gödel for a theory of clinical reasoning. J Eval Clin Pract 3(3):201–206

Vecchio TJ (1996) Predictive value of a single clinical diagnostic test in unselected populations. NEJM 274(21):1171–1173

Wulff HR, Gøtzsche PC (2000) Rational diagnosis and treatment: evidence-based clinical decision-making, 3rd edn. Wiley-Blackwell, New York

Download references

Author information

Authors and affiliations.

Department of Pathology, Maine Medical Center, Portland, ME, USA

Donald E. Stanley

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Donald E. Stanley .

Rights and permissions

Reprints and permissions

About this article

Stanley, D.E. The Logic of Medical Diagnosis: Generating and Selecting Hypotheses. Topoi 38 , 437–446 (2019). https://doi.org/10.1007/s11245-017-9516-2

Download citation

Published : 06 October 2017

Issue Date : 15 June 2019

DOI : https://doi.org/10.1007/s11245-017-9516-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Decision-making
  • Observation
  • Find a journal
  • Publish with us
  • Track your research

Hypothesis n., plural: hypotheses [/haɪˈpɑːθəsɪs/] Definition: Testable scientific prediction

Table of Contents

What Is Hypothesis?

A scientific hypothesis is a foundational element of the scientific method . It’s a testable statement proposing a potential explanation for natural phenomena. The term hypothesis means “little theory” . A hypothesis is a short statement that can be tested and gives a possible reason for a phenomenon or a possible link between two variables . In the setting of scientific research, a hypothesis is a tentative explanation or statement that can be proven wrong and is used to guide experiments and empirical research.

It is an important part of the scientific method because it gives a basis for planning tests, gathering data, and judging evidence to see if it is true and could help us understand how natural things work. Several hypotheses can be tested in the real world, and the results of careful and systematic observation and analysis can be used to support, reject, or improve them.

Researchers and scientists often use the word hypothesis to refer to this educated guess . These hypotheses are firmly established based on scientific principles and the rigorous testing of new technology and experiments .

For example, in astrophysics, the Big Bang Theory is a working hypothesis that explains the origins of the universe and considers it as a natural phenomenon. It is among the most prominent scientific hypotheses in the field.

“The scientific method: steps, terms, and examples” by Scishow:

Biology definition: A hypothesis  is a supposition or tentative explanation for (a group of) phenomena, (a set of) facts, or a scientific inquiry that may be tested, verified or answered by further investigation or methodological experiment. It is like a scientific guess . It’s an idea or prediction that scientists make before they do experiments. They use it to guess what might happen and then test it to see if they were right. It’s like a smart guess that helps them learn new things. A scientific hypothesis that has been verified through scientific experiment and research may well be considered a scientific theory .

Etymology: The word “hypothesis” comes from the Greek word “hupothesis,” which means “a basis” or “a supposition.” It combines “hupo” (under) and “thesis” (placing). Synonym:   proposition; assumption; conjecture; postulate Compare:   theory See also: null hypothesis

Characteristics Of Hypothesis

A useful hypothesis must have the following qualities:

  • It should never be written as a question.
  • You should be able to test it in the real world to see if it’s right or wrong.
  • It needs to be clear and exact.
  • It should list the factors that will be used to figure out the relationship.
  • It should only talk about one thing. You can make a theory in either a descriptive or form of relationship.
  • It shouldn’t go against any natural rule that everyone knows is true. Verification will be done well with the tools and methods that are available.
  • It should be written in as simple a way as possible so that everyone can understand it.
  • It must explain what happened to make an answer necessary.
  • It should be testable in a fair amount of time.
  • It shouldn’t say different things.

Sources Of Hypothesis

Sources of hypothesis are:

  • Patterns of similarity between the phenomenon under investigation and existing hypotheses.
  • Insights derived from prior research, concurrent observations, and insights from opposing perspectives.
  • The formulations are derived from accepted scientific theories and proposed by researchers.
  • In research, it’s essential to consider hypothesis as different subject areas may require various hypotheses (plural form of hypothesis). Researchers also establish a significance level to determine the strength of evidence supporting a hypothesis.
  • Individual cognitive processes also contribute to the formation of hypotheses.

One hypothesis is a tentative explanation for an observation or phenomenon. It is based on prior knowledge and understanding of the world, and it can be tested by gathering and analyzing data. Observed facts are the data that are collected to test a hypothesis. They can support or refute the hypothesis.

For example, the hypothesis that “eating more fruits and vegetables will improve your health” can be tested by gathering data on the health of people who eat different amounts of fruits and vegetables. If the people who eat more fruits and vegetables are healthier than those who eat less fruits and vegetables, then the hypothesis is supported.

Hypotheses are essential for scientific inquiry. They help scientists to focus their research, to design experiments, and to interpret their results. They are also essential for the development of scientific theories.

Types Of Hypothesis

In research, you typically encounter two types of hypothesis: the alternative hypothesis (which proposes a relationship between variables) and the null hypothesis (which suggests no relationship).

Simple Hypothesis

It illustrates the association between one dependent variable and one independent variable. For instance, if you consume more vegetables, you will lose weight more quickly. Here, increasing vegetable consumption is the independent variable, while weight loss is the dependent variable.

Complex Hypothesis

It exhibits the relationship between at least two dependent variables and at least two independent variables. Eating more vegetables and fruits results in weight loss, radiant skin, and a decreased risk of numerous diseases, including heart disease.

Directional Hypothesis

It shows that a researcher wants to reach a certain goal. The way the factors are related can also tell us about their nature. For example, four-year-old children who eat well over a time of five years have a higher IQ than children who don’t eat well. This shows what happened and how it happened.

Non-directional Hypothesis

When there is no theory involved, it is used. It is a statement that there is a connection between two variables, but it doesn’t say what that relationship is or which way it goes.

Null Hypothesis

It says something that goes against the theory. It’s a statement that says something is not true, and there is no link between the independent and dependent factors. “H 0 ” represents the null hypothesis.

Associative and Causal Hypothesis

When a change in one variable causes a change in the other variable, this is called the associative hypothesis . The causal hypothesis, on the other hand, says that there is a cause-and-effect relationship between two or more factors.

Examples Of Hypothesis

Examples of simple hypotheses:

  • Students who consume breakfast before taking a math test will have a better overall performance than students who do not consume breakfast.
  • Students who experience test anxiety before an English examination will get lower scores than students who do not experience test anxiety.
  • Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone, is a statement that suggests that drivers who talk on the phone while driving are more likely to make mistakes.

Examples of a complex hypothesis:

  • Individuals who consume a lot of sugar and don’t get much exercise are at an increased risk of developing depression.
  • Younger people who are routinely exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces, according to a new study.
  • Increased levels of air pollution led to higher rates of respiratory illnesses, which in turn resulted in increased costs for healthcare for the affected communities.

Examples of Directional Hypothesis:

  • The crop yield will go up a lot if the amount of fertilizer is increased.
  • Patients who have surgery and are exposed to more stress will need more time to get better.
  • Increasing the frequency of brand advertising on social media will lead to a significant increase in brand awareness among the target audience.

Examples of Non-Directional Hypothesis (or Two-Tailed Hypothesis):

  • The test scores of two groups of students are very different from each other.
  • There is a link between gender and being happy at work.
  • There is a correlation between the amount of caffeine an individual consumes and the speed with which they react.

Examples of a null hypothesis:

  • Children who receive a new reading intervention will have scores that are different than students who do not receive the intervention.
  • The results of a memory recall test will not reveal any significant gap in performance between children and adults.
  • There is not a significant relationship between the number of hours spent playing video games and academic performance.

Examples of Associative Hypothesis:

  • There is a link between how many hours you spend studying and how well you do in school.
  • Drinking sugary drinks is bad for your health as a whole.
  • There is an association between socioeconomic status and access to quality healthcare services in urban neighborhoods.

Functions Of Hypothesis

The research issue can be understood better with the help of a hypothesis, which is why developing one is crucial. The following are some of the specific roles that a hypothesis plays: (Rashid, Apr 20, 2022)

  • A hypothesis gives a study a point of concentration. It enlightens us as to the specific characteristics of a study subject we need to look into.
  • It instructs us on what data to acquire as well as what data we should not collect, giving the study a focal point .
  • The development of a hypothesis improves objectivity since it enables the establishment of a focal point.
  • A hypothesis makes it possible for us to contribute to the development of the theory. Because of this, we are in a position to definitively determine what is true and what is untrue .

How will Hypothesis help in the Scientific Method?

  • The scientific method begins with observation and inquiry about the natural world when formulating research questions. Researchers can refine their observations and queries into specific, testable research questions with the aid of hypothesis. They provide an investigation with a focused starting point.
  • Hypothesis generate specific predictions regarding the expected outcomes of experiments or observations. These forecasts are founded on the researcher’s current knowledge of the subject. They elucidate what researchers anticipate observing if the hypothesis is true.
  • Hypothesis direct the design of experiments and data collection techniques. Researchers can use them to determine which variables to measure or manipulate, which data to obtain, and how to conduct systematic and controlled research.
  • Following the formulation of a hypothesis and the design of an experiment, researchers collect data through observation, measurement, or experimentation. The collected data is used to verify the hypothesis’s predictions.
  • Hypothesis establish the criteria for evaluating experiment results. The observed data are compared to the predictions generated by the hypothesis. This analysis helps determine whether empirical evidence supports or refutes the hypothesis.
  • The results of experiments or observations are used to derive conclusions regarding the hypothesis. If the data support the predictions, then the hypothesis is supported. If this is not the case, the hypothesis may be revised or rejected, leading to the formulation of new queries and hypothesis.
  • The scientific approach is iterative, resulting in new hypothesis and research issues from previous trials. This cycle of hypothesis generation, testing, and refining drives scientific progress.

Importance Of Hypothesis

  • Hypothesis are testable statements that enable scientists to determine if their predictions are accurate. This assessment is essential to the scientific method, which is based on empirical evidence.
  • Hypothesis serve as the foundation for designing experiments or data collection techniques. They can be used by researchers to develop protocols and procedures that will produce meaningful results.
  • Hypothesis hold scientists accountable for their assertions. They establish expectations for what the research should reveal and enable others to assess the validity of the findings.
  • Hypothesis aid in identifying the most important variables of a study. The variables can then be measured, manipulated, or analyzed to determine their relationships.
  • Hypothesis assist researchers in allocating their resources efficiently. They ensure that time, money, and effort are spent investigating specific concerns, as opposed to exploring random concepts.
  • Testing hypothesis contribute to the scientific body of knowledge. Whether or not a hypothesis is supported, the results contribute to our understanding of a phenomenon.
  • Hypothesis can result in the creation of theories. When supported by substantive evidence, hypothesis can serve as the foundation for larger theoretical frameworks that explain complex phenomena.
  • Beyond scientific research, hypothesis play a role in the solution of problems in a variety of domains. They enable professionals to make educated assumptions about the causes of problems and to devise solutions.

Research Hypotheses: Did you know that a hypothesis refers to an educated guess or prediction about the outcome of a research study?

It’s like a roadmap guiding researchers towards their destination of knowledge. Just like a compass points north, a well-crafted hypothesis points the way to valuable discoveries in the world of science and inquiry.

Choose the best answer. 

Send Your Results (Optional)

Further reading.

  • RNA-DNA World Hypothesis
  • BYJU’S. (2023). Hypothesis. Retrieved 01 Septermber 2023, from https://byjus.com/physics/hypothesis/#sources-of-hypothesis
  • Collegedunia. (2023). Hypothesis. Retrieved 1 September 2023, from https://collegedunia.com/exams/hypothesis-science-articleid-7026#d
  • Hussain, D. J. (2022). Hypothesis. Retrieved 01 September 2023, from https://mmhapu.ac.in/doc/eContent/Management/JamesHusain/Research%20Hypothesis%20-Meaning,%20Nature%20&%20Importance-Characteristics%20of%20Good%20%20Hypothesis%20Sem2.pdf
  • Media, D. (2023). Hypothesis in the Scientific Method. Retrieved 01 September 2023, from https://www.verywellmind.com/what-is-a-hypothesis-2795239#toc-hypotheses-examples
  • Rashid, M. H. A. (Apr 20, 2022). Research Methodology. Retrieved 01 September 2023, from https://limbd.org/hypothesis-definitions-functions-characteristics-types-errors-the-process-of-testing-a-hypothesis-hypotheses-in-qualitative-research/#:~:text=Functions%20of%20a%20Hypothesis%3A&text=Specifically%2C%20a%20hypothesis%20serves%20the,providing%20focus%20to%20the%20study.

©BiologyOnline.com. Content provided and moderated by Biology Online Editors.

Last updated on September 8th, 2023

You will also like...

Gene action – operon hypothesis, water in plants, growth and plant hormones, sigmund freud and carl gustav jung, population growth and survivorship, related articles....

RNA-DNA World Hypothesis?

On Mate Selection Evolution: Are intelligent males more attractive?

Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use

Dead Man Walking

Frequently asked questions

What is the definition of a hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a ‘cross-section’) in the population
Follows in participants over time Provides of society at a given point

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

Types of editing Available at Scribbr?


This is the “proofreading” in Scribbr’s standard service. It can only be selected in combination with editing.


This is the “editing” in Scribbr’s standard service. It can only be selected in combination with proofreading.


Select the Structure Check and Clarity Check to receive a comprehensive edit equivalent to a line edit.


This kind of editing involves heavy rewriting and restructuring. Our editors cannot help with this.

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between four deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.19(7); 2019 Jul

Hypothesis tests

Associated data.

  • • Hypothesis tests are used to assess whether a difference between two samples represents a real difference between the populations from which the samples were taken.
  • • A null hypothesis of ‘no difference’ is taken as a starting point, and we calculate the probability that both sets of data came from the same population. This probability is expressed as a p -value.
  • • When the null hypothesis is false, p- values tend to be small. When the null hypothesis is true, any p- value is equally likely.

Learning objectives

By reading this article, you should be able to:

  • • Explain why hypothesis testing is used.
  • • Use a table to determine which hypothesis test should be used for a particular situation.
  • • Interpret a p- value.

A hypothesis test is a procedure used in statistics to assess whether a particular viewpoint is likely to be true. They follow a strict protocol, and they generate a ‘ p- value’, on the basis of which a decision is made about the truth of the hypothesis under investigation. All of the routine statistical ‘tests’ used in research— t- tests, χ 2 tests, Mann–Whitney tests, etc.—are all hypothesis tests, and in spite of their differences they are all used in essentially the same way. But why do we use them at all?

Comparing the heights of two individuals is easy: we can measure their height in a standardised way and compare them. When we want to compare the heights of two small well-defined groups (for example two groups of children), we need to use a summary statistic that we can calculate for each group. Such summaries (means, medians, etc.) form the basis of descriptive statistics, and are well described elsewhere. 1 However, a problem arises when we try to compare very large groups or populations: it may be impractical or even impossible to take a measurement from everyone in the population, and by the time you do so, the population itself will have changed. A similar problem arises when we try to describe the effects of drugs—for example by how much on average does a particular vasopressor increase MAP?

To solve this problem, we use random samples to estimate values for populations. By convention, the values we calculate from samples are referred to as statistics and denoted by Latin letters ( x ¯ for sample mean; SD for sample standard deviation) while the unknown population values are called parameters , and denoted by Greek letters (μ for population mean, σ for population standard deviation).

Inferential statistics describes the methods we use to estimate population parameters from random samples; how we can quantify the level of inaccuracy in a sample statistic; and how we can go on to use these estimates to compare populations.

Sampling error

There are many reasons why a sample may give an inaccurate picture of the population it represents: it may be biased, it may not be big enough, and it may not be truly random. However, even if we have been careful to avoid these pitfalls, there is an inherent difference between the sample and the population at large. To illustrate this, let us imagine that the actual average height of males in London is 174 cm. If I were to sample 100 male Londoners and take a mean of their heights, I would be very unlikely to get exactly 174 cm. Furthermore, if somebody else were to perform the same exercise, it would be unlikely that they would get the same answer as I did. The sample mean is different each time it is taken, and the way it differs from the actual mean of the population is described by the standard error of the mean (standard error, or SEM ). The standard error is larger if there is a lot of variation in the population, and becomes smaller as the sample size increases. It is calculated thus:

where SD is the sample standard deviation, and n is the sample size.

As errors are normally distributed, we can use this to estimate a 95% confidence interval on our sample mean as follows:

We can interpret this as meaning ‘We are 95% confident that the actual mean is within this range.’

Some confusion arises at this point between the SD and the standard error. The SD is a measure of variation in the sample. The range x ¯ ± ( 1.96 × SD ) will normally contain 95% of all your data. It can be used to illustrate the spread of the data and shows what values are likely. In contrast, standard error tells you about the precision of the mean and is used to calculate confidence intervals.

One straightforward way to compare two samples is to use confidence intervals. If we calculate the mean height of two groups and find that the 95% confidence intervals do not overlap, this can be taken as evidence of a difference between the two means. This method of statistical inference is reasonably intuitive and can be used in many situations. 2 Many journals, however, prefer to report inferential statistics using p -values.

Inference testing using a null hypothesis

In 1925, the British statistician R.A. Fisher described a technique for comparing groups using a null hypothesis , a method which has dominated statistical comparison ever since. The technique itself is rather straightforward, but often gets lost in the mechanics of how it is done. To illustrate, imagine we want to compare the HR of two different groups of people. We take a random sample from each group, which we call our data. Then:

  • (i) Assume that both samples came from the same group. This is our ‘null hypothesis’.
  • (ii) Calculate the probability that an experiment would give us these data, assuming that the null hypothesis is true. We express this probability as a p- value, a number between 0 and 1, where 0 is ‘impossible’ and 1 is ‘certain’.
  • (iii) If the probability of the data is low, we reject the null hypothesis and conclude that there must be a difference between the two groups.

Formally, we can define a p- value as ‘the probability of finding the observed result or a more extreme result, if the null hypothesis were true.’ Standard practice is to set a cut-off at p <0.05 (this cut-off is termed the alpha value). If the null hypothesis were true, a result such as this would only occur 5% of the time or less; this in turn would indicate that the null hypothesis itself is unlikely. Fisher described the process as follows: ‘Set a low standard of significance at the 5 per cent point, and ignore entirely all results which fail to reach this level. A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance.’ 3 This probably remains the most succinct description of the procedure.

A question which often arises at this point is ‘Why do we use a null hypothesis?’ The simple answer is that it is easy: we can readily describe what we would expect of our data under a null hypothesis, we know how data would behave, and we can readily work out the probability of getting the result that we did. It therefore makes a very simple starting point for our probability assessment. All probabilities require a set of starting conditions, in much the same way that measuring the distance to London needs a starting point. The null hypothesis can be thought of as an easy place to put the start of your ruler.

If a null hypothesis is rejected, an alternate hypothesis must be adopted in its place. The null and alternate hypotheses must be mutually exclusive, but must also between them describe all situations. If a null hypothesis is ‘no difference exists’ then the alternate should be simply ‘a difference exists’.

Hypothesis testing in practice

The components of a hypothesis test can be readily described using the acronym GOST: identify the Groups you wish to compare; define the Outcome to be measured; collect and Summarise the data; then evaluate the likelihood of the null hypothesis, using a Test statistic .

When considering groups, think first about how many. Is there just one group being compared against an audit standard, or are you comparing one group with another? Some studies may wish to compare more than two groups. Another situation may involve a single group measured at different points in time, for example before or after a particular treatment. In this situation each participant is compared with themselves, and this is often referred to as a ‘paired’ or a ‘repeated measures’ design. It is possible to combine these types of groups—for example a researcher may measure arterial BP on a number of different occasions in five different groups of patients. Such studies can be difficult, both to analyse and interpret.

In other studies we may want to see how a continuous variable (such as age or height) affects the outcomes. These techniques involve regression analysis, and are beyond the scope of this article.

The outcome measures are the data being collected. This may be a continuous measure, such as temperature or BMI, or it may be a categorical measure, such as ASA status or surgical specialty. Often, inexperienced researchers will strive to collect lots of outcome measures in an attempt to find something that differs between the groups of interest; if this is done, a ‘primary outcome measure’ should be identified before the research begins. In addition, the results of any hypothesis tests will need to be corrected for multiple measures.

The summary and the test statistic will be defined by the type of data that have been collected. The test statistic is calculated then transformed into a p- value using tables or software. It is worth looking at two common tests in a little more detail: the χ 2 test, and the t -test.

Categorical data: the χ 2 test

The χ 2 test of independence is a test for comparing categorical outcomes in two or more groups. For example, a number of trials have compared surgical site infections in patients who have been given different concentrations of oxygen perioperatively. In the PROXI trial, 4 685 patients received oxygen 80%, and 701 patients received oxygen 30%. In the 80% group there were 131 infections, while in the 30% group there were 141 infections. In this study, the groups were oxygen 80% and oxygen 30%, and the outcome measure was the presence of a surgical site infection.

The summary is a table ( Table 1 ), and the hypothesis test compares this table (the ‘observed’ table) with the table that would be expected if the proportion of infections in each group was the same (the ‘expected’ table). The test statistic is χ 2 , from which a p- value is calculated. In this instance the p -value is 0.64, which means that results like this would occur 64% of the time if the null hypothesis were true. We thus have no evidence to reject the null hypothesis; the observed difference probably results from sampling variation rather than from an inherent difference between the two groups.

Table 1

Summary of the results of the PROXI trial. Figures are numbers of patients.

Group
Oxygen 80%Oxygen 30%
OutcomeInfection131141
No infection554560
Total685701

Continuous data: the t- test

The t- test is a statistical method for comparing means, and is one of the most widely used hypothesis tests. Imagine a study where we try to see if there is a difference in the onset time of a new neuromuscular blocking agent compared with suxamethonium. We could enlist 100 volunteers, give them a general anaesthetic, and randomise 50 of them to receive the new drug and 50 of them to receive suxamethonium. We then time how long it takes (in seconds) to have ideal intubation conditions, as measured by a quantitative nerve stimulator. Our data are therefore a list of times. In this case, the groups are ‘new drug’ and suxamethonium, and the outcome is time, measured in seconds. This can be summarised by using means; the hypothesis test will compare the means of the two groups, using a p- value calculated from a ‘ t statistic’. Hopefully it is becoming obvious at this point that the test statistic is usually identified by a letter, and this letter is often cited in the name of the test.

The t -test comes in a number of guises, depending on the comparison being made. A single sample can be compared with a standard (Is the BMI of school leavers in this town different from the national average?); two samples can be compared with each other, as in the example above; or the same study subjects can be measured at two different times. The latter case is referred to as a paired t- test, because each participant provides a pair of measurements—such as in a pre- or postintervention study.

A large number of methods for testing hypotheses exist; the commonest ones and their uses are described in Table 2 . In each case, the test can be described by detailing the groups being compared ( Table 2 , columns) the outcome measures (rows), the summary, and the test statistic. The decision to use a particular test or method should be made during the planning stages of a trial or experiment. At this stage, an estimate needs to be made of how many test subjects will be needed. Such calculations are described in detail elsewhere. 5

Table 2

The principle types of hypothesis test. Tests comparing more than two samples can indicate that one group differs from the others, but will not identify which. Subsequent ‘post hoc’ testing is required if a difference is found.

Type of dataNumber of groups
1 (comparison with a standard)1 (before and after)2More than 2Measured over a continuous range
CategoricalBinomial testMcNemar's testχ test, or Fisher's exact (2×2 tables), or comparison of proportionsχ testLogistic regression


Continuous (normal)One-sample -testPaired -testIndependent samples -testAnalysis of variance (ANOVA)Regression analysis, correlation


Continuous (non-parametric)Sign test (for median)Sign test, or Wilcoxon matched-pairs testMann–Whitney testKruskal–Wallis testSpearman's rank correlation

Controversies surrounding hypothesis testing

Although hypothesis tests have been the basis of modern science since the middle of the 20th century, they have been plagued by misconceptions from the outset; this has led to what has been described as a crisis in science in the last few years: some journals have gone so far as to ban p -value s outright. 6 This is not because of any flaw in the concept of a p -value, but because of a lack of understanding of what they mean.

Possibly the most pervasive misunderstanding is the belief that the p- value is the chance that the null hypothesis is true, or that the p- value represents the frequency with which you will be wrong if you reject the null hypothesis (i.e. claim to have found a difference). This interpretation has frequently made it into the literature, and is a very easy trap to fall into when discussing hypothesis tests. To avoid this, it is important to remember that the p- value is telling us something about our sample , not about the null hypothesis. Put in simple terms, we would like to know the probability that the null hypothesis is true, given our data. The p- value tells us the probability of getting these data if the null hypothesis were true, which is not the same thing. This fallacy is referred to as ‘flipping the conditional’; the probability of an outcome under certain conditions is not the same as the probability of those conditions given that the outcome has happened.

A useful example is to imagine a magic trick in which you select a card from a normal deck of 52 cards, and the performer reveals your chosen card in a surprising manner. If the performer were relying purely on chance, this would only happen on average once in every 52 attempts. On the basis of this, we conclude that it is unlikely that the magician is simply relying on chance. Although simple, we have just performed an entire hypothesis test. We have declared a null hypothesis (the performer was relying on chance); we have even calculated a p -value (1 in 52, ≈0.02); and on the basis of this low p- value we have rejected our null hypothesis. We would, however, be wrong to suggest that there is a probability of 0.02 that the performer is relying on chance—that is not what our figure of 0.02 is telling us.

To explore this further we can create two populations, and watch what happens when we use simulation to take repeated samples to compare these populations. Computers allow us to do this repeatedly, and to see what p- value s are generated (see Supplementary online material). 7 Fig 1 illustrates the results of 100,000 simulated t -tests, generated in two set of circumstances. In Fig 1 a , we have a situation in which there is a difference between the two populations. The p- value s cluster below the 0.05 cut-off, although there is a small proportion with p >0.05. Interestingly, the proportion of comparisons where p <0.05 is 0.8 or 80%, which is the power of the study (the sample size was specifically calculated to give a power of 80%).

