11 Tips For Writing a Dissertation Data Analysis

Since the evolution of the fourth industrial revolution – the Digital World; lots of data have surrounded us. There are terabytes of data around us or in data centers that need to be processed and used. The data needs to be appropriately analyzed to process it, and Dissertation data analysis forms its basis. If data analysis is valid and free from errors, the research outcomes will be reliable and lead to a successful dissertation. 

So, in today’s topic, we will cover the need to analyze data, dissertation data analysis, and mainly the tips for writing an outstanding data analysis dissertation. If you are a doctoral student and plan to perform dissertation data analysis on your data, make sure that you give this article a thorough read for the best tips!

What is Data Analysis in Dissertation?

Even f you have the data collected and compiled in the form of facts and figures, it is not enough for proving your research outcomes. There is still a need to apply dissertation data analysis on your data; to use it in the dissertation. It provides scientific support to the thesis and conclusion of the research.

Data Analysis Tools

There are plenty of indicative tests used to analyze data and infer relevant results for the discussion part. Following are some tests  used to perform analysis of data leading to a scientific conclusion:

Hypothesis TestingRegression and Correlation analysis
T-testZ test
Mann-Whitney TestTime Series and index number
Chi-Square TestANOVA (or sometimes MANOVA) 

11 Most Useful Tips for Dissertation Data Analysis

Doctoral students need to perform dissertation data analysis and then dissertation to receive their degree. Many Ph.D. students find it hard to do dissertation data analysis because they are not trained in it.

1. Dissertation Data Analysis Services

The first tip applies to those students who can afford to look for help with their dissertation data analysis work. It’s a viable option, and it can help with time management and with building the other elements of the dissertation with much detail.

Dissertation Analysis services are professional services that help doctoral students with all the basics of their dissertation work, from planning, research and clarification, methodology, dissertation data analysis and review, literature review, and final powerpoint presentation.

One great reference for dissertation data analysis professional services is Statistics Solutions , they’ve been around for over 22 years helping students succeed in their dissertation work. You can find the link to their website here .

Following are some helpful tips for writing a splendid dissertation data analysis:

2. Relevance of Collected Data

It involves  data collection  of your related topic for research. Carefully analyze the data that tends to be suitable for your analysis. Do not just go with irrelevant data leading to complications in the results. Your data must be relevant and fit with your objectives. You must be aware of how the data is going to help in analysis. 

3. Data Analysis

For analysis, it is crucial to use such methods that fit best with the types of data collected and the research objectives. Elaborate on these methods and the ones that justify your data collection methods thoroughly. Make sure to make the reader believe that you did not choose your method randomly. Instead, you arrived at it after critical analysis and prolonged research.

Data analysis involves two approaches –  Qualitative Data Analysis and Quantitative Data Analysis.   Qualitative data analysis  comprises research through experiments, focus groups, and interviews. This approach helps to achieve the objectives by identifying and analyzing common patterns obtained from responses. 

The overall objective of data analysis is to detect patterns and inclinations in data and then present the outcomes implicitly.  It helps in providing a solid foundation for critical conclusions and assisting the researcher to complete the dissertation proposal. 

4. Qualitative Data Analysis

Qualitative data refers to data that does not involve numbers. You are required to carry out an analysis of the data collected through experiments, focus groups, and interviews. This can be a time-taking process because it requires iterative examination and sometimes demanding the application of hermeneutics. Note that using qualitative technique doesn’t only mean generating good outcomes but to unveil more profound knowledge that can be transferrable.

Presenting qualitative data analysis in a dissertation  can also be a challenging task. It contains longer and more detailed responses. Placing such comprehensive data coherently in one chapter of the dissertation can be difficult due to two reasons. Firstly, we cannot figure out clearly which data to include and which one to exclude. Secondly, unlike quantitative data, it becomes problematic to present data in figures and tables. Making information condensed into a visual representation is not possible. As a writer, it is of essence to address both of these challenges.

This method involves analyzing qualitative data based on an argument that a researcher already defines. It’s a comparatively easy approach to analyze data. It is suitable for the researcher with a fair idea about the responses they are likely to receive from the questionnaires.

In this method, the researcher analyzes the data not based on any predefined rules. It is a time-taking process used by students who have very little knowledge of the research phenomenon.