Figure 1

The p- value s generated when 100,000 t -tests are used to compare two samples taken from defined populations. ( a ) The populations have a difference and the p- value s are mostly significant. ( b ) The samples were taken from the same population (i.e. the null hypothesis is true) and the p- value s are distributed uniformly.

Figure 1 b depicts the situation where repeated samples are taken from the same parent population (i.e. the null hypothesis is true). Somewhat surprisingly, all p- value s occur with equal frequency, with p <0.05 occurring exactly 5% of the time. Thus, when the null hypothesis is true, a type I error will occur with a frequency equal to the alpha significance cut-off.

Figure 1 highlights the underlying problem: when presented with a p -value <0.05, is it possible with no further information, to determine whether you are looking at something from Fig 1 a or Fig 1 b ?

Finally, it cannot be stressed enough that although hypothesis testing identifies whether or not a difference is likely, it is up to us as clinicians to decide whether or not a statistically significant difference is also significant clinically.

Hypothesis testing: what next?

As mentioned above, some have suggested moving away from p -values, but it is not entirely clear what we should use instead. Some sources have advocated focussing more on effect size; however, without a measure of significance we have merely returned to our original problem: how do we know that our difference is not just a result of sampling variation?

One solution is to use Bayesian statistics. Up until very recently, these techniques have been considered both too difficult and not sufficiently rigorous. However, recent advances in computing have led to the development of Bayesian equivalents of a number of standard hypothesis tests. 8 These generate a ‘Bayes Factor’ (BF), which tells us how more (or less) likely the alternative hypothesis is after our experiment. A BF of 1.0 indicates that the likelihood of the alternate hypothesis has not changed. A BF of 10 indicates that the alternate hypothesis is 10 times more likely than we originally thought. A number of classifications for BF exist; greater than 10 can be considered ‘strong evidence’, while BF greater than 100 can be classed as ‘decisive’.

Figures such as the BF can be quoted in conjunction with the traditional p- value, but it remains to be seen whether they will become mainstream.

Declaration of interest

The author declares that they have no conflict of interest.

The associated MCQs (to support CME/CPD activity) will be accessible at www.bjaed.org/cme/home by subscribers to BJA Education .

Jason Walker FRCA FRSS BSc (Hons) Math Stat is a consultant anaesthetist at Ysbyty Gwynedd Hospital, Bangor, Wales, and an honorary senior lecturer at Bangor University. He is vice chair of his local research ethics committee, and an examiner for the Primary FRCA.

Matrix codes: 1A03, 2A04, 3J03

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bjae.2019.03.006 .

Supplementary material

The following is the Supplementary data to this article:

Library Home

Medical Terminology for Healthcare Professions

(12 reviews)

medical terminology hypothesis definition

Andrea M. Nelson, University of West Florida

Katherine Greene, University of West Florida

Copyright Year: 2021

Publisher: University of West Florida Pressbooks

Language: English

Formats Available

Conditions of use.

Attribution

Learn more about reviews.

Reviewed by Carolina Molina-Martin, Adjunct Faculty, Old Dominion University on 6/16/24

This book is comprehensive and informative. In addition to a Table of Contents that provides a breakdown of each of the 18 chapters, a Glossary follows the Table of Contents. Glossary terms are bolded in green and their definitions can be found in... read more

Comprehensiveness rating: 5 see less

This book is comprehensive and informative. In addition to a Table of Contents that provides a breakdown of each of the 18 chapters, a Glossary follows the Table of Contents. Glossary terms are bolded in green and their definitions can be found in the glossary at the end of the book.

Content Accuracy rating: 5

The content is very accurate, . It is non biased, and inclusive. The chapters are very thorough and well-written. There are no glaring errors.

Relevance/Longevity rating: 5

The information presented in the text is relevant and is not information that will become outdated, as it is focused on medical terminology.

Clarity rating: 5

The book is written in very accessible language. Terms are presented with appropriate depth and clarity. Each chapter opens with a list of word parts (prefixes, combining forms, and suffixes) related to the topic. References are included with each chapter.

Consistency rating: 5

The terminology and framework are consistent, Interactive content is built into each chapter. The structure of each chapter is consistent throughout. It starts with learning objectives.

Modularity rating: 5

The book is easy to read. It is written with well defined chapters broken into manageable paragraphs.

Organization/Structure/Flow rating: 5

Extremely well organized. The order of presentation is overall logical and clear. Pertinent information for the topic of the chapter is covered.

Interface rating: 5

The interactive reinforcement activities require you to click, drag and drop, listen and repeat, flip, and test yourself. No issues were found with the features of the text. The interface is user-friendly, No problems with navigation.

Grammatical Errors rating: 5

No glaring errors.

Cultural Relevance rating: 5

The text is not culturally insensitive.

This OER book is different from many traditional medical terminology textbooks. Kudos to the authors for all of their hard work on creating such a wonderful book. This resource will serve well future healthcare students and any healthcare profession.

Reviewed by Judith Guetzow, Lecturer II, University of Texas Rio Grande Valley on 5/22/24

The text offers comprehensive coverage of medical terminology for healthcare professions, presenting terms with appropriate depth and clarity. Each chapter opens with a list of word parts (prefixes, combining forms, and suffixes) related to the... read more

The text offers comprehensive coverage of medical terminology for healthcare professions, presenting terms with appropriate depth and clarity. Each chapter opens with a list of word parts (prefixes, combining forms, and suffixes) related to the topic. Medical terms are prominently displayed in bold green font throughout the chapters, and a useful glossary is provided in the book, aiding students in quickly locating relevant vocabulary. Furthermore, at the end of each body system chapter, a vocabulary list is included, featuring terms associated with that specific system.

The content is accurate, error-free, unbiased, and reflects the latest developments in the field; thus, providing students with reliable information essential for their understanding of medical terminology.

The content is current, ensuring students learn terminology that reflects existing practices. The authors provide a balance between current information and the established principles of medical terminology, ensuring the text remains relevant without quickly becoming obsolete. Its structured format allows for easy updates as medical terminology evolves.

Written in clear and accessible prose, the text provides explanations and context for technical terms, making it suitable for students at all proficiency levels and enhancing overall clarity.

Consistency is maintained throughout the text in both terminology and framework; thus, contributing to its reliability and lucidity. This is conducive to improving students’ comprehension and retention of the medical terms.

The modularity of the text facilitates flexible teaching approaches. The text is organized into eighteen chapters that can be further divided into reduced sections, allowing instructors to assign smaller reading sections without disrupting the flow of the material.

The topics in the text are presented in a logical, clear fashion guiding students through progressively more complex concepts in a clear and discerning manner. As students advance through each body system, they learn the corresponding medical terms, the word parts that form these terms, and the relevant abbreviations specific to each system.

The interface of the textbook is user-friendly, free of significant navigation issues or display problems that could hinder the learning experience. There is a clear presentation of images and charts which enhances the learning experience. Each chapter integrates interactive content such as videos, flashcards, drag-and-drop exercises, and self-tests that are exclusive to the online format. Hyperlinks to the interactive content are provided to users of PDF or EPUB versions of the text. This content was accessible to a diverse range of learners, with closed captioning provided for the videos, and no errors were detected in the captions. Additionally, image descriptions were included for each picture. A minor concern is that certain flashcards lacked the text-to-speech feature.

No grammatical errors were found. The text is grammatically sound and written at a level appropriate for the students, ensuring readability.

The material is free from inappropriate or offensive content.

Overall, the authors created a comprehensive textbook that provides a thorough understanding of medical terminology relating to body systems and pathology, diagnostics, and medical procedures. It would be wonderful if PowerPoints, test banks, and assignments as learning exercises that require students to break down the terms into word parts were included in each chapter. However, I found reading the text and engaging with the interactive activities enjoyable. Reviewing this material has been valuable, as it has piqued my interest in potentially using it for my medical terminology class in the near future.

Reviewed by Gary McIlvain, Professor, Marshall University on 5/21/24

It covers the information very well. It tends to become an anatomy textbook too much. read more

It covers the information very well. It tends to become an anatomy textbook too much.

The accuracy was on par. Again, too much "anatomy book" context for med term.

With anatomy and medical terminology, it rarely changes. So, the text longevity would be good.

The ease of reading the text is great and students would be able to follow it well. It seems to become a better anatomy text than medical terminology or maybe the title should be "applied medical terminology" and it state it focuses on applying it within anatomy.

Yes, but more anatomy textbook than I would use for a med term class.

It is divided by systems, which is a common way to organize a medical terminology text.

It does do a good job applying it to common every day issues (e.g. M.S.)

Great use of drag and drop and flash cards.

I didn't note any errors.

Yes, it did use pictures that depicted varying racx3es, ethnicities, and backgrounds. It is limiting in anatomy pictures to be able to do this...

I would like to see basic pharmacology used in it. I would not currently use this as the only text due to the lack of basic pharmacology. With that added it would be a great text.

Reviewed by Jenni Johnson, Assistant Professor, Marshall University on 5/21/24

This book provides appropriate medical terminology for all regions of the body as well as all healthcare disciplines. It is a great asset for any healthcare profession. read more

This book provides appropriate medical terminology for all regions of the body as well as all healthcare disciplines. It is a great asset for any healthcare profession.

I found no mistakes within the textbook.

The book is extremely relevant and it can be utilized for many years across many healthcare professions. This text is also good for a variety of learning styles by utilizing virtual flash cards and videos with audio.

The textbook is clearly and concisely written

Each chapter follows the same format which makes it very easy to navigate.

This book has 18 chapters and they are clearly outlined. Each chapter is broken up into sections that have an excellent flow that builds learning over time.

Each area is clearly defined

Each chapter and learning tool is easy to navigate and there were no technical issues.

I found no grammatical errors in the text.

There was no cultural bias in this text. It was inclusive of all cultures, and genders and free from religious bias.

I believe this text can be used for a wide variety of future healthcare professions. The flashcards, interactive videos and end of chapter quizzes appeal to all learning styles and assist with retention. Each word is broken down to easily understand the meaning and use of the terminology,

Reviewed by Wendy Schuh, Assistant Professor, Minnesota State University Mankato on 2/8/24

This book is clearly laid out with 18 different chapters covering all of the body systems + obstetrics. There are interactive figures, flash cards, and end of chapter quizzes. Vocabulary words have a linked definition within the text. It would be... read more

This book is clearly laid out with 18 different chapters covering all of the body systems + obstetrics. There are interactive figures, flash cards, and end of chapter quizzes. Vocabulary words have a linked definition within the text. It would be an added benefit to include pronunciation, which is an important component of medical terminology. Videos have a captioning option.

No concerns with accuracy.

References are included with each chapter. Publication date is 2021, and most references are within the last five years. In addition, this content is mostly stable over the years. CrashCourse videos are a little older (2015) but many students are familiar with Hank Green in this format. Information is relevant and easy to process.

Clear chapter content, sections, and headings.

Consistent style of writing, activities, page layout, etc. throughout the book.

Chapters organized in a logical manner. Flashcards and interactive body part activities are wonderful tools, even better since they can be completed multiple times.

Organization/Structure/Flow rating: 4

The structure of the textbook is sound and consistent with other medical terminology textbooks. A more thorough Table of Contents would allow for easier navigation. It has a good balance of technical and non-technical writing that makes it easy to read and comprehend.

Interface rating: 3

Appealing and interactive. I attempted to take advantage of the “re-use” option below each activity but could not figure it out. Search function does not work well. I tried searching phrases directly from the text, and it would not pull up. The labeling activities were difficult to complete as the drag and drop feature would not scroll. Therefore, it would be useful to have a correct answer option to see the completed figure. It would be helpful to have descriptions included with different e-book options that explain interactive functions with each format.

Very clean and proofed!

Appeared to be culturally inclusive, although it is difficult to assess in this type of resource. No diverse representation of skin color on diagrams.

This is a great textbook that mimics other medical terminology textbooks costing $100+ that don’t have interactive components. There could be some great additions to more effectively use this for a course textbook, such as a question bank, study guides, and suggestions for worksheets and projects to incorporate points into a course framework.

Reviewed by Sharon Schaeffer, Associate Clinical Professor, Bowling Green State University on 4/16/23

Covers major body systems . read more

Covers major body systems .

I did not see any errors during my review.

Medical terminology is a pretty static topic. When students learn how to correctly combine forms, they will be ready to decipher new vocabulary that comes with progress in health care.

Easy to understand.

The depth of content is consistent.

I will allow students to choose their topic of the week after the first 3 chapters are complete. The module system will work well for this design. This design allows students taking A & P or similar courses the opportunity to learn med term at the same time as they are learning in other courses.

Well organized.

I had no challenges linking to and using the added features.

No problems noted.

Inclusive content.

This book will help my students learn the basics of medical terminology as a foundation for building a strong professional vocabulary. I like the interactive activities in this book as it helps learners of different styles. It would be a bonus if there were quiz question banks available. It is not enough of a deal breaker to stop me from using this in my course next Spring semester.

Reviewed by Kristin Meyer, Professor, Drake University on 12/15/22

The text comprehensively covers medical terms in each body system, with a couple of introductory chapters. It covers the span of life with a dedicated obstetrics chapter, which I have not seen in other texts. read more

The text comprehensively covers medical terms in each body system, with a couple of introductory chapters. It covers the span of life with a dedicated obstetrics chapter, which I have not seen in other texts.

No inaccuracies identified.

Medical terminology does not easily or often change, but the text could be easily updated from time to time to include new disease states or terms.

No issues with clarity identified.

Each chapter has a consistent format with link to video overview and active learning activities interspersed throughout.

The organization by body system allows an instructor to assign the appropriate amount of content to correspond with course credit hours.

The online version is easy to navigate. The search function doesn't work as I would expect it to.

Interface rating: 4

The online version is easy to navigate. The pdf download has none of the interactive features. It would be nice if the pdf version could somehow include the active learning exercises in each chapter, with an answer key appendix.

No grammatical errors identified.

Does not appear to be culturally insensitive.

I could easily adopt this text for my web-instructed undergraduate medical terminology class. The interactive features are helpful to engage students. A summary quiz at the end of each chapter would be a nice added feature.

Reviewed by Nancy Bouchard, Adjunct Professor, North Shore Community College on 11/14/22

Very well done. read more

Very well done.

Very accurate and not biased.

If updates are needed, they could be added with ease.

Well written text.

Very consistent.

Very user friendly. Easy to read and assign chapters.

Very organized.

I did not encounter any issues.

None noticed.

Not insensitive or offensive.

My only concern is for the student who has no prior exposure to medical terminology, healthcare training or will not have a clinical role in healthcare. I would not want them to get overwhelmed by the depth of detail in each chapter. I would suggest a section in each chapter that contains exercises for students to test their understanding of the subject matter read, practice correctly writing the terms and the like. Visual learning is only one way for students to absorb content. I would have to create ways to test their understanding to be graded using quizzes, a research project, midterm and final exam. I'm on the fence if the content in the textbook is too deep for only needing a basic understanding of medical terms.

Reviewed by Martha Fabian-Krause, Adjunct Clinical Instructor, Rogue Community College on 9/1/22

Systematic flow of each body system to include root word, prefix, suffix, anatomy, physiology, video and practice in each section. Logical to follow. read more

Systematic flow of each body system to include root word, prefix, suffix, anatomy, physiology, video and practice in each section. Logical to follow.

No issues noted. Very accurate.

Timeless interpretation of terminology would make the on line text need updating only if new medical information becomes available.

Detailed explanations of terminology, anatomy and physiology with pertinent examples and word practice at the end of each body system.

Each section is consistent by acknowledging medical diseases, disorders, and procedures related to the root words. Good follow through in each body system.

This on line book can be assigned in a particular order relevant to other class material and does not need to be completed in any particular time frame. Pleasurable reading.

The format of each section (body system) is in a progressive fashion and is put together with a video near the beginning and word games at the end of each section. Good sequencing noted throughout.

Charts are easy to navigate. There is an identical format what is easy to assimilate.

None noted.

No diversive issues noted. Represents the full spectrum of human anatomy and physiology.

Marvelous understanding of the root words, prefix, suffix and detailed anatomy and physiology. The videos and word matches at the end of each section put the meaning crystal clear.

Reviewed by Carla Tobin, Faculty, Century College on 6/17/22

This textbook covers all of the body systems, the word parts and rules, and prefixes and suffixes. read more

This textbook covers all of the body systems, the word parts and rules, and prefixes and suffixes.

This book is very accurate. No discrepancies or errors were noted in the textbook.

Medical terminology is a subject that does not change over the years. As new diseases and technologies arise, they can easily be incorporated into the content.

The language used in the book is clear and pronunciations of the terminology is provided throughout the e-book. This is an easy to read book for high school or college level students.

The chapters are consistent in there format and organization throughout the textbook. It is easy to follow for the student.

The chapters are broken down into sections which make it easy to read. The videos are shown within the textbook, so the user is not taken to another site. One suggestion would be to have a link to the next chapter at the bottom of the page rather than scrolling up to the top to choose the next chapter from the left side menu.

The organization of this textbook is exactly what you would expect for a Medical Terminology textbook. It is divided into chapters by body system.

There are no apparent issues with the interface. As noted above, the videos are shown within the textbook window, so the user is not taken to another site.

I did not note any grammatical errors in this textbook.

Cultural sensitivity is not really relevant with medical terminology. This language is used in many countries in order to be able to communicate in the same language.

I agree that the best use of this book in the online internet version. This is a very comprehensive medical terminology book. It covers all of the body systems and word building of medical terminology. The chapters provide many opportunities to practice what the student has learned. I liked that each chapter has the learning objectives listed at the beginning. I would have liked to see chapter summaries for the students to study. I think that this book could easily be incorporated into an online class, however, some work would be involved making PowerPoints, homework and quizzes. Overall, this is an excellent Medical Terminology book.

Reviewed by Renee Eaton, Advanced Instructor, Undergraduate Director, Virginia Tech on 5/17/22

Systems-based organization and includes all body systems. read more

Systems-based organization and includes all body systems.

No errors or issues noted

Medical terminology is something that rarely changes. Context activities may change over time, as does disease prevalence and knowledge, but new terms or different terms are not common.

Clear descriptions and use of technical and non-technical language.

The organization is the same across each chapter making the book easy to access and navigate. Language and flow are consistent.

Text is easy to navigate. It may be helpful to provide some in-chapter navigation on the lower menu bar. For example, the previous and next chapters are linked on the left and right margins of the bottom, and chapter components such as diseases / anatomy / etc. could be added to the center. It may not all fit, but even having a couple of navigation points within the chapter would be helpful.

Good organization and order of chapters.

This is one of my greatest difficulties. Navigation within chapters would be helpful. The incorporation of activities, particularly the labeling activities and Medical Terms in Context, are difficult with a regular laptop screen. The text and answer selections are often not on the same screen, making the activity more tedious to complete. Some of the labeling activities also have large images that put the image and answer selections on different screens. The "Did You Know", "Objectives" and colored boxes contain wasted space. They're excessively large especially in the header, and when viewing on a laptop is often half the screen if not more. The PDF version often has issues of inconsistent font size and misalignment of tables.

No grammatical errors found. I appreciated the bold and linked words, with the ability to see definitions with one click. It might be helpful to have a sidebar with the important words and definitions / information in the section, but that might not be feasible with formatting.

Hard to assess for medical terminology.

The best way to use this text is online with solid internet. The PDF version is frustrating as there are no activities or practice opportunities, and there are issues with the organization and appearance such as misaligned tables and font size differences. When internet is good but not great, none of the videos are viewable. The activities and practice opportunities in the online book are very helpful and enjoyable. Their length is appropriate to encourage use and they are strategically placed throughout the chapters. I did have trouble with the search tool, as things I entered went to the glossary but always included the beginning of the glossary. For example, a search for "diplopia" showed the following:

Abdominal Pertaining to the abdomen (National Cancer Institute, n.d.) Abdominoplasty Surgical repair of the abdomen (National Library of Medicine, 2021) Abduction Moving the limb or hand laterally away from the body, or spreading the fingers or toes (Betts et al., 2013) Abductor Moves the bone away from the midline (Betts et al., 2013) Ablation The Read more » Sensory Systems

Learning Objectives Examine the anatomy of the sensory systems Determine the main functions of the sensory systems Differentiate the medical terms of the sensory systems and common abbreviations Discover the medical specialties associated with the sensory systems Recognize common diseases, disorders, and procedures related to the sensory systems Sensory Systems Word Parts Click on prefixes, Read more »

Overall, the authors did a wonderful job of developing a thorough and practical text. I appreciate the thought that went into the interactive nature of the book and the availability to exercises to practice knowledge.

Reviewed by Debra Minzola, Associate Professor, Bloomsburg University of Pennsylvania on 3/18/22

This textbook is very inclusive in the content area. It not only discusses the word but breaks down medical terminology to help learners to easily decipher the meaning of a medical term . read more

This textbook is very inclusive in the content area. It not only discusses the word but breaks down medical terminology to help learners to easily decipher the meaning of a medical term .

There was no inaccuracies detected throughout the text.

This text is very relevant and will easily be updated if needed.

This is an easy to read text and would be a valuable resource for new learners. The ebook offers videos and learning activities throughout.

The text is internally consistent with an easy to follow framework.

The modules in this text are easy to navigate and locate specialty sections.

This text is clearly organized and easy to navigate.

There is no significant navigation problems or confusing features.

There is clear grammar throughout the text.

There is no offensive content in this textbook or language that can be viewed as culturally insensitive.

Learning objectives are listed at the introduction of each section followed by a guide on how to break down each system's medical terms. Throughout each section there are diagrams, charts, and additional videos in the ebook which reinforces the content. The book is organized and easy to navigate.

Table of Contents

  • 1. Word Parts and Rules
  • 2. Prefixes and Suffixes
  • 3. Body Terminology
  • 4. Sensory Systems
  • 5. Integumentary System
  • 6. Skeletal System
  • 7. Muscular System
  • 8. Nervous System
  • 9. Cardiovascular System
  • 10. Blood Vessels and Blood
  • 11. Lymphatic and Immune Systems
  • 12. Respiratory System
  • 13. Digestive System
  • 14. Endocrine System
  • 15. Urinary System
  • 16. Male Reproductive System
  • 17. Female Reproductive System
  • 18. Obstetrics

Ancillary Material

About the book.

Medical Terminology for Healthcare Professions is an Open Educational Resource (OER) that focuses on breaking down, pronouncing, and learning the meaning of medical terms within the context of anatomy and physiology. This resource is targeted for Healthcare Administration, Health Sciences, and Pre-Professional students.

About the Contributors

Andrea M. Nelson , PT, DPT, GCS, CLT, University of West Florida

Katherine Greene , MPH, University of West Florida

Contribute to this Page

  • University Libraries
  • Research Guides
  • Subject Guides
  • Medical Terminology

Medicine: Medical Terminology

  • Get Started
  • Explore Topics
  • Search Strategies
  • Research Literature Databases
  • Data & Statistics
  • Tests & Measures
  • Manage Citations
  • Data Management
  • Academic research: online module

Use this collection of resources to find the style of learning medical terminology that suits you best. Have a suggestion or a favorite resource you would like us to include? Contact [email protected] to let us know.

  • Print Books
  • Other Resources

Electronic access to these books is provided by the University Libraries at Virginia Tech.  Sign in with your VT PID and password (if prompted).

Cover Art

Provided by the National Library of Medicine

  • Medline Plus Medical Encyclopedia The A.D.A.M. Medical Encyclopedia includes over 4,000 articles about diseases, tests, symptoms, injuries, and surgeries.
  • Medline Plus Word Parts and What They Mean Provides a list of word parts and what they mean so you can see how medical terminology is built from these foundational definitions. 
  • Understanding Medical Words Tutorial This tutorial teaches you about medical words. You'll learn how parts of medical words are put together. You'll also find quizzes to check what you've learned.

medical terminology hypothesis definition

  • Medical Dictionary of Health Terms The A to Z library is a collection of articles covering many of the most commonly searched medical conditions. Each article contains a description of the condition; the symptoms; how it is diagnosed, prevented, and treated; the prognosis; and when to seek professional advice.

Mayo Clinic Logo

  • Mayo Clinic Diseases & Conditions Easy-to-understand answers about diseases and conditions provided by the Mayo Clinic as part of its free Health Library.
  • << Previous: Research Literature Databases
  • Next: Data & Statistics >>
  • Last Updated: Aug 27, 2024 10:38 AM

Medical Terminology

The definition of medical terminology.

Medical terminology is the specialized language used in healthcare to accurately describe the human body, its parts, functions, and the procedures performed on it.

Identifiers:

Medical terminology often sounds complex, but once you understand the basic structure of medical words, it becomes much easier to parse their meanings. Most medical terms have three key elements: roots, prefixes, and suffixes. Each part of the word provides a clue to its definition, related body systems, and functions.

  • Roots are the core part of the word, typically indicating the primary organ or system involved. For example, “cardi” refers to the heart, and “neur” relates to nerves.
  • Prefixes are found at the beginning of some medical terms. They modify the meaning of the root by indicating a number, time, position, direction, or negation. For instance, “hyper-” suggests an excessive amount or above normal.
  • Suffixes appear at the end of medical terms and can describe a condition, disease process, or procedure. For example, “-itis” means inflammation, thus “arthritis” refers to inflammation of the joints.

By dissecting a medical term into these components, you can begin to understand even the most intimidating terminology. Familiarizing yourself with common roots, prefixes, and suffixes can significantly enhance your ability to understand medical discussions, documents, and information more broadly.

  • Hypertension : Hyper- (high) + tension (pressure) = High blood pressure.
  • Bradycardia : Brady- (slow) + cardia (heart) = Slow heart rate.
  • Osteoarthritis : Osteo- (bone) + arthritis (inflammation of joints) = Inflammation of joints and bones.
  • Dermatitis : Derm- (skin) + itis (inflammation) = Skin inflammation.
  • Hyperglycemia : Hyper- (high) + glycemia (sugar in the blood) = High blood sugar.
  • Leukemia : Leuk- (white) + (an) emia (blood condition) = Cancer affecting white blood cells.
  • Gastroenteritis : Gastro- (stomach) + enteritis (intestine inflammation) = Inflammation of the stomach and intestines.
  • Neurology : Neuro- (nerve) + logy (study of) = Study of the nervous system.
  • Cardiomyopathy : Cardio- (heart) + myo- (muscle) + pathy (disease) = Disease of the heart muscle.
  • Hematoma : Hemat- (blood) + oma (mass or collection) = Collection of blood outside blood vessels, usually clotted.

When and where is Medical Terminology used?

  • In the Medical Office : Use medical terminology to understand your diagnosis, communicate symptoms accurately, and comprehend the treatment plan.
  • At the Pharmacy : Helps understand medication instructions, potential side effects, and how they relate to your condition.
  • With Insurers : Essential for understanding your health coverage, what treatments and procedures are covered, and in discussing claims.
  • Associations and Support Groups : Useful in connecting with others who have similar conditions, sharing experiences, and learning from their journeys.

The information provided here is for educational and entertainment purposes only. It is not intended as, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, immediately call 911 or your local emergency number.

  • Patient Concerns Addressed Through Patient Better’s Health Advocacy Educational Program
  • Patient Better | Health Advocacy Made Easy
  • Healthcare Management Insights: Navigating and Overcoming Common Complexities This article provides patients and caregivers with valuable insights into managing multiple medical conditions effectively. Readers will learn practical strategies for improving communication, coordinating care, and navigating the healthcare system to achieve better health outcomes.
  • Why Empowering Providers Is to Your Benefit: A Pathway to Enhanced Healthcare on a Budget In this article, you'll uncover how a strong partnership between you and your healthcare providers can navigate the financial challenges of limited budgets and insurance plans. By reading this article, you'll learn practical strategies to enhance communication, share vital information, and make collaborative decisions, empowering you to play a pivotal role in achieving better healthcare outcomes without breaking the bank.
  • Newly Diagnosed Patient Strategies: 5 Proven Methods of Transforming Uncertainty into Action In this article, you'll learn about effective coping strategies for newly diagnosed patients, as guided by the principles of Patient Better. These strategies are designed to help you take control of your health, providing you with the tools and mindset needed to navigate your new health journey with confidence.

Medical Dictionary

Search medical terms and abbreviations with the most up-to-date and comprehensive medical dictionary from the reference experts at Merriam-Webster. Master today's medical vocabulary. Become an informed health-care consumer!

Browse the Medical Dictionary

Featured game.

How Strong Is Your Vocabulary?

Find the Best Synonym

Test your vocabulary with our 10-question quiz!

ringo starr word icons drum

Ringo Starr & 'Drum'

ringo starr word icons drum

Shaquille O'Neal & 'Dominant'

katy perry word icons firework

Katy Perry & 'Firework'

how to use a dictionary

How to Use a Dictionary

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

  • Open access
  • Published: 30 August 2024

Medical students in distress: a mixed methods approach to understanding the impact of debt on well-being

  • Adrienne Yang 1   na1 ,
  • Simone Langness 2   na1 ,
  • Lara Chehab 1   na1 ,
  • Nikhil Rajapuram 3 ,
  • Li Zhang 4 &
  • Amanda Sammann 1  

BMC Medical Education volume  24 , Article number:  947 ( 2024 ) Cite this article

Metrics details

Nearly three in four U.S. medical students graduate with debt in six-figure dollar amounts which impairs students emotionally and academically and impacts their career choices and lives long after graduation. Schools have yet to develop systems-level solutions to address the impact of debt on students’ well-being. The objectives of this study were to identify students at highest risk for debt-related stress, define the impact on medical students’ well-being, and to identify opportunities for intervention.

This was a mixed methods, cross-sectional study that used quantitative survey analysis and human-centered design (HCD). We performed a secondary analysis on a national multi-institutional survey on medical student wellbeing, including univariate and multivariate logistic regression, a comparison of logistic regression models with interaction terms, and analysis of free text responses. We also conducted semi-structured interviews with a sample of medical student respondents and non-student stakeholders to develop insights and design opportunities.

Independent risk factors for high debt-related stress included pre-clinical year (OR 1.75), underrepresented minority (OR 1.40), debt $20–100 K (OR 4.85), debt >$100K (OR 13.22), private school (OR 1.45), West Coast region (OR 1.57), and consideration of a leave of absence for wellbeing (OR 1.48). Mental health resource utilization ( p  = 0.968) and counselors ( p  = 0.640) were not protective factors against debt-related stress. HCD analysis produced 6 key insights providing additional context to the quantitative findings, and associated opportunities for intervention.

Conclusions

We used an innovative combination of quantitative survey analysis and in-depth HCD exploration to develop a multi-dimensional understanding of debt-related stress among medical students. This approach allowed us to identify significant risk factors impacting medical students experiencing debt-related stress, while providing context through stakeholder voices to identify opportunities for system-level solutions.

Peer Review reports

Introduction

Over the past few decades, it has become increasingly costly for aspiring physicians to attend medical school and pursue a career in medicine. Most recent data shows that 73% of medical students graduate with debt often amounting to six-Fig [ 1 ]. – an amount that is steadily increasing every year [ 2 ]. In 2020, the median cost of a four-year medical education in the United States (U.S.) was $250,222 for public and $330,180 for private school students [ 1 ] – a price that excludes collateral costs such as living, food, and lifestyle expenses. To meet these varied costs, students typically rely on financial support from their families, personal means, scholarships, or loans. Students are thereby graduating with more debt than ever before and staying indebted for longer, taking 10 to 20 years to repay their student loans regardless of specialty choice or residency length [ 1 ].

Unsurprisingly, higher debt burden has been negatively correlated with generalized severe distress among medical students [ 3 , 4 ], in turn jeopardizing their academic performance and potentially impacting their career choices [ 5 ]. Studies have found that medical students with higher debt relative to their peers were more likely to choose a specialty with a higher average annual income [ 5 ], less likely to plan to practice in underserved locations, and less likely to choose primary care specialties [ 4 ]. However, a survey of 2019 graduating medical students from 142 medical schools found that, when asked to rank factors that influenced their specialty choice, students ranked economic factors, including debt and income, at the bottom of the list. With this inconsistency in the literature, authors Youngclaus and Fresne declare that further studies and analysis are required to better understand this important relationship [ 1 ].

Unfortunately, debt and its negative effects disproportionately impact underrepresented minority (URM) students, including African Americans, Hispanic Americans, American Indian, Native Hawaiian, and Alaska Native [ 6 ], who generally have more debt than students who are White or Asian American [ 1 ]. In 2019, among medical school graduates who identified as Black, 91% reported having education debt, in comparison to the 73% reported by all graduates [ 1 ]. Additionally, Black medical school graduates experience a higher median education debt amount relative to other groups of students, with a median debt of $230,000 [ 1 ]. This inequitable distribution of debt disproportionately places financial-related stress on URM students [ 7 ], discouraging students from pursuing a medical education [ 8 ]. These deterring factors can lead to a physician workforce that lacks diversity and compromises health equity outcomes [ 9 ].

Limited literature exists to identify the impact of moderating variables on the relationship between debt and debt-related stress. Financial knowledge is found to be a strong predictor of self-efficacy and confidence in students’ financial management, leading to financial optimism and potentially alleviating debt stress [ 10 , 11 , 12 ]. Numerous studies list mindfulness practices, exercise, and connecting with loved ones as activities that promote well-being and reduce generalized stress among students [ 13 , 14 , 15 ]. However, to date, no studies have examined whether these types of stress-reducing activities, by alleviating generalized stress, reduce debt-related stress. Studies have not examined whether resources such as physician role models may act as a protective factor against debt-related stress.

Despite the growing recognition that debt burdens medical students emotionally and academically, we have yet to develop systemic solutions that target students’ unmet needs in this space. We performed the first multi-institutional national study on generalized stress among medical students, and found that debt burden was one of several risk factors for generalized stress among medical students [ 3 ]. The goal of this study is to build upon our findings by using a mixed methods approach combining rigorous survey analysis and human-centered design to develop an in-depth understanding of the impact that education debt has on medical students’ emotional and academic well-being and to identify opportunities for intervention.

We conducted a mixed methods, cross-sectional study that explored the impact of debt-related stress on US medical students’ well-being and professional development. This study was conducted at the University of California, San Francisco (UCSF). All activities were approved by the UCSF institutional review board, and informed consent was obtained verbally from participants prior to interviews. We performed a secondary analysis of the quantitative and qualitative results of the Medical Student Wellbeing Survey (MSWS), a national multi-institutional survey on medical student wellbeing administered between 2019 and 2020, to determine risk factors and moderating variables of debt-related stress. To further explore these variables, we used human-centered design (HCD), an approach to problem-solving that places users at the center of the research process in order to determine key pain points and unmet needs, and co-design solutions tailored to their unique context [ 16 ]. In this study, we performed in-depth, semi-structured interviews with a purposefully sampled cohort of medical students and a convenience sample of non-student stakeholders to determine key insights representing students’ unmet needs, and identified opportunities to ameliorate the impact of debt-related stress on medical students.

Quantitative data: the medical student wellbeing survey

The MSWS is a survey to assess medical student wellbeing that was administered from September 2019 to February 2020 to medical students actively enrolled in accredited US or Caribbean medical schools [ 3 ]. Respondents of the MSWS represent a national cohort of > 3,000 medical students from > 100 unique medical school programs. The MSWS utilizes a combination of validated survey questions, such as the Medical Student Wellbeing Index (MS-WBI), and questions based on foundations established from previously validated wellbeing survey methods [ 3 ]. Questions generally focused on student demographics, sources of stress during medical school, specialty consideration, and frequency in activities that promote wellbeing. Some questions ask students to rate physical, emotional, and social domains of wellbeing using a five-point Likert scale. Questions of interest from the MSWS included debt-related stress, generalized stress, intended specialty choice, and utilization of well-being resources and counselors. An additional variable investigated was average school tuition, which was determined by a review of publicly available data for each student’s listed medical school [ 17 ]. All data from the MSWS was de-identified for research purposes.

Stress: debt-related and generalized stress

Debt stress was assessed by the question, “How does financial debt affect your stress level?” Students responded using a five-point Likert scale from − 2 to 2: significant increase in stress (-2), mild increase (-1), no change (0), mild decrease (1), or significant decrease (2). Responses for this question were evaluated as a binary index of ‘high debt stress,’ defined as a response of − 2, versus ‘low debt stress,’ defined as a response of − 1 or 0. In addition, generalized stress from the MSWS was assessed by questions from the embedded MS-WBI, which produced a score. Previous studies have shown that the score can be used to create a binary index of distress: a score ≥ 4 has been associated with severe distress, and a score < 4 has been associated with no severe distress [ 18 ].

Intended specialty

We categorized students’ responses to intended specialty choice by competitiveness, using the 2018 National Resident Match Program data [ 19 ]. ‘High’ and ‘low’ competitiveness were defined as an average United States Medical Licensing Examination (USMLE) Step 1 score of > 240 or ≤ 230, respectively, or if > 18% or < 4% of applicants were unmatched, respectively. ‘Moderate’ competition was defined as any specialty not meeting criteria for either ‘high’ or ‘low’ competitiveness.

Resource utilization

The MSWS assessed the utilization of well-being resources by the question, “At your institution, which of the following well-being resources have you utilized? (Select all that apply)” Students responded by selecting each of the resource(s) they used: Mental Health and Counseling Services, Peer Mentorship, Self-Care Education, Mindfulness/Meditation Classes, Community Building Events, and Other. The number of choices that the student selected was calculated, allowing for placement into a category depending on the amount of resource utilization: 0–20%, 20–40%, 40–60%, 60–80%, 80–100%. Responses for this question were evaluated as a binary index of ‘high resource utilization,’ defined as a response of 80–100% resource utilization, versus ‘low resource utilization,’ defined as a response of < 80% resource utilization. The co-authors collaboratively decided upon this “top-box score approach,” [ 20 ] which is the sum of percentages for the most favorable top one, two or three highest categories on a scale, to assess if the most extreme users (80–100%) of these supportive resources experienced a decrease in debt-related stress. Additionally, use of a counselor for mental health support was assessed by the question, “Which of the following activities do you use to cope with difficult situations (or a difficult day on clinical rotation)? (Select all that apply).” Students responded by selecting the activities that they use from a list (e.g., listen to music, mindfulness practice, meet with a counselor, exercise). Responses for this question were evaluated as a binary index of ‘Meeting with a Counselor,’ defined by selection of that option, versus ‘Not Meeting with a Counselor,’ defined as not selecting that option.