5. Quantitative Data Analysis

The Presentation of quantitative data  depends on the domain to which it is being presented. It is beneficial to consider your audience while writing your findings. Quantitative data for  hard sciences  might require numeric inputs and statistics. As for  natural sciences , such comprehensive analysis is not required.

Following are some of the methods used to perform quantitative data analysis. 

6. Data Presentation Tools

Since large volumes of data need to be represented, it becomes a difficult task to present such an amount of data in coherent ways. To resolve this issue, consider all the available choices you have, such as tables, charts, diagrams, and graphs. 

7. Include Appendix or Addendum

After presenting a large amount of data, your dissertation analysis part might get messy and look disorganized. Also, you would not be cutting down or excluding the data you spent days and months collecting. To avoid this, you should include an appendix part. 

8. Thoroughness of Data

Thoroughly demonstrate the ideas and critically analyze each perspective taking care of the points where errors can occur. Always make sure to discuss the anomalies and strengths of your data to add credibility to your research.

9. Discussing Data

10. findings and results.

Findings refer to the facts derived after the analysis of collected data. These outcomes should be stated; clearly, their statements should tightly support your objective and provide logical reasoning and scientific backing to your point. This part comprises of majority part of the dissertation. 

11. Connection with Literature Review

The role of data analytics at the senior management level.

From small and medium-sized businesses to Fortune 500 conglomerates, the success of a modern business is now increasingly tied to how the company implements its data infrastructure and data-based decision-making. According

The Decision-Making Model Explained (In Plain Terms)

Any form of the systematic decision-making process is better enhanced with data. But making sense of big data or even small data analysis when venturing into a decision-making process might

13 Reasons Why Data Is Important in Decision Making

Wrapping up.

Writing data analysis in the dissertation involves dedication, and its implementations demand sound knowledge and proper planning. Choosing your topic, gathering relevant data, analyzing it, presenting your data and findings correctly, discussing the results, connecting with the literature and conclusions are milestones in it. Among these checkpoints, the Data analysis stage is most important and requires a lot of keenness.

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

data analysis thesis

How To Write The Results/Findings Chapter

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

Dissertation Coaching

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

data analysis thesis

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point.

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

Research Bootcamps

Learn More About Quantitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Inferential Statistics 101: Simple Explainer (With Examples)

Inferential Statistics 101: Simple Explainer (With Examples)

Learn about the key concepts and tests within inferential statistics, including t-tests, ANOVA, chi-square, correlation and regression.

Descriptive Statistics 101: Simple Explainer (With Examples)

Descriptive Statistics 101: Simple Explainer (With Examples)

Learn about the key concepts and measures within descriptive statistics, including measures of central tendency and dispersion.

Validity & Reliability: Explained Simply

Validity & Reliability: Explained Simply

Validity & Reliability In Research A Plain-Language Explanation (With Examples)By:...

Research Design 101: Qualitative & Quantitative

Research Design 101: Qualitative & Quantitative

Learn about research design for both qualitative and quantitative studies. Includes plain-language explanations and examples.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

Soo

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

data analysis thesis

  • Print Friendly

Raw Data to Excellence: Master Dissertation Analysis

Discover the secrets of successful dissertation data analysis. Get practical advice and useful insights from experienced experts now!

' src=

Have you ever found yourself knee-deep in a dissertation, desperately seeking answers from the data you’ve collected? Or have you ever felt clueless with all the data that you’ve collected but don’t know where to start? Fear not, in this article we are going to discuss a method that helps you come out of this situation and that is Dissertation Data Analysis.

Dissertation data analysis is like uncovering hidden treasures within your research findings. It’s where you roll up your sleeves and explore the data you’ve collected, searching for patterns, connections, and those “a-ha!” moments. Whether you’re crunching numbers, dissecting narratives, or diving into qualitative interviews, data analysis is the key that unlocks the potential of your research.

Dissertation Data Analysis

Dissertation data analysis plays a crucial role in conducting rigorous research and drawing meaningful conclusions. It involves the systematic examination, interpretation, and organization of data collected during the research process. The aim is to identify patterns, trends, and relationships that can provide valuable insights into the research topic.