Quantitative data analysis

We performed a secondary analysis of quantitative data from the MSWS to calculate frequencies and odds ratios for the five quantitative variables described above (debt-related stress, generalized stress, intended specialty, resource utilization, and school tuition). Tests performed are summarized in Table  1 (“Secondary Analysis Tests Performed”). Univariate analysis and multivariate logistic regression were performed among students in the high debt stress (-2) and low debt stress (0 or − 1) for select variables, such as clinical phase, URM, debt burden, specialty competitiveness, and average school tuition, to identify risk factors for high debt stress. To determine if ‘high resource utilization’ or ‘meeting with a counselor’ were moderating variables on the relationship between debt burden and debt stress, we applied the logistic regression with the interaction terms of ‘debt’ and ‘resource utilization’ (high vs. low). Then, we performed a similar analysis but replaced the interaction term with ‘debt’ and ‘meeting with a counselor’ (yes vs. no). We also performed Chi-squared tests to determine the degree to which severe distress increases as debt burden increases, if specialty competitiveness varied by debt stress, and if the proportion of students who identified as URM, in comparison to non-URM, differed by debt level. All statistical tests were two-sided and p  < 0.05 was considered significant. Statistical analyses were performed using SAS version 9.4 and R version 4.0.5.

Qualitative data: interviews and MSWS free text responses

Free-text entries.

At the conclusion of the 2019–2020 MSWS, respondents had unlimited text space to provide comments to two prompts. The first prompt read, “What well-being resource(s), if offered at your school, do you feel would be most useful?” The second prompt read “If you have any further comments to share, please write them below.” Answers to either prompt that pertained to debt, cost of medical school, or finances were extracted for the purpose of this study and analyzed with the other qualitative data subsequently described.

Interview selection & purposive sampling

Interview participants were identified from a repository of respondents to the MSWS who had attached their email address and expressed willingness at the time of the survey to be contacted for an interview [ 3 ]. Our recruitment period was between April 19, 2021 to July 2, 2021. The recruitment process involved sending invitations to all of the email addresses in the list to participate in a 45-minute interview on the topic of student debt and wellbeing. The invitation included a brief screening questionnaire asking students to report updates to questions that were previously asked in the MSWS (i.e.: clinical training year, marital status, dependents). Additional novel questions included primary financial support system, estimate of financial support systems’ household income in the last year, estimate of educational financial debt at conclusion of medical school, student’s plan for paying off debt, and degree of stress (using a Likert scale from 0 to 10) over current and future education debt.

Purposeful sampling of medical student stakeholders for interviews allowed us to maximize heterogeneity. We utilized the students’ responses to the brief screening questionnaire with their corresponding responses to demographic questions from the MSWS to select interviewees that varied by gender, race, presence of severe distress, type of medical school (public vs. private), region of school, and tuition level of school. The sampling ensured a diverse representation, in accordance with HCD methodology [ 21 ]. Brief descriptions of participant experiences are listed in Table  2 (“Interviewee Descriptors”). Students who were selected for interviews were sent a confirmation email to participate. Interviews were to be conducted until thematic saturation was reached. In addition, to include representation from the entire ecosystem, we interviewed a financial aid counselor at a medical school and a pre-medical student, chosen through convenience sampling. We directly contacted those two individuals for interviews.

Semi-structured interviews

All interviews were conducted between April 2021 and July 2021 over Zoom. A single researcher conducted interviews over an average of 45 min. Informed consent was obtained verbally from participants prior to interviews; interviews and their recordings only proceeded following verbal consent. The interview guide (S1 File) included open-ended questions about students’ experience of debt-related stress and their reflections on its consequences. The audio recordings were transcribed using Otter.ai, a secure online transcription service that converts audio files to searchable text files. Interview responses were redacted to preserve anonymity of respondent identity.

Qualitative data analysis

Interview data was analyzed using a general inductive approach to thematic analysis. Specifically, two researchers (SL and AY) independently inductively analyzed transcripts from the first three semi-structured interviews to come up with themes relating to the experiences and consequences of debt-related stress. They reconciled discrepancies in themes through discussion to create the codebook (S2 File), which included 18 themes. SL and AY independently coded each subsequent interview transcript as well as the free text responses from the survey, meeting to reach a consensus on representative quotes for applicable themes.

Following the HCD methodology, two researchers met with the core team to discuss the themes from the interviews and translate them into “insight statements”, which reflect key tensions and challenges experienced by stakeholders. Insight statements carefully articulate stakeholders’ unique perspectives and motivations in a way that is actionable for solution development [ 22 ]. As such, these insight statements are reframed into design opportunities, which suggest that multiple solutions are possible [ 23 , 24 ]. For example, discussion about themes 1a and 1b (“Questionable Job Security” and “Disappointing MD salary and Satisfaction Payoff”) revealed that they were related in the way that they led students to wonder whether the investment in medical school would be offset by the salary payoff. This led to the identification of the tension for low-income students in particular, who have to weigh this tradeoff earlier in their medical school journey than other students who are less financially-constrained (insight: “Medical school is a risky investment for low-income students”.) The design opportunity logically translates into a call to action for brainstorming and solution development: “Support low-income students to make values-based tradeoffs when considering a career in medicine.”

MSWS respondents and quantitative analysis

A total of 3,162 students responded to the MSWS and their sociodemographic characteristics have been described previously [ 3 ]. A total of 2,771 respondents (87.6%) responded to our study’s variables of interest, including a response for ‘high debt stress’ (–2) or ‘low debt stress’ (–1 or 0). Table  3 lists the distribution of debt-related stress across different variables for all respondents.

Risk factors for debt-related stress

Factors that were independently associated with higher debt-related stress included being in pre-clinical year (OR 1.75, 95% CI 1.30–2.36, p  < 0.001), identifying as URM (OR 1.40, 95% CI 1.03–1.88), p  = 0.029), having debt $20–100 K (OR 4.85, 95% CI 3.32–7.30, p  < 0.001), debt > 100 K (OR 13.22, 95% CI 9.05–19.90, p  < 0.001), attending a private medical school (OR 1.45, 95% CI 1.06–1.98, p  = 0.019), attending medical school on the West Coast (OR 1.57, 95% CI 1.17–2.13, p  = 0.003), and having considered taking a leave of absence for wellbeing (OR 1.48, 95% CI 1.13–1.93, p  = 0.004) (Table  4 , S1 Table).

Severe distress by debt amount

Levels of generalized severe distress differed across debt burden groups. As debt level increased, the percentage of individuals with “severe” distress increased ( p  < 0.001).

Debt and career decisions

There were significant differences between the high debt stress versus low debt stress groups and plans to pursue highly vs. moderately vs. minimally competitive specialties ( p  = 0.027) (Fig.  1 ) A greater percentage of low debt stress students were pursuing a highly competitive specialty or a minimally competitive specialty. A greater percentage of high debt stress students were pursuing a moderately competitive specialty. As shown in Table  4 , there were no differences in debt-associated stress between students who choose different specialties, such as medical versus surgical versus mixed (medical/surgical).

figure 1

Debt stress by specialty competitiveness

URM students’ experience of debt

URM identity was an independent risk factor for higher debt-related stress (Table  4 ) In addition, debt levels varied between those who identify as URM versus non-URM ( p  < 0.001). Students identifying as URM tended to have higher debt than those who did not. Although the percentage of non-URM students was higher than that of URM students within the lowest debt burden category (<$20k), among all higher debt burden categories, including $20–100 K, $100–300 K, and >$300K, the percentage of URM students was higher than the percentage of non-URM students.

Moderating factors on the relationship between debt and debt stress

Protective factors such as high degree of mental health resource utilization and meeting with a counselor did not reduce the impact of debt burden on debt stress. Among students who reported a high degree of mental health resource utilization, there was no impact on the relationship between debt and debt stress ( p  = 0.968). Similarly, meeting with a counselor had no impact on the relationship between debt and debt stress ( p  = 0.640).

Interview respondents and qualitative analysis

We conducted in-depth, semi-structured interviews with 11 medical students, who are briefly described in Table  2 . We reached thematic saturation with 11 interviews, a point at which we found recurring themes. Therefore, no further interviews were needed. Among the medical student interviewees, there was representation from all regions, including the Northeast ( n  = 3), West Coast ( n  = 5), Midwest ( n  = 2), and South ( n  = 1). Students were also from all clinical phases, including pre-clinical ( n  = 3), clinical ( n  = 4), gap year/other ( n  = 2), and post-clinical ( n  = 2). Most interviewees were female ( n  = 8) and 5 of the interviewees identified as URM. Financial support systems were diverse, including self ( n  = 3), spouse/partner ( n  = 3), and parents/other ( n  = 5). Most interviewees reported low debt stress ( n  = 8), as opposed to high debt stress ( n  = 3). 55% of interviewees planned to pursue specialties that pay <$300K ( n  = 6), with some pursuing specialties that pay $300–400 K ( n  = 2) and >$400K ( n  = 3).

Among the MSWS free-text responses, to the prompt, “What well-being resource(s), if offered at your school, do you feel would be most useful?” 20 of 118 respondents (16.9%) provided free-text responses that pertained to debt, cost of medical school, or finances. To the prompt “If you have any further comments to share, please write them below” 11 of 342 students (3.2%) provided relevant free-text responses. Analysis of the free-text responses and semi-structured interviews revealed 6 distinct insights (Table  5 ), with each insight translated into an actionable design opportunity.

Medical school is a risky investment for low-income students.

Description

The personal and financial sacrifices required for low-income students to attend medical school and pursue a career in medicine outweigh the benefits of becoming a physician. When considering a career in medicine, students feel discouraged by questionable job security (theme 1a) and reduced financial compensation (theme 1b) – a combination that jeopardizes immediate and long-term job satisfaction. Some students feel hopeful that their decision to pursue medicine will be personally rewarding (1b.6) and their salaries will stabilize (1a.1, 1a.5), but many low-income students experience doubt about whether they made the right career choice (1b.2, 1b.4, 1b.6), and feel stressed that they will be in debt for longer than they expected (1a.3, 1a.4, 1b.1, 1b.5). Support low-income students to make values-based tradeoffs when considering a career in medicine.

Design opportunity

Support low-income students to make values-based tradeoffs when considering a career in medicine.

Medical schools lack the adaptive infrastructure to be welcoming to low-income students.

Students face financial challenges from the moment they apply to medical school (theme 2a), a costly process that limits admissions options for low-income students due to their inability to pay for numerous application fees (2a.1) and expensive test preparation courses (2a.2, 2a.3). Once students begin medical school, they feel unsupported in their varied responsibilities towards their families (theme 2b) and additional financial needs (theme 2c), requiring them to make tradeoffs with their education and personal lives (2b.2, 2c.1).

Design opportunity 2

Develop flexible systems that can recognize and accommodate students’ complex financial needs during medical school.

Students worry about the impact that their medical school debt has on their present and future families, which compounds feelings of guilt and anxiety.

For students who need to take loans, the decision to pursue a career in medicine is a collective investment with their families. Students feel guilty about the sacrifices their families have to make for the sake of their career (theme 3a) and feel pressure to continue to provide financially for their family while having debt (theme 3b). Students are stressed about acquiring more debt throughout their training (3a.1) and the impact that has on loved ones who are dependent on them (3a.4, 3a.5, 3b.2), especially with respect to ensuring their financial security in the future (3b.4).

Design opportunity 3

Create an environment that acknowledges and accounts for the burden of responsibility that students face towards their families.

Without the appropriate education about loans, the stress of debt is exponentially worse.

Students feel the greatest fear around loans when they do not understand them, including the process of securing loans and paying off debt (theme 4a). Students are overwhelmed by their loan amounts (4a.5) and lack the knowledge or resources to manage their debt (4a.1, 4a.2), making them uncertain about how they will become debt-free in the future (4a.3, 4a.4). Students reported that various resources helped to alleviate those burgeoning fears (theme 4b), including financial aid counselors (4b.2, 4b.3) and physician role models (4b.5, 4b.6) that generally increase knowledge and skills related to debt management (4b.1).

Design opportunity 4

Empower students to become experts in managing their debt by making loan-related resources more available and accessible.

The small, daily expenses are the most burdensome and cause the greatest amount of stress.

Students with educational debt are mentally unprepared for the burden of managing their daily living expenses (theme 5a), causing them to make significant lifestyle adjustments in the hopes to ease their resulting anxiety (theme 5b). These costs are immediate and tangible, compared to tuition costs which are more distant and require less frequent management (5a.3) Students learn to temper their expectations for living beyond a bare minimum during medical school (5a.1, 5b.2, 5b.4) and develop strategies to ensure that their necessary expenses are as low as possible (5b.1, 5b.2, 5b.3, 5b.4).

Design opportunity 5

Develop and distribute resources to support both short- and long-term financial costs for medical students.

Students view debt as a dark cloud that constrains their mental health and dictates their career trajectory.

The constant burden of educational debt constrains students’ abilities to control their mental health (theme 6a) and pursue their desired career path in medicine (themes 6b & 6c). Students feel controlled by their debt (6a.3) and concerned that it will impact their [ability] to live a personally fulfilling life (6a.1, 6a.2, 6c.6), especially with respect to pursuing their desired medical specialties (6b.1, 6c.3, 6c.5, 6c.6). Students with scholarships, as opposed to loans, felt more able to choose specialties that prioritized their values rather than their finances (6c.1, 6c.2), an affordance that impacts long-term career growth and satisfaction.

Design opportunity 6

Create a culture of confidence for managing debt and debt-stress among medical students.

This is the first multi-institutional national study to explore the impact of debt-related stress on medical students’ well-being in the United States. We used an innovative, mixed methods approach to better understand the factors that significantly affect debt-related stress, and propose opportunities for improving medical student well-being.

URM students

Analysis of survey results found that students who identify as URM are more likely to experience higher levels of debt-related stress than non-URM students. Our study also found that among all higher debt burden categories, debt levels were higher for URM students, findings consistent with studies that have shown the disproportionate burden of debt among URM students [ 1 ]. Our semi-structured interviews illuminated that students from low-income backgrounds feel unsupported by their medical schools in these varied financial stressors that extend beyond tuition costs (insight 2), leaving their needs unmet and increasing financial stress over time: “We don’t have different socio-economic classes in medicine because there’s constantly a cost that [isn’t] even factored into tuition cost [and] that we can’t take student loans for.” Many URM students feel especially stressed by their financial obligations towards their families (insight 3), and describe the decision to enter into medicine as one that is collective ( “the family’s going to school” ) rather than individual, placing additional pressure on themselves to succeed in their career: “ Being of low SES , the most significant stressor for me is the financing of medical school and the pull of responsibility for my family.” Several other studies from the literature confirm that students who identify as URM and first generation college or medical students are at higher risk for financial stress compared to their counterparts [ 7 ], and report that they feel as though it is their responsibility to honor their families through their educational and career pursuits [ 25 ]. Our study demonstrates and describes how low-income and URM students face numerous financial barriers in medical school, resulting in medical trainees that are less diverse than the patient populations they are serving [ 1 , 8 ].

Debt amount

Our quantitative analysis found that students with debt amounts over $100,000 are at much higher risk for experiencing severe stress than students with debt less than that amount. Although this finding may seem intuitive, it is important to highlight the degree to which this risk differs between these two cohorts. Students with debt amounts between $20,000 and $100,000 are approximately 5 times more likely to experience high stress than students with debt less than $20,000, while students with debt amounts over $100,000 are approximately 13 times more likely to experience severe stress when compared to the same cohort. Interview participants describe that the more debt they have, the less hopeful they feel towards achieving financial security (insight 1): “There are other healthcare professionals that will not accrue the same amount of loans that we will , and then may or may not have the same salary or privileges […] makes me question , did I do the right thing?” Students internalize this rising stress so as not to shift the feelings of guilt onto their families (insight 3), thereby compounding the psychological burden associated with large amounts of debt (insight 6): “As long as you’re in debt , you’re owned by someone or something and the sooner you can get out of it , the better; the sooner I can get started with my life.”

Pre-clinical students

According to our survey analysis, students who are in their pre-clinical years are at higher risk for stress than students in their clinical years. Our interview findings from insight 4 suggest that students feel initially overwhelmed and unsure about what questions to ask ( “One of my fears is that I don’t know what I don’t know”) or how to manage their loans so that it doesn’t have a permanent impact on their lives: “The biggest worry is , what if [the debt] becomes so large that I am never able to pay it off and it ends up ruining me financially.” Pre-clinical students may therefore feel unsure or ill-equipped to manage their loans, making them feel overwhelmed by the initial stimulus of debt. By the time students reach their clinical years, they may have had time to develop strategies for managing stress, acquire more financial knowledge, and/or normalize the idea of having debt.

Medical school characteristics

Our survey analysis found several risk factors related to medical school characteristics. First, we found that students who attended a private school were at higher risk for debt-related stress than students who attended a public school. Not only is the median 4-year cost of attendance in 2023 almost $100,000 higher in private compared to public medical schools [ 26 ], but it is also the case that financial aid packages are more liberally available for public schools due to state government funding [ 27 ]. This not only relieves students from having higher amounts of debt, but it also creates a more inclusive cohort of medical students. Insight 2 from our interviews suggests that private medical schools without the infrastructure to meet students’ varying financial needs force low-income students to make tradeoffs between their education and personal lives.

Another characteristic that was found to be a risk factor for debt stress was attending a medical school on the West Coast (compared to a non-coastal school.) This was a surprising finding given that tuition rates for both private and public schools on the West Coast are no higher than those in other regions [ 17 ]. The distribution of survey respondents did not vary significantly across regional categories, so no bias in sample size is suspected. While these interviews were not designed to address the reasoning behind students’ choice of medical school matriculation, there is a potential explanation for this finding. Historically, students match for residency programs that are in their home state or not far from their home state; [ 28 , 29 ] therefore, we speculate that students may prefer to settle on the West Coast, and may be willing to take on more financial debt in pursuit of their long-term practice and lifestyle goals.

Our quantitative analysis found that students who reported having considered taking a leave of absence for well-being purposes were at higher risk for debt-related stress. This cohort of students likely experience higher levels of stress as they are conscious of the negative impact it has on their life, and have already ruminated on leaving medical school. A study by Fallar et al. found that the period leading up to a leave of absence is particularly stressful for students because they are unfamiliar with the logistics of taking time off, and don’t feel as though leaving medical school is encouraged or normalized for students [ 30 ]. An interview with a student who did a joint MD and PhD program expressed having more time for herself during her PhD program, and described using money for activities that could alleviate stress (“I took figure skating during my PhD”) rather than create more stress by compromising on their lifestyle during medical school (insight 5). More research may be needed to better understand and support students considering taking a leave of absence from medical school.

  • Specialty choice

Our study found that students with high debt stress pursue moderately competitive specialties compared to students with low debt stress. This may be explained by the fact that low debt stress gives students the freedom to pursue minimally competitive specialties, which may be more fulfilling to them but typically have lower salaries. Insight 6 further elaborates upon this finding that students with high debt stress deprioritize specialties for which they are passionate in favor of higher paying specialties that might alleviate their debt: “I love working with kids…but being an outpatient pediatrician just wasn’t going to be enough to justify the [private school] price tag.” Students with lower debt stress describe having the freedom to choose specialties that align with their values, regardless of anticipated salary: “Scholarships give me the freedom to do [specialties] that maybe are a little bit less well-paying in medicine.” Interestingly, certain studies examining the relationship between specialty choice and debt stress have found that high debt stress is associated with a higher likelihood of pursuing a more competitive, and presumably higher paying, specialty [ 5 ]. More research investigating the relationship between debt stress and specialty choice could illuminate opportunities for increasing a sense of agency and overall satisfaction among students for their career choices.

In our exploration of potential protective factors against the effects of debt-related stress, our survey analysis found that the two variables measured (high mental health resource utilization and meeting with a counselor) did not have any impact on reducing debt-related stress. This finding is inconsistent with the literature, which considers these activities to promote general well-being among students but has never been studied in the context of debt-related stress [ 13 , 14 , 15 ]. A potential explanation is that the survey questions that assessed these activities were imperfect. For example, the question of meeting with a counselor was not a standalone question, but instead, was at the bottom of a list of other wellbeing activities; therefore, students may have been fatigued by the time they got to the bottom of the list and not selected it. Additionally, our definition of “high” mental health resource utilization may have been perceived as too strict (i.e.: 80–100%) and perhaps we would have seen effects at lower percentages of utilization (i.e.: 40–60%). Despite this finding, students describe in their interviews that having access to certain resources such as financial knowledge and physician role models can help to alleviate stress by helping them feel confident in managing their loans in the immediate and more distant future (insight 4): “I’ve had explicit discussions with physicians who went to med school , had debt , paid it off [.] the debt hasn’t hindered their life in any way. I think that just makes me feel a lot calmer.” This finding aligns with previous studies that suggest that financial knowledge, such as knowledge about loans and a payoff plan, confers confidence in students’ financial management [ 11 , 12 ]. These factors are also aligned with previous studies that suggest financial optimism, such as with a physician role model who successfully paid off loans, is associated with less financial stress [ 10 ].

Our quantitative analysis of risk factors helped us to identify which areas might significantly impact debt-related stress among medical students, while our qualitative analysis provided more in-depth insight into those risk factors for more human-centered intervention design. The HCD process not only provides additional context from the perspective of medical students, but also proposes distinct design opportunities upon which interventions may be designed and tested. Drawing from the six design opportunities outlined in this paper, we propose a solution on a national scale: lowering the cost of the MCAT and medical school applications to reduce the financial barrier to applying to medical school [ 31 ]. We also propose the following solutions that can be implemented at the level of medical schools to better support medical students facing debt-related stress: (1) providing adequate financial aid that prevents low-income students from needing to work while being in medical school [ 32 ], (2) providing targeted financial planning classes and counseling for first-year medical students who have taken loans [ 33 ], and (3) creating mentorship programs that pair medical students with debt with physician role models who had also had debt but successfully paid it off [ 34 ]. We encourage medical schools to consider these suggestions, choosing the ideas from the list that make sense and tailoring them as necessary for their students and their unique needs. Additionally, given that our quantitative portion of the study was a secondary analysis of a survey focused on general medical student well-being, a nationwide study is needed that is specifically designed to explore the topic of debt-related stress among medical students. Furthermore, more research is needed that assesses the impact of activities that promote well-being (e.g., access to therapy, mindfulness practices, exercise) on debt-related stress among medical students.

Limitations

Our study had some notable limitations. One potential limitation is that our data collection occurred between 2019 and 2021 for this publication in 2023. Additionally, as described in the original study [ 3 ], a limitation of the MSWS is the inability to determine a response rate of students due to the survey distribution by medical student liaisons from each medical school; under the reasonable assumption that the survey was distributed to every US allopathic medical student, the response rate was estimated to have been 8.7%. 3 An additional limitation is the potential for response bias [ 3 ]. A limitation of the qualitative interviews is the potential for response bias among the interviewees. Although we purposely sampled, the students who accepted the invitation to interview may have been students with extreme views, either very negative views of debt or very neutral views of debt. Additionally, the interviewees were not representative of all possible financial situations, given that most students were from private schools, which typically have higher tuition rates. Also, all students had debt amounts in the middle and high categories, with none in the low category. Finally, our model of risk factors for debt-related stress suggested the presence of negative confounding factors, which exerted effects on specific variables (i.e.: pre-clinical year, West Coast) for which univariate analysis found no significant associations but multivariate analysis did. We did not perform further analysis to identify which variables served as the negative confounding variables.

In conclusion, our mixed methods, cross-sectional study exploring debt-related stress and its impact on US medical students’ wellbeing and professional development revealed a set of risk factors and design opportunities for intervention. By using a combined quantitative and qualitative HCD approach, we were able to develop a broad, in-depth understanding of the challenges and opportunities facing medical students with education debt. With these efforts to support the well-being and academic success of students at higher risk of debt-related stress, medical education institutions can develop and nurture a more diverse medical field that can best support the needs of future patients.

Data availability

Data is provided within the supplementary information files.

Youngclaus J, Julie Fresne. Physician education debt and the cost to attend medical school: 2020 update. Association of American Medical Colleges; 2020.

Association of American Medical Colleges. Medical school graduation questionnaire: 2020 all schools summary report. 2020 [cited 2023 Sep 7]. https://www.aamc.org/data-reports/students-residents/report/graduation-questionnaire-gq

Rajapuram N, Langness S, Marshall MR, Sammann A. Medical students in distress: the impact of gender, race, debt, and disability. PLoS ONE. 2020;15(12):e0243250.

Article   Google Scholar  

Rohlfing J, Navarro R, Maniya OZ, Hughes BD, Rogalsky DK. Medical student debt and major life choices other than specialty. Med Educ Online. 2014;19. https://doi.org/10.3402/meo.v19.25603

Pisaniello MS, Asahina AT, Bacchi S, Wagner M, Perry SW, Wong ML, et al. Effect of medical student debt on mental health, academic performance and specialty choice: a systematic review. BMJ Open. 2019;9(7):e029980.

AAMC. [cited 2023 Oct 18]. Unique populations. https://www.aamc.org/professional-development/affinity-groups/gfa/unique-populations

McMichael B, Lee IVA, Fallon B, Matusko N, Sandhu G. Racial and socioeconomic inequity in the financial stress of medical school. MedEdPublish (2016). 2022;12:3.

Mclnturff B. E. Frontczak. Medical school applicant survey. 2004.

Morrison E, Grbic D. Dimensions of diversity and perception of having learned from individuals from different backgrounds: the particular importance of racial diversity. Acad Med. 2015;90(7):937.

Heckman S, Lim H, Montalto C. Factors related to financial stress among college students. J Financial Therapy. 2014;5(1):19–39.

Heckman SJ, Grable JE. Testing the role of parental debt attitudes, student income, dependency status, and financial knowledge have in shaping financial self-efficacy among college students. Coll Student J. 2011;45(1):51–64.

Google Scholar  

Gillen M, Loeffler DN. Financial literacy and social work students: knowledge is power. Journal of Financial Therapy. 2012 [cited 2023 Sep 13];3(2). https://newprairiepress.org/jft/vol3/iss2/4

Conley CS, Durlak JA, Dickson DA. An evaluative review of outcome research on universal mental health promotion and prevention programs for higher education students. J Am Coll Health. 2013;61(5):286–301.

Luken M, Sammons A. Systematic review of mindfulness practice for reducing job burnout. Am J Occup Ther. 2016;70(2):p70022500201–10.

Weight CJ, Sellon JL, Lessard-Anderson CR, Shanafelt TD, Olsen KD, Laskowski ER. Physical activity, quality of life, and burnout among physician trainees: the effect of a team-based, incentivized exercise program. Mayo Clin Proc. 2013;88(12):1435–42.

Design. Kit. [cited 2023 Oct 2]. What is human-centered design? https://www.designkit.org/human-centered-design.html

AAMC. Tuition and student, fees reports. 2006–2013 tuition and student fees report. https://www.aamc.org/data-reports/reporting-tools/report/tuition-and-student-fees-reports

Dyrbye LN, Schwartz A, Downing SM, Szydlo DW, Sloan JA, Shanafelt TD. Efficacy of a brief screening tool to identify medical students in distress. Acad Med. 2011;86(7):907–14.

Charting outcomes in the match. U.S. allopathic seniors (Characteristics of U.S. allopathic seniors who matched to their preferred specialty in the 2018 main residency match). [cited 2023 Sep 18]. https://www.nrmp.org/wp-content/uploads/2021/07/Charting-Outcomes-in-the-Match-2018_Seniors-1.pdf

Greg Timpany. Top-box score – deriving a new measure. QuestionPro. https://www.questionpro.com/blog/creating-a-top-box-score/

Design. Kit. [cited 2023 Oct 9]. Extremes and mainstreams. https://www.designkit.org/methods/extremes-and-mainstreams.html

Design Kit. [cited 2023 Sep 18]. Create insight statements. https://www.designkit.org/methods/create-insight-statements.html

Designing an information and communications technology tool with and for victims of violence and their case managers in San Francisco. Human-centered design study. [cited 2024 Aug 12]. https://mhealth.jmir.org/2020/8/e15866

Bridge Innovate ® . 2017 [cited 2024 Aug 12]. Turning insights into opportunities. https://www.bridgeinnovate.com/blog/2017/12/19/turning-insights-into-opportunities

Van T, Bui K. First-generation college students at a four-year university: background characteristics, reasons for pursuing higher education, and first-year experiences. Coll Student J. 2002;36(1):3.

Students. & Residents. [cited 2023 Oct 18]. You can afford medical school. https://students-residents.aamc.org/financial-aid-resources/you-can-afford-medical-school

Medical schools with best financial aid. in 2023 | BeMo ® . [cited 2023 Oct 18]. https://bemoacademicconsulting.com/blog/medical-schools-with-best-financial-aid

Hasnie A, Hasnie U, Nelson B, Aldana I, Estrada C, Williams W. Relationship between residency match distance from medical school and virtual application, school characteristics, and specialty competitiveness. Cureus. 15(5):e38782.

Dorner FH, Burr RM, Tucker SL. The geographic relationships between physicians’ residency sites and the locations of their first practices. Acad Med. 1991;66(9):540.

Fallar R, Leikauf J, Dokun O, Anand S, Gliatto P, Mellman L, et al. Medical students’ experiences of unplanned leaves of absence. Med Sci Educ. 2019;29(4):1003–11.

Millo L, Ho N, Ubel PA. The cost of applying to medical school — a barrier to diversifying the profession. N Engl J Med. 2019;381(16):1505–8.

Should you work during medical school? | Medical School Admissions Doctor | U.S. News. [cited 2024 Jul 27]. https://www.usnews.com/education/blogs/medical-school-admissions-doctor/articles/should-you-work-during-medical-school

First year in medical school?. Here’s your financial checklist | American Medical Association. [cited 2024 Jul 27]. https://www.ama-assn.org/medical-students/medical-student-finance/first-year-medical-school-heres-your-financial-checklist

The White Coat Investor - Investing. & Personal Finance for Doctors. [cited 2024 Jul 27]. Physician Personal Finance | White Coat Investor. https://www.whitecoatinvestor.com/personal-finance-for-doctors/

Download references

Acknowledgements

We thank the members of The Better Lab, including Devika Patel, Christiana Von Hippel, and Marianna Salvatori, for their support. We appreciate Pamela Derish (UCSF) for assistance in manuscript editing and the UCSF Clinical and Translational Science Institute (CTSI) for assistance in statistical analysis. This publication was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI Grant Number UL1 TR001872. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Funding was not obtained for this project.

Author information

Adrienne Yang, Simone Langness and Lara Chehab contributed equally to this work.

Authors and Affiliations

Department of Surgery, University of California, San Francisco, CA, USA

Adrienne Yang, Lara Chehab & Amanda Sammann

Department of Trauma Surgery, Sharp HealthCare, San Diego, CA, USA

Simone Langness

Department of Pediatrics, Stanford University, Stanford, CA, USA

Nikhil Rajapuram

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA

You can also search for this author in PubMed   Google Scholar

Contributions

A.Y. and L.C. wrote the main manuscript text and prepared the figures. S.L. created the study design. All authors reviewed the manuscript.

Corresponding author

Correspondence to Adrienne Yang .

Ethics declarations

Ethics approval and consent to participate.

All activities conducted as part of this study were approved by the UCSF Institutional Review Board. Informed consent was obtained verbally from all participants prior to conducting interviews.

Consent for publication

We, the authors, consent to the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, supplementary material 4, supplementary material 5, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Yang, A., Langness, S., Chehab, L. et al. Medical students in distress: a mixed methods approach to understanding the impact of debt on well-being. BMC Med Educ 24 , 947 (2024). https://doi.org/10.1186/s12909-024-05927-9

Download citation

Received : 12 April 2024

Accepted : 19 August 2024

Published : 30 August 2024

DOI : https://doi.org/10.1186/s12909-024-05927-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

BMC Medical Education

ISSN: 1472-6920

medical terminology hypothesis definition

IMAGES

  1. What is a Hypothesis

    medical terminology hypothesis definition

  2. MEDICAL TERMINOLOGY

    medical terminology hypothesis definition

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    medical terminology hypothesis definition

  4. Hypothesis

    medical terminology hypothesis definition

  5. 13 Different Types of Hypothesis (2024)

    medical terminology hypothesis definition

  6. hypothesis meaning medical

    medical terminology hypothesis definition

VIDEO

  1. What Is A Hypothesis?

  2. What does hypothesis mean?

  3. What is a Hypothesis?

  4. Test of Hypothesis II Definitions & Terminology by Dr. P Srilatha

  5. STAT 1040 statistical terminology for hypothesis tests

  6. Hypothesis Testing, Power, and Sample Size Estimation in Medical Research

COMMENTS

  1. Hypothesis

    Looking for online definition of hypothesis in the Medical Dictionary? hypothesis explanation free. What is hypothesis? Meaning of hypothesis medical term. What does hypothesis mean?

  2. Hypothesis Testing, P Values, Confidence Intervals, and Significance

    Definition/Introduction. Medical providers often rely on evidence-based medicine to guide decision-making in practice. Often a research hypothesis is tested with results provided, typically with p values, confidence intervals, or both. Additionally, statistical or research significance is estimated or determined by the investigators.

  3. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  4. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. Explore examples and learn how to format your research hypothesis.

  5. Probability, clinical decision making and hypothesis testing

    The present paper attempts to put the P value in proper perspective by explaining different types of probabilities, their role in clinical decision making, medical research and hypothesis testing. Keywords: Hypothesis testing, P value, Probability. The clinician who wishes to remain abreast with the results of medical research needs to develop ...

  6. hypothesis

    hypothesis Definition / meaning of hypothesis A tentative proposal made to explain certain observations or facts that requires further investigation to be verified.

  7. Medical Theory and Its Notions of Definition and Explanation

    This chapter elucidates several special features of the usage of the notions definition and explanation in medicine and medical theory. As these special features are intimately connected to the key concept of disease entity, the first section Disease...

  8. Scientific hypothesis

    Scientific hypothesis, idea that proposes an explanation for an observed phenomenon or narrow set of phenomena. Two key features of a scientific hypothesis are falsifiability and testability, which are reflected in an 'If...then' statement, and the ability to be supported or refuted in observation or experimentation.

  9. Hypothesis

    hypothesis, something supposed or taken for granted, with the object of following out its consequences (Greek hypothesis, "a putting under," the Latin equivalent being suppositio). Discussion with Kara Rogers of how the scientific model is used to test a hypothesis or represent a theory Kara Rogers, senior biomedical sciences editor of ...

  10. Hypothesis Definition & Meaning

    The meaning of HYPOTHESIS is an assumption or concession made for the sake of argument. How to use hypothesis in a sentence. The Difference Between Hypothesis and Theory Synonym Discussion of Hypothesis.

  11. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  12. What Is A Research (Scientific) Hypothesis?

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  13. Hypothesis

    The exact meaning of the medical terminology,'Hypothesis' - A tentative proposal made to explain certain observations or facts that requires further investigation to be verified, is clearly ...

  14. The Logic of Medical Diagnosis: Generating and Selecting Hypotheses

    Another approach to hypothesis selection is inference to the best explanation (IBE). Though IBE is often confounded with abduction, they are distinct logical processes. 3 According to Minnamaier ( 2004) in terms of medical practice, abduction is the inferential process of generating plausible diagnoses; it creates a diagnostic space.

  15. Hypothesis

    What Is Hypothesis? A scientific hypothesis is a foundational element of the scientific method. It's a testable statement proposing a potential explanation for natural phenomena. The term hypothesis means "little theory". A hypothesis is a short statement that can be tested and gives a possible reason for a phenomenon or a possible link between two variables. In the setting of scientific ...

  16. What is the definition of a hypothesis?

    What is the definition of a hypothesis? A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

  17. Hypothesis tests

    A hypothesis test is a procedure used in statistics to assess whether a particular viewpoint is likely to be true. They follow a strict protocol, and they generate a ' p- value', on the basis of which a decision is made about the truth of the hypothesis under investigation. All of the routine statistical 'tests' used in research— t ...

  18. Medical Hypotheses

    Medical Hypotheses is a forum for ideas in medicine and related biomedical sciences. It will publish interesting and important theoretical papers that foster the diversity and debate upon which the scientific process thrives.

  19. Medical Terminology for Healthcare Professions

    About the Book Medical Terminology for Healthcare Professions is an Open Educational Resource (OER) that focuses on breaking down, pronouncing, and learning the meaning of medical terms within the context of anatomy and physiology. This resource is targeted for Healthcare Administration, Health Sciences, and Pre-Professional students.

  20. Medical Terminology

    Medical Dictionary of Health Terms The A to Z library is a collection of articles covering many of the most commonly searched medical conditions. Each article contains a description of the condition; the symptoms; how it is diagnosed, prevented, and treated; the prognosis; and when to seek professional advice. ...

  21. What Is Medical Terminology? Definitions By Patient Better®

    Medical terminology is the specialized language used in healthcare to accurately describe the human body, its parts, functions, and the procedures performed on it. Identifiers: Medical terminology often sounds complex, but once you understand the basic structure of medical words, it becomes much easier to parse their meanings.

  22. Medical Terms and Abbreviations: Merriam-Webster Medical Dictionary

    Medical Dictionary Search medical terms and abbreviations with the most up-to-date and comprehensive medical dictionary from the reference experts at Merriam-Webster. Master today's medical vocabulary. Become an informed health-care consumer!

  23. Guide for authors

    Medical Hypotheses is a forum for ideas in medicine and related biomedical sciences. It will publish interesting and important theoretical papers that foster the diversity and debate upon which the scientific process thrives. The Aims and Scope of Medical Hypotheses are no different now from what was proposed by the founder of the journal, the ...

  24. Learning effect of online versus onsite education in health and medical

    Medical education was utterly disrupted for two years by the COVID-19 pandemic. In the midst of rearranging courses and adapting to online platforms we, with lecturers and course managers around the globe, wondered what the conversion to online setting did to students' learning, motivation and self-efficacy [1,2,3].What the long-term consequences would be [] and if scalable online medical ...

  25. Medical students in distress: a mixed methods approach to understanding

    Nearly three in four U.S. medical students graduate with debt in six-figure dollar amounts which impairs students emotionally and academically and impacts their career choices and lives long after graduation. Schools have yet to develop systems-level solutions to address the impact of debt on students' well-being. The objectives of this study were to identify students at highest risk for ...