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Descriptive statistics are commonly used to summarize and describe the main characteristics of the data, such as measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). These statistics help researchers gain an initial understanding of the data and identify any outliers or anomalies.

Furthermore, qualitative data analysis techniques can be employed when dealing with non-numerical data, such as textual data or interviews. This involves systematically organizing, coding, and categorizing qualitative data to identify themes and patterns.

Types of Research

When considering research types in the context of dissertation data analysis, several approaches can be employed:

1. Quantitative Research

This type of research involves the collection and analysis of numerical data. It focuses on generating statistical information and making objective interpretations. Quantitative research often utilizes surveys, experiments, or structured observations to gather data that can be quantified and analyzed using statistical techniques.

2. Qualitative Research

In contrast to quantitative research, qualitative research focuses on exploring and understanding complex phenomena in depth. It involves collecting non-numerical data such as interviews, observations, or textual materials. Qualitative data analysis involves identifying themes, patterns, and interpretations, often using techniques like content analysis or thematic analysis.

3. Mixed-Methods Research

This approach combines both quantitative and qualitative research methods. Researchers employing mixed-methods research collect and analyze both numerical and non-numerical data to gain a comprehensive understanding of the research topic. The integration of quantitative and qualitative data can provide a more nuanced and comprehensive analysis, allowing for triangulation and validation of findings.

Primary vs. Secondary Research

Primary research.

Primary research involves the collection of original data specifically for the purpose of the dissertation. This data is directly obtained from the source, often through surveys, interviews, experiments, or observations. Researchers design and implement their data collection methods to gather information that is relevant to their research questions and objectives. Data analysis in primary research typically involves processing and analyzing the raw data collected.

Secondary Research

Secondary research involves the analysis of existing data that has been previously collected by other researchers or organizations. This data can be obtained from various sources such as academic journals, books, reports, government databases, or online repositories. Secondary data can be either quantitative or qualitative, depending on the nature of the source material. Data analysis in secondary research involves reviewing, organizing, and synthesizing the available data.

If you wanna deepen into Methodology in Research, also read: What is Methodology in Research and How Can We Write it?

Types of Analysis 

Various types of analysis techniques can be employed to examine and interpret the collected data. Of all those types, the ones that are most important and used are:

  • Descriptive Analysis: Descriptive analysis focuses on summarizing and describing the main characteristics of the data. It involves calculating measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). Descriptive analysis provides an overview of the data, allowing researchers to understand its distribution, variability, and general patterns.
  • Inferential Analysis: Inferential analysis aims to draw conclusions or make inferences about a larger population based on the collected sample data. This type of analysis involves applying statistical techniques, such as hypothesis testing, confidence intervals, and regression analysis, to analyze the data and assess the significance of the findings. Inferential analysis helps researchers make generalizations and draw meaningful conclusions beyond the specific sample under investigation.
  • Qualitative Analysis: Qualitative analysis is used to interpret non-numerical data, such as interviews, focus groups, or textual materials. It involves coding, categorizing, and analyzing the data to identify themes, patterns, and relationships. Techniques like content analysis, thematic analysis, or discourse analysis are commonly employed to derive meaningful insights from qualitative data.
  • Correlation Analysis: Correlation analysis is used to examine the relationship between two or more variables. It determines the strength and direction of the association between variables. Common correlation techniques include Pearson’s correlation coefficient, Spearman’s rank correlation, or point-biserial correlation, depending on the nature of the variables being analyzed.

Basic Statistical Analysis

When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

  • Descriptive Statistics
  • Frequency Analysis
  • Cross-tabulation
  • Chi-Square Test
  • Correlation Analysis

Advanced Statistical Analysis

In dissertation data analysis, researchers may employ advanced statistical analysis techniques to gain deeper insights and address complex research questions. These techniques go beyond basic statistical measures and involve more sophisticated methods. Here are some examples of advanced statistical analysis commonly used in dissertation research:

Regression Analysis

  • Analysis of Variance (ANOVA)
  • Factor Analysis
  • Cluster Analysis
  • Structural Equation Modeling (SEM)
  • Time Series Analysis

Examples of Methods of Analysis

Regression analysis is a powerful tool for examining relationships between variables and making predictions. It allows researchers to assess the impact of one or more independent variables on a dependent variable. Different types of regression analysis, such as linear regression, logistic regression, or multiple regression, can be used based on the nature of the variables and research objectives.

Event Study

An event study is a statistical technique that aims to assess the impact of a specific event or intervention on a particular variable of interest. This method is commonly employed in finance, economics, or management to analyze the effects of events such as policy changes, corporate announcements, or market shocks.

Vector Autoregression

Vector Autoregression is a statistical modeling technique used to analyze the dynamic relationships and interactions among multiple time series variables. It is commonly employed in fields such as economics, finance, and social sciences to understand the interdependencies between variables over time.

Preparing Data for Analysis

1. become acquainted with the data.

It is crucial to become acquainted with the data to gain a comprehensive understanding of its characteristics, limitations, and potential insights. This step involves thoroughly exploring and familiarizing oneself with the dataset before conducting any formal analysis by reviewing the dataset to understand its structure and content. Identify the variables included, their definitions, and the overall organization of the data. Gain an understanding of the data collection methods, sampling techniques, and any potential biases or limitations associated with the dataset.

2. Review Research Objectives

This step involves assessing the alignment between the research objectives and the data at hand to ensure that the analysis can effectively address the research questions. Evaluate how well the research objectives and questions align with the variables and data collected. Determine if the available data provides the necessary information to answer the research questions adequately. Identify any gaps or limitations in the data that may hinder the achievement of the research objectives.

3. Creating a Data Structure

This step involves organizing the data into a well-defined structure that aligns with the research objectives and analysis techniques. Organize the data in a tabular format where each row represents an individual case or observation, and each column represents a variable. Ensure that each case has complete and accurate data for all relevant variables. Use consistent units of measurement across variables to facilitate meaningful comparisons.

4. Discover Patterns and Connections

In preparing data for dissertation data analysis, one of the key objectives is to discover patterns and connections within the data. This step involves exploring the dataset to identify relationships, trends, and associations that can provide valuable insights. Visual representations can often reveal patterns that are not immediately apparent in tabular data. 

Qualitative Data Analysis

Qualitative data analysis methods are employed to analyze and interpret non-numerical or textual data. These methods are particularly useful in fields such as social sciences, humanities, and qualitative research studies where the focus is on understanding meaning, context, and subjective experiences. Here are some common qualitative data analysis methods:

Thematic Analysis

The thematic analysis involves identifying and analyzing recurring themes, patterns, or concepts within the qualitative data. Researchers immerse themselves in the data, categorize information into meaningful themes, and explore the relationships between them. This method helps in capturing the underlying meanings and interpretations within the data.

Content Analysis

Content analysis involves systematically coding and categorizing qualitative data based on predefined categories or emerging themes. Researchers examine the content of the data, identify relevant codes, and analyze their frequency or distribution. This method allows for a quantitative summary of qualitative data and helps in identifying patterns or trends across different sources.

Grounded Theory

Grounded theory is an inductive approach to qualitative data analysis that aims to generate theories or concepts from the data itself. Researchers iteratively analyze the data, identify concepts, and develop theoretical explanations based on emerging patterns or relationships. This method focuses on building theory from the ground up and is particularly useful when exploring new or understudied phenomena.

Discourse Analysis

Discourse analysis examines how language and communication shape social interactions, power dynamics, and meaning construction. Researchers analyze the structure, content, and context of language in qualitative data to uncover underlying ideologies, social representations, or discursive practices. This method helps in understanding how individuals or groups make sense of the world through language.

Narrative Analysis

Narrative analysis focuses on the study of stories, personal narratives, or accounts shared by individuals. Researchers analyze the structure, content, and themes within the narratives to identify recurring patterns, plot arcs, or narrative devices. This method provides insights into individuals’ live experiences, identity construction, or sense-making processes.

Applying Data Analysis to Your Dissertation

Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation:

Selecting Analysis Techniques

Choose analysis techniques that align with your research questions, objectives, and the nature of your data. Whether quantitative or qualitative, identify the most suitable statistical tests, modeling approaches, or qualitative analysis methods that can effectively address your research goals. Consider factors such as data type, sample size, measurement scales, and the assumptions associated with the chosen techniques.

Data Preparation

Ensure that your data is properly prepared for analysis. Cleanse and validate your dataset, addressing any missing values, outliers, or data inconsistencies. Code variables, transform data if necessary, and format it appropriately to facilitate accurate and efficient analysis. Pay attention to ethical considerations, data privacy, and confidentiality throughout the data preparation process.

Execution of Analysis

Execute the selected analysis techniques systematically and accurately. Utilize statistical software, programming languages, or qualitative analysis tools to carry out the required computations, calculations, or interpretations. Adhere to established guidelines, protocols, or best practices specific to your chosen analysis techniques to ensure reliability and validity.

Interpretation of Results

Thoroughly interpret the results derived from your analysis. Examine statistical outputs, visual representations, or qualitative findings to understand the implications and significance of the results. Relate the outcomes back to your research questions, objectives, and existing literature. Identify key patterns, relationships, or trends that support or challenge your hypotheses.

Drawing Conclusions

Based on your analysis and interpretation, draw well-supported conclusions that directly address your research objectives. Present the key findings in a clear, concise, and logical manner, emphasizing their relevance and contributions to the research field. Discuss any limitations, potential biases, or alternative explanations that may impact the validity of your conclusions.

Validation and Reliability

Evaluate the validity and reliability of your data analysis by considering the rigor of your methods, the consistency of results, and the triangulation of multiple data sources or perspectives if applicable. Engage in critical self-reflection and seek feedback from peers, mentors, or experts to ensure the robustness of your data analysis and conclusions.

In conclusion, dissertation data analysis is an essential component of the research process, allowing researchers to extract meaningful insights and draw valid conclusions from their data. By employing a range of analysis techniques, researchers can explore relationships, identify patterns, and uncover valuable information to address their research objectives.

Turn Your Data Into Easy-To-Understand And Dynamic Stories

Decoding data is daunting and you might end up in confusion. Here’s where infographics come into the picture. With visuals, you can turn your data into easy-to-understand and dynamic stories that your audience can relate to. Mind the Graph is one such platform that helps scientists to explore a library of visuals and use them to amplify their research work. Sign up now to make your presentation simpler. 

inductive-vs-deductive-research-blog

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

IMAGES

  1. SOLUTION: Thesis chapter 4 analysis and interpretation of data sample

    data analysis thesis

  2. Writing the Best Dissertation Data Analysis Possible

    data analysis thesis

  3. 6+ Research Analysis Templates

    data analysis thesis

  4. Thesis data analysis

    data analysis thesis

  5. Top 5 Tips for Writing a Data Analysis Dissertation Example

    data analysis thesis

  6. (PDF) Methods of Data Analysis

    data analysis thesis

VIDEO

  1. SPSS in Nepali

  2. Outline Pane in SPSS #spss #statisticalanalysis #excel #mexcel #statisticaltest

  3. SPSS in Nepali

  4. SPSS in Nepali

  5. SPSS in Nepali

  6. SPSS in Nepali

COMMENTS

  1. 11 Tips For Writing a Dissertation Data Analysis

    Dissertation Data Analysis is the process of understanding, gathering, compiling, and processing a large amount of data. Then identifying common patterns in responses and critically examining facts and figures to find the rationale behind those outcomes.

  2. How to Use Quantitative Data Analysis in a Thesis | GCU Blog

    One of the steps you’ll take to complete your dissertation is defining a research topic and writing a strong thesis statement to clearly explain the particular focus of your research. This guide discusses the application of quantitative data analysis to your thesis statement.

  3. Analysing and Interpreting Data in Your Dissertation: Making ...

    Master the art of analysing and interpreting data for your dissertation with our comprehensive guide. Learn essential techniques for quantitative and qualitative analysis, data preparation, and effective presentation to enhance the credibility and impact of your research.

  4. A practical guide to data analysis in general literature reviews

    A general literature review starts with formulating a research question, defining the population, and conducting a systematic search in scientific databases, steps that are well-described elsewhere. 1, 2, 3 Once students feel confident that they have thoroughly combed through relevant databases and found the most relevant research on the topic, ...

  5. Dissertation Results/Findings Chapter (Quantitative) - Grad Coach

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected.

  6. Raw Data to Excellence: Master Dissertation Analysis

    Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation: