കാലാവസ്ഥാ വ്യതിയാനം ഒരു ആഗോള ആരോഗ്യ വെല്ലുവിളി

climate change and health

കാലാവസ്ഥാ വ്യതിയാനം മനുഷ്യജീവിതത്തിന്റെ എല്ലാതലങ്ങളെയും ഗൗരവതരമായി ബാധിച്ചു കൊണ്ടിരിക്കുകയാണ്. ലോകം ഇപ്പോൾ നേരിട്ടുകൊണ്ടിരിക്കുന്ന കാലാവസ്ഥാ വ്യതിയാനപരമായ വലിയൊരു വെല്ലുവിളി ആരോഗ്യപ്രശ്നങ്ങൾ വളർന്നു വരുന്നതാണ്. അന്തരീക്ഷ ഊഷ്മാവിന്റെ അളവ് ക്രമാതീതമായി വർധിക്കുന്നത് ജീവന്റെ നിലനിൽപ്പിനു തന്നെ ഭീഷണിയായി മാറിയിരിക്കുന്നു. താപ കാലാവസ്ഥാ താളക്രമത്തിൽ വന്ന മാറ്റം സാംക്രമിക രോഗങ്ങൾക്ക് ആക്കംകൂട്ടി. ഉഷ്ണമേഖലാ രോഗങ്ങളിൽ (Tropical Diseases) പ്രധാനികളായ ചിക്കുൻഗുനിയ, ഡെങ്കി തുടങ്ങിയ കൊതുകുജന്യ രോഗങ്ങളുടെ പ്രഹരശേഷിയും വ്യാപനതോതും അടുത്തിടെയായി വർധിച്ചു വരുന്നതായി കാണുന്നു.

essay on climate change in malayalam

ആര്‍ട്ടിക്കിള്‍ ഷോ

ഇന്ത്യന്‍ ജയിലുകളും മനുഷ്യാവകാശവും

essay on climate change in malayalam

എന്താണ് ഹരിതഗൃഹപ്രഭാവം?

story-proflie

ഭൂ മിയുടെ അന്തരീക്ഷത്തിലെ ചില ഘടകങ്ങൾ (പ്രധാനമായും കാർബൺ ഡൈഓക്സൈഡ്) സൗരതാപത്തെ ആഗിരണം ചെയ്യുകയും ഭൂമിയുടെ താപനില ഉയർത്തുകയും ചെയ്യുന്ന പ്രതിഭാസമാണ് ഹരിതഗൃഹപ്രഭാവം. (Greenhouse effect). ഭൂമി തണുത്തുറഞ്ഞു പോകാതെ ജീവ​െൻറ നിലനിൽപിന് അനുയോജ്യമായ താപനില നിലനിർത്താൻ ഹരിതഗൃഹപ്രഭാവം സഹായിക്കുന്നു. എന്നാൽ, ഇപ്പോൾ മനുഷ്യ​െൻറ തെറ്റായ ചില പ്രവർത്തനങ്ങൾമൂലം അന്തരീക്ഷത്തിൽ കാർബൺ ഡൈഓക്സൈഡി​െൻറ അളവ് കൂടുകയും ഭൂമിയുടെ അന്തരീക്ഷ താപനില അനഭിലഷണീയമാം വിധം ഉയരുകയും ചെയ്യുന്നുണ്ട്. പരിസ്ഥിതി ശാസ്ത്രജ്ഞർക്കിടയിൽ ഹരിതഗൃഹപ്രഭാവം ഒരു സജീവ ചർച്ചാവിഷയമാകുന്നത് അതു കൊണ്ടാണ്.

പേരിനു പിന്നിൽ

ശൈത്യരാജ്യങ്ങളിൽ അതിശൈത്യം കാരണം ചിലയിനം ചെടികൾ നശിച്ചുപോവുക സാധാരണമാണ്. അതിനാൽ, കർഷകർ സംരക്ഷിക്കേണ്ട ചെടികളെ ഒരു ചില്ലു കൂടിനുള്ളിൽ വളർത്തുന്നു. ഈ ചില്ലുകൂടാണ് ഹരിതഗൃഹം (Green house). ചില്ല് സുതാര്യമായതിനാൽ പ്രകാശരശ്മികൾ ഉള്ളിൽ കയറും. എന്നാൽ, ചില്ലുകൂട് താപരശ്മികളെ പുറത്തുകടക്കാൻ അനുവദിക്കാതെ കെണിയിലാക്കുന്നു. അതിനാൽ, ചില്ലുകൂടിനുള്ളിലെ താപനില ഉയരുകയും ചെടികൾ അതിശൈത്യത്തിൽ നിന്നും രക്ഷപ്പെടുകയും ചെയ്യുന്നു. ഇത്തരം ചില്ലുകൂടുകൾ ചെയ്യുന്നതുപോലെ അന്തരീക്ഷത്തിലെ ചില വാതകങ്ങൾ ഭൂമി പ്രതിപതിപ്പിക്കുന്ന താപവികിരണങ്ങൾ ശൂന്യാകാശത്തിലേക്ക് നഷ്​ടപ്പെടാതെ തടയുന്നു. ഇതാണ് ഹരിതഗൃഹപ്രഭാവം.

അന്തരീക്ഷം ചൂടുപിടിക്കുന്നതെങ്ങനെ?

ഭൂമിയുടെ അന്തരീക്ഷതാപനില ഉയരുന്നത് ഭൂമിയിൽ നേരിട്ടുപതിക്കുന്ന സൂര്യരശ്​മികളാലല്ല. അവ ​ ഹ്രസ്വതരംഗങ്ങളായതിനാൽ അധികം വായുകണങ്ങളുമായി സമ്പർക്കത്തിൽ വരാത്തതാണ് കാരണം. എന്നാൽ, ഇവയേറ്റ് ചൂടുപിടിക്കുന്ന ഭൂമി, ഇൻഫ്രാറെഡ് വികിരണങ്ങൾ (ഉഷ്ണരശ്മികൾ) ഭൗമോപരിതലത്തിൽ നിന്നും പ്രതിപതിപ്പിക്കും. തരംഗദൈർഘ്യം കൂടുതലുള്ളതിനാൽ ഇവ വളഞ്ഞുപുളഞ്ഞ് സഞ്ചരിച്ച് അന്തരീക്ഷത്തിലെ കൂടുതൽ വായുകണങ്ങളുമായി സമ്പർക്കത്തിൽ വന്ന് അവയെ ചൂടുപിടിക്കും. ഇതാണ് അന്തരീക്ഷതാപനില ഉയർത്തുന്നത് (ഇൻറർലോക്കിട്ട മുറ്റമുള്ള വീടുകളിൽ നേരിട്ട് സൂര്യപ്രകാശമേൽക്കാത്ത സിറ്റൗട്ടിൽ ഇരിക്കുമ്പോൾ നമുക്ക് അത്യധികമായ ചൂട് അനുഭവപ്പെടാനുള്ള കാരണം ഈ ഭൗമവികിരണങ്ങളാണ്).

താപത്തെ കെണിയിലാക്കുന്നവർ

ഭൗമോപരിതലത്തിൽനിന്നും പ്രതിപതിക്കുന്ന താപവികിരണങ്ങളാണ് അന്തരീക്ഷത്തെ ചൂടുപിടിപ്പിക്കുന്നത് എന്നു നാം കണ്ടു. ഈ താപവികിരണങ്ങളെ ബഹിരാകാശത്തേക്ക് തിരിച്ചുപോകാൻ അനുവദിക്കാതെ അന്തരീക്ഷത്തിലെ ചില വാതകങ്ങൾ ആഗിരണം ചെയ്യുന്നു. ഇത്തരം വാതകങ്ങളാണ് ഹരിതഗൃഹവാതകങ്ങൾ (Green house gases). കാർബൺ ഡൈഓക്സൈഡ്, മീഥൈൻ, നൈട്രസ് ഓക്സൈഡ്, നീരാവി എന്നിവയാണ്പ്രധാന ഹരിതഗൃഹവാതകങ്ങൾ. ഈ വാതകങ്ങൾ അവ ആഗിരണം ചെയ്ത താപവികിരണങ്ങളെ വീണ്ടും താഴേക്കും മുകളിലേക്കും വശങ്ങളിലേക്കും പ്രതിപതിപ്പിക്കുന്നു. ഇവയെ ഭൗമോപരിതലവും മറ്റു ഹരിതഗൃഹ വാതകകണങ്ങളും വീണ്ടും ആഗിരണം ചെയ്യുകയും പുറത്തുവിടുകയും ചെയ്യുന്നു. ഈ ചാക്രിക പ്രക്രിയയാണ് അന്തരീക്ഷത്തെ ജീവ​ന്‍റെ നിലനിൽപിന് അനുയോജ്യമാം വിധം ചൂടുള്ളതാക്കുന്നത്.

അമിതമായാൽ അമൃതും വിഷം

സസ്യ-ജന്തുജാലങ്ങളുടെ നിലനിൽപിന് ആവശ്യമായ അളവിൽ അന്തരീക്ഷതാപം നിലനിർത്തുന്നത് ഹരിതഗൃഹവാതകങ്ങളിൽ പ്രധാനപ്പെട്ട കാർബൺ ഡൈഓക്സൈഡാണ്. എന്നാൽ, കഴിഞ്ഞ ഏതാനും പതിറ്റാണ്ടുകളായി കാർബൺ ഡൈഓക്സൈഡി​െൻറ അനുപാതം അന്തരീക്ഷത്തിൽ സാരമായി വർധിച്ചിരിക്കുകയാണ്. കൽക്കരി, പെട്രോളിയം, പ്രകൃതിവാതകം എന്നിവയുടെ അമിതമായ ഉപയോഗം, വനനശീകരണം എന്നിവയാണ് അന്തരീക്ഷത്തിൽ കാർബൺ ഡൈഓക്സൈഡി​െൻറ അളവു കൂടാൻ കാരണമായത്.പത്തൊമ്പതാം നൂറ്റാണ്ടിൽ അന്തരീക്ഷത്തിലെ കാർബൺ ഡൈഓക്സൈഡി​െൻറ അളവ് 280 പി.പി.എം ആയിരുന്നു (Parts per million അഥവാ പത്ത് ലക്ഷത്തിൽ ഒരംശം എന്നതാണ് പി.പി.എം കൊണ്ട് ഉദ്ദേശിക്കുന്നത്). ഇന്ന് അത് 350 പി.പി.എം ആണ്.

അന്തരീക്ഷത്തിൽ ഉണ്ടായിട്ടുള്ള കാർബൺ ഡൈഓക്സൈഡ് വർധനയുടെ 25 ശതമാനവും സംഭവിച്ചിട്ടുള്ളത് കഴിഞ്ഞ 40 വർഷങ്ങൾക്കുള്ളിലാണ്. ഈ നില തുടർന്നാൽ 2050ൽ കാർബൺ ഡൈഓക്സൈഡി​ന്‍റെ അളവ് 600 പി.പി.എം ആകും. ഇത് ആഗോളതാപനത്തിന് ഇടയാക്കും.

ഹരിതഗൃഹവാതകങ്ങളുടെ അളവു കൂടുന്നതുമൂലം അന്തരീക്ഷതാപനില ഉയരുന്നതാണ് ആഗോളതാപനം(Global warming). ഇരുപതാം നൂറ്റാണ്ടി​െൻറ രണ്ടാം പാതിയിൽ ഭൂമിയുടെ ശരാശരി താപ നില 0.8ഡിഗ്രി C മുതൽ 1.2ഡിഗ്രി Cവരെ ഉയർന്നു എന്നാണ് വിവിധ പഠനങ്ങൾ ചൂണ്ടിക്കാണിക്കുന്നത്. 1986 നും 2005നും ഇടയിൽ ഉണ്ടായ തോതിൽ അന്തരീക്ഷത്തിൽ കാർബൺ ഡൈഓക്സൈഡ് ഇനിയും എത്തിയാൽ 2100 ആകുമ്പോഴേക്കും ഭൂമിയുടെ ശരാശരി താപനില 5.8ഡിഗ്രി Cവരെ ഉയരുമെന്നാണ് കാലാവസ്ഥാ വ്യതിയാനത്തെക്കുറിച്ച് പഠനം നടത്തുന്ന ശാസ്ത്രജ്ഞരുടെ സംഘമായ IPCC (Intergovernmental Panel on Climate Change) മുന്നറിയിപ്പ് നൽകുന്നത്.

ഭൂമിയുടെ ഇപ്പോഴത്തെ ശരാശരി താപനില 15ഡിഗ്രി C മാത്രമാണെന്നിരിക്കെ ഈ വർധന എത്രമാത്രം ഭീതിദമാണ്! ഇതു പല പ്രശ്നങ്ങളും ഭൂമിയിൽ സൃഷ്​ടിക്കും. അൻറാർട്ടിക്കയിലെയും ഹിമാലയത്തിലെയും മഞ്ഞുരുകി ഇന്ത്യയിലെ മുംബൈ അടക്കം ലോകത്തെ പല വൻനഗരങ്ങളും ചില ദ്വീപരാജ്യങ്ങളും വെള്ളത്തിനടിയിലാകും. ഭൂമിയിലെ ഋതുഭേദങ്ങൾ മാറിമറിയും. ചിലയിടത്ത് പേമാരിയും ചിലയിടത്ത് വരൾച്ചയുമുണ്ടാകും. കൊടുങ്കാറ്റുകളും ചുഴലിക്കാറ്റുകളും സാർവത്രികമാകും. ഭൂമിയിലെ വിവിധ ആവാസ വ്യവസ്ഥകൾ നശിക്കും. കൃഷിനാശവും അതു വഴി ഭക്ഷ്യക്ഷാമവുമുണ്ടാകും. മനുഷ്യർക്ക് ത്വക് അർബുദം പോലുള്ള രോഗങ്ങളുണ്ടാകും.

ആഗോളതാപനത്തി​െൻറ ഗൗരവം ഉൾക്കൊണ്ടാണ് പല വർഷങ്ങളുടെയും ലോകപരിസ്ഥിതിദിനസന്ദേശങ്ങൾ പോലും രൂപപ്പെട്ടത്. മഞ്ഞുരുകൽ ഒരു ചൂടുള്ള വിഷയം, 'CO2- Kick the habit', 'Beat air pollution', 'ആഗോള താപനം - മരമാണ് മറുപടി' തുടങ്ങിയവ ഉദാഹരണങ്ങളാണ്.

Girl in a jacket

Don't miss the exclusive news, Stay updated

Subscribe to our Newsletter

By subscribing you agree to our Terms & Conditions .

Your subscription means a lot to us

Still haven't registered? Click here to Register

essay on climate change in malayalam

  • Latest News
  • Grihalakshmi
  • Forgot password
  • My bookmarks
  • remya harikumar

'കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട് ഉണ്ടാകില്ലെന്നത് യാഥാര്‍ത്ഥ്യം'

കെ.സഹദേവന്‍/ രമ്യ ഹരികുമാര്‍, 13 october 2021, 02:27 pm ist.

essay on climate change in malayalam

കനത്തമഴയെ തുടർന്ന് നിറഞ്ഞൊഴുകുന്ന അതിരപ്പള്ളി വെള്ളച്ചാട്ടം| ഫോട്ടോ: ജെ ഫിലിപ്പ്‌

മ നോഹരമായ ഭൂപ്രകൃതിയും കാലാവസ്ഥയുമായിരുന്നു കേരളത്തിലേക്ക് സഞ്ചാരികളെ ആകര്‍ഷിച്ചിരുന്നത്. എന്നാല്‍ കുറച്ചുനാളായി മഴയൊന്ന് ശക്തിയോടെ പെയ്താല്‍ വീട്ടുമുറ്റത്ത് വെളളമുയരുന്നതിനൊപ്പം മലയാളിയുടെ നെഞ്ചിടിപ്പുമുയരും. വര്‍ഷകാലത്തില്‍ പ്രളയത്തെ മുന്‍കൂട്ടി കണ്ട് തയ്യാറെടുക്കാന്‍ കഴിഞ്ഞ രണ്ടുവര്‍ഷം കൊണ്ട് മലയാളി പഠിച്ചുകഴിഞ്ഞു. ന്യൂനമര്‍ദവും റെഡ് അലര്‍ട്ടും യെല്ലോ അലര്‍ട്ടുമെല്ലാം പതിവുശീലങ്ങളായി തുടങ്ങി. കേരളത്തിന് ഇതുവരെ ലഭിച്ചുകൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയുണ്ടാകില്ലെന്നുളളത് യാഥാര്‍ഥ്യമാണെന്ന് പറയുകയാണ് പരിസ്ഥിതി പ്രവര്‍ത്തകനായ കെ.സഹദേവന്‍ .ആഗോളതലത്തിലുണ്ടായ കാലവസ്ഥാ വ്യതിയാനം ഇന്ത്യയുടെ തെക്കേയറ്റത്തുകിടക്കുന്ന ഈ കൊച്ചുകേരളത്തെ എത്രത്തോളം പ്രതികൂലമായി ബാധിച്ചു എന്നതിന്റെ മുന്നറിയിപ്പായി വേണം കാലവസ്ഥാ മാറ്റങ്ങളെ വിലയിരുത്തേണ്ടതെന്നും അദ്ദേഹം വ്യക്തമാക്കുന്നു.

ദൈവത്തിന്റെ സ്വന്തം നാടെന്നാണ് കേരളത്തിന്റെ വിശേഷണം, മനോഹരമായ കാലാവസ്ഥയ്ക്ക് പേരുകേട്ട ഇടം. പക്ഷേ കഴിഞ്ഞ കുറച്ചുവര്‍ഷങ്ങളായി കേരളം ഭയപ്പാടിലാണ്. കാലം തെറ്റിപ്പെയ്യുന്ന മഴ, പ്രളയം, കടുത്ത ചൂട്, ആഗോളതലത്തിലുണ്ടായ കാലാവസ്ഥാ വ്യതിയാനം കേരളത്തിലെ കാലാവസ്ഥയെ എങ്ങനെയാണ് ബാധിച്ചിരിക്കുന്നത്?

നാളിതുവരെ കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട് ഉണ്ടാകില്ല എന്നത് യാഥാര്‍ത്ഥ്യമാണ്. അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങള്‍ ഇനിയങ്ങോട്ട് കേരളത്തില്‍ നിത്യസംഭവങ്ങളായി മാറും. ഇത് ആഗോള കാലാവസ്ഥാ വ്യതിയാനവുമായി ബന്ധപ്പെട്ട് ഉണ്ടായി വന്ന മാറ്റം തന്നെയാണ്. കഴിഞ്ഞ അരനൂറ്റാണ്ട് കാലയളവില്‍ ആഗോള ശരാശരിയിലും കൂടിയ താപവര്‍ദ്ധനവാണ് ഇന്ത്യന്‍ സമുദ്രമേഖലയില്‍ സംഭവിച്ചിരിക്കുന്നത്. ഇത് സമുദ്ര ജല താപനത്തിലും വര്‍ദ്ധനവ് സൃഷ്ടിച്ചു. അറബിക്കടലിന്റെ ഉപരിതല ഊഷ്മാവ് 28 ഡിഗ്രി ആയി ഉയര്‍ന്നുവെന്ന് കണക്കാക്കപ്പെടുന്നു. അതുകൊണ്ടുതന്നെ ഈ മേഖലയില്‍ അതി തീവ്ര ചുഴലിക്കാറ്റുകളുടെയും കടല്‍ക്ഷോഭങ്ങളുടെയും ആവൃത്തിയില്‍ വലിയ വര്‍ദ്ധനവാണ് സംഭവിക്കുവാന്‍ പോകുന്നത്. താപനിലയിലെ ഈ വര്‍ദ്ധനവ് ചുഴലിക്കൊടുങ്കാറ്റുകളുടെ എണ്ണം വര്‍ദ്ധിപ്പിക്കുന്നുവെന്നത് മാത്രമല്ല, മഴപ്പെയ്ത്തിലും മാറ്റങ്ങള്‍ സൃഷ്ടിക്കുവാന്‍ പര്യാപ്തമാണ്. ഒരു സീസണില്‍ പെയ്യേണ്ടുന്ന മഴ ചിലപ്പോള്‍ ഏതാനും ദിവസങ്ങള്‍ കൊണ്ട് പെയ്ത് തീര്‍ത്തേക്കാം. പശ്ചിമഘട്ടത്തിലടക്കം പെയ്യുന്ന അതിതീവ്ര മഴയില്‍ മൂന്നിരട്ടി വര്‍ദ്ധനവെങ്കിലും സംഭവിച്ചിട്ടുള്ളതായി രേഖപ്പെടുത്തപ്പെട്ടിട്ടുണ്ട്. മഴയുടെ അളവില്‍ ഉണ്ടാകുന്ന ഈ മാറ്റങ്ങള്‍ ഉരുള്‍പൊട്ടല്‍, കടുത്ത വരള്‍ച്ച തുടങ്ങിയ പ്രതിസന്ധികളിലേക്കും കൊണ്ടുചെന്നെത്തിക്കും. 2018ലും 19ലും കേരളത്തിന്റെ പശ്ചിമഘട്ടത്തിലുടനീളം ഉണ്ടായ ഉരുള്‍പൊട്ടലുകള്‍ ശ്രദ്ധിച്ചാല്‍ ഇക്കാര്യം വ്യക്തമാകും. അതുപോലെത്തന്നെ കേരളത്തിന്റെ വിവിധ ജില്ലകള്‍ വേനല്‍ക്കാലത്തിന്റെ ആരംഭത്തോടെ തന്നെ കടുത്ത ജലക്ഷാമത്തെ അഭിമുഖീകരിക്കേണ്ടി വരുന്നതും നാം കാണുന്നു. ഇവയൊക്കെ സൂചിപ്പിക്കുന്നത്, കേരളത്തില്‍ കാലാകാലങ്ങളായി നാം അനുഭവിച്ചുപോരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം നമുക്ക് നഷ്ടമായിക്കഴിഞ്ഞു എന്നാണ്.

മുന്‍പത്തേതില്‍ നിന്ന് വ്യത്യസ്തമായി അടിക്കടി ന്യൂനമര്‍ദങ്ങള്‍ നാം അഭിമുഖീകരിക്കുന്ന ഒരു അവസ്ഥയുണ്ട്. ഇതേ തുടര്‍ന്നുണ്ടാകുന്ന ചുഴലിക്കാറ്റും കനത്തമഴയും നാശനഷ്ടങ്ങളും റിപ്പോര്‍ട്ട് ചെയ്യപ്പെടുന്നുമുണ്ട്. കാലാവസ്ഥ വ്യതിയാനവുമായി ഇതിനെ കൂട്ടിവായിക്കാമോ?

അതിതീവ്രമഴ, ചുഴലിക്കൊടുങ്കാറ്റ്, ഹിമ തടാക വിസ്‌ഫോടനം, മേഘ വിസ്‌ഫോടനം തുടങ്ങിയ പ്രകൃതി പ്രതിഭാസങ്ങളുടെ ആവൃത്തിയിലും തീവ്രതയിലും വലിയ മാറ്റങ്ങള്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്നുവെന്നത് യാഥാര്‍ത്ഥ്യമാണ്. ഇത് കേരളത്തിന്റെയോ ഇന്ത്യയുടെയോ മാത്രം കാര്യമല്ല. ആഗോളതലത്തില്‍ തന്നെ കാലാവസ്ഥാ വ്യതിയാനം എന്നത് നിഷേധിക്കാന്‍ കഴിയാത്ത യാഥാര്‍ത്ഥ്യമായി മാറിക്കഴിഞ്ഞിരിക്കുന്നു. ഇത്തരത്തിലുള്ള അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങള്‍ രാജ്യത്തിന്റെ സാമ്പത്തിക-ഉത്പാദന മേഖലയില്‍ സൃഷ്ടിക്കുന്ന പ്രതിസന്ധികള്‍ രൂക്ഷമാണ്. ഓരോ വര്‍ഷം കൂടുന്തോറും സമ്പദ്‌വ്യവസ്ഥയില്‍ അവയുണ്ടാക്കുന്ന ആഘാതം വര്‍ദ്ധിച്ചുവരികയാണ്.

കാലാവസ്ഥാ വ്യതിയാനവുമായിട്ടുതന്നെയാണ് ഇവയ്ക്കുള്ള ബന്ധം. മണ്‍സൂണ്‍ കാലത്തിന് ശേഷം അറബിക്കടലില്‍ തീവ്ര സ്വഭാവമുള്ള കൊടുങ്കാറ്റുകളുടെ എണ്ണത്തില്‍ വര്‍ദ്ധനവുണ്ടാകുമെന്ന് പ്രവചിക്കപ്പെട്ടുണ്ട്. 2015 തൊട്ട് ഈ പ്രവചനം യാഥാര്‍ത്ഥ്യമായിക്കൊണ്ടിരിക്കുന്നത് നമുക്ക് കാണാം.

2018, 2019 വര്‍ഷങ്ങളില്‍ കേരളത്തിലുണ്ടായ മഴപ്പെയ്ത്തില്‍ കൂടുതല്‍ പ്രകടമായ വ്യത്യാസം കാണാവുന്നതാണ്. ഈ വര്‍ഷങ്ങളിലെ മഴപ്പെയ്ത്തിനെ കൂടുതല്‍ സൂക്ഷ്മ നിരീക്ഷണത്തിന് വിധേയമാക്കിയാല്‍ അവ തമ്മിലും വ്യത്യാസങ്ങളുണ്ടെന്ന് കണ്ടെത്താം. അതിവൃഷ്ടിയും പ്രളയദുരിതങ്ങളും ഏറ്റവും കൂടുതല്‍ സംഭവിച്ചത് 2018ലെ മഴക്കാലത്തായിരുന്നുവെങ്കിലും മഴയുടെ പെയ്ത്തില്‍ സംഭവിച്ച വര്‍ദ്ധനവിനെ അടിസ്ഥാനമാക്കുകയാണെങ്കില്‍ 2019ല്‍ അതിവൃഷ്ടിയുടെ തോത് വലുതായിരുന്നു. മേഘവിസ്‌ഫോടനം പോലുള്ള പ്രകൃതി പ്രതിഭാസങ്ങളോട് (ഒരു മണിക്കൂറില്‍ 10സെന്റീമീറ്ററില്‍ കൂടിയ മഴ കുറഞ്ഞ പ്രദേശത്ത് ലഭിക്കുന്നത്) അടുത്തുനില്‍ക്കുന്ന സംഭവങ്ങള്‍ ഈ വര്‍ഷത്തില്‍ കേരളത്തില്‍ സംഭവിച്ചിട്ടുണ്ട്. മഴപ്പെയ്ത്തിലെ ഈ മാറ്റങ്ങളെ ഗൗരവത്തോടെ കാണാന്‍ നമുക്ക് സാധിക്കേണ്ടതാണ്. കാലവര്‍ഷം പിന്‍വാങ്ങുന്ന ഘട്ടത്തില്‍ സംഭവിക്കുന്ന അതിവൃഷ്ടിയും ന്യൂനമര്‍ദ്ദങ്ങളും കാലാവസ്ഥാ വ്യതിയാനത്തിന്റെ സൂചനകള്‍ തന്നെയാണ്. അതിവൃഷ്ടിയും പ്രളയവും ഏതോ വിദൂര പ്രദേശങ്ങളിലെ പ്രശ്‌നങ്ങളായി കണ്ടുകൊണ്ട് അലസ സമീപനം സ്വീകരിക്കാന്‍ നമുക്ക് ഇനിയും സാധ്യമല്ല.

ആയിരം വര്‍ഷത്തിനിടയിലെ കനത്തമഴയാണ് കഴിഞ്ഞ ജൂലായില്‍ ചൈന അഭിമുഖീകരിച്ചത്. മുന്നൂറിലേറെപ്പേര്‍ക്ക് ജീവന്‍ നഷ്ടപ്പെട്ടു.ഇപ്പോഴും ചൈനയിലെ ഷാന്‍ക്സി പ്രവിശ്യയില്‍ കനത്തമഴ തുടരുകയാണ്. 1.76 ദശലക്ഷം പേരാണ് മഴയില്‍ കഷ്ടത അനുഭവിക്കുന്നത്. ആയിരക്കണക്കിന് വീടുകള്‍ തകര്‍ന്നു, ഹെക്ടറുകണക്കിന് കൃഷിയിടങ്ങള്‍ നശിച്ചതായും റിപ്പോര്‍ട്ടുകള്‍ പുറത്തുവന്നുകൊണ്ടിരിക്കുകയാണ്. കാലാവസ്ഥാ വ്യതിയാനത്തിന്റെ മുന്നറിയിപ്പായാണോ ഇതിനെ കണക്കാക്കേണ്ടത് ?

അതി തീവ്ര കാലാവസ്ഥാ സംഭവങ്ങളില്‍ നിന്ന് ഇനി ഒരു രാജ്യവും സുരക്ഷിതമല്ല എന്നതാണ് ചൈനയിലും ജര്‍മ്മനിയിലും അമേരിക്കയിലും ഒക്കെ അടുത്ത കാലത്തുണ്ടായ പ്രകൃതി ദുരന്തങ്ങള്‍ തെളിയിക്കുന്നത്. ഇക്കഴിഞ്ഞ ജൂലൈ മാസത്തില്‍ പടിഞ്ഞാറന്‍ ജര്‍മ്മനിയിലും ബെല്‍ജിയത്തിലും ഉണ്ടായ അതിതീവ്ര മഴയില്‍ നൂറുകണക്കിന് ആളുകളുടെ ജീവന്‍ നഷ്ടപ്പെടുകയുണ്ടായി. കാലാവസ്ഥാ മാറ്റങ്ങള്‍ പ്രവചനാതീതമായിക്കൊണ്ടിരിക്കുന്നു എന്നതാണ് ജര്‍മ്മനി പോലുള്ള സാങ്കേതിക സൗകര്യങ്ങള്‍ കൂടുതലുള്ള ഒരു രാജ്യത്ത് സംഭവിച്ച ഇത്രയധികം മരണങ്ങള്‍ക്ക് കാരണം. ചൈന അടക്കമുള്ള ഏഷ്യന്‍, തെക്കനേഷ്യന്‍ രാജ്യങ്ങളെ കാലാവസ്ഥാ പ്രതിസന്ധി കൂടുതല്‍ രൂക്ഷമായി ബാധിക്കാന്‍ പോകുന്നതേയുള്ളൂ. കാലാവസ്ഥാ അഭയാര്‍ത്ഥികളുടെ എണ്ണത്തില്‍ അടുത്ത ഏതാനും ദശകങ്ങളില്‍ വലിയ വര്‍ദ്ധനവ് സംഭവിക്കും. ബംഗ്ലാദേശ്, ഇന്ത്യ പോലുള്ള രാജ്യങ്ങള്‍ കടല്‍ കയറ്റത്തിന്റെയും വെള്ളപ്പൊക്കത്തിന്റെയും രൂക്ഷത അനുഭവിക്കേണ്ടിവരും. കാലാവസ്ഥയില്‍ സംഭവിക്കുന്ന ഈ മാറ്റങ്ങള്‍ ഏഷ്യന്‍ രാജ്യങ്ങളിലെ കാര്‍ഷിക മേഖലയെ, പ്രത്യേകിച്ചും നെല്ല്, ഗോതമ്പ് തുടങ്ങിയ വിളകളെ, കൂടുതല്‍ പ്രതിസന്ധിയിലേക്ക് കൊണ്ടുചെന്നെത്തിക്കും. കഴിഞ്ഞ ഏതാനും ദശകങ്ങളായി കാലാവസ്ഥയിലെ ഈ മാറ്റങ്ങള്‍ പ്രകടമാണെങ്കിലും ഇതിനെ ഒരു മുന്നറിയിപ്പായി കണക്കാക്കുവാന്‍ നാം തയ്യാറായിട്ടില്ല. മഴ പെയ്യുമ്പോള്‍ മഴയെക്കുറിച്ചും ജലക്ഷാമം അനുഭവിക്കുമ്പോള്‍ വരള്‍ച്ചയെക്കുറിച്ചും മാത്രം ചിന്തിക്കുക എന്നതാണ് നമ്മുടെ ശീലം. ഇവ തമ്മിലുള്ള ബന്ധത്തെക്കുറിച്ചോ, കാലാവസ്ഥയിലെ മാറ്റങ്ങളെക്കുറിച്ചോ ഗൗരവമായി കണക്കിലെടുക്കാന്‍ നമുക്ക് സാധിച്ചിട്ടില്ല.

ഇന്ത്യയില്‍ ഓരോ പത്തുവര്‍ഷം കൂടുമ്പോഴും 17 മീറ്റര്‍ കടല്‍ കരയിലേക്ക് കയറുമെന്ന് ഐക്യരാഷ്ട്ര സംഘടന രൂപീകരിച്ച ഐപിസിസി റിപ്പോര്‍ട്ടില്‍ ഉണ്ടായിരുന്നു. പടിഞ്ഞാറ് അതിര് അറബിക്കടലായ കേരളത്തെ ഇത് എങ്ങനെയാണ് ബാധിക്കുക?

കടല്‍ക്ഷോഭം, വെള്ളപ്പൊക്കം തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങളെക്കുറിച്ച് കേരളം അടുത്തകാലത്ത് മാത്രമാണ് കൂടുതല്‍ ഗൗരവമായി ചര്‍ച്ച ചെയ്യാന്‍ തുടങ്ങിയത്. ഇതിന് കാരണം 2018ലെ പ്രളയം കേരളത്തിലെ നഗര ജീവിതത്തെ കടുത്ത പ്രതിസന്ധിയിലേക്ക് തള്ളിവിട്ടു എന്നതാണ്. നഗരജീവിതത്തിന്റെ സുരക്ഷിതത്വത്തില്‍ കാലാവസ്ഥയില്‍ ഉണ്ടായിക്കൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളെയും തീരപ്രദേശങ്ങളിലും കായല്‍നിലങ്ങളിലും കാടിനോട് ചേര്‍ന്നും ജീവിച്ചുപോരുന്ന പാരിസ്ഥിതിക സമൂഹങ്ങള്‍ (ecosystem people) ഏറെക്കാലങ്ങളായി അനുഭവിച്ചുപോരുന്ന ദുരിതങ്ങളെ മനസ്സിലാക്കുവാനോ അവരുടെ മുന്നറിയിപ്പുകളില്‍ നിന്ന് പാഠങ്ങള്‍ ഉള്‍ക്കൊള്ളുവാനോ നാം തയ്യാറായില്ല എന്നതാണ് വസ്തുത. കേരളത്തിന്റെ തീരദേശ മേഖലയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളും കടല്‍കയറ്റവും സംബന്ധിച്ച മുന്നറിയിപ്പുകള്‍ മത്സ്യത്തൊഴിലാളി സമൂഹം വളരെക്കാലമായി നല്‍കിക്കൊണ്ടിരിക്കുന്നു. സംസ്ഥാനത്തിന്റെ ഭൂവിസ്തൃതിയില്‍ 15% മാത്രം വരുന്ന തീരമേഖലയിലാണ് ജനസംഖ്യയുടെ 30%വും അധിവസിക്കുന്നതെന്ന വസ്തുതയെ നാം കാര്യമായി പരിഗണിക്കുന്നില്ല. ജനസാന്ദ്രതയുടെ കാര്യത്തില്‍ കേരളത്തിന്റെ ഇതര പ്രദേശങ്ങളേക്കാള്‍ 2.5 ഇരട്ടിയാണ് തീരദേശ മേഖലയില്‍. അതുകൊണ്ടുതന്നെ കടല്‍ക്ഷോഭം, തീരശോഷണം, കടല്‍ കയറല്‍ തുടങ്ങിയ പ്രതിഭാസങ്ങള്‍ വലിയൊരു വിഭാഗം ജനങ്ങളുടെ ജീവിതത്തെ ദുരിതമയമാക്കും.

സമുദ്ര നിരപ്പില്‍ സംഭവിക്കുന്ന വര്‍ദ്ധനവ്, കരയിലേക്കുള്ള കടല്‍ കയറ്റത്തിന്റെ ആക്കം വര്‍ദ്ധിപ്പിക്കുമെന്നത് യാഥാര്‍ത്ഥ്യമാണ്. അടുത്ത ഏതാനും ദശകങ്ങള്‍ക്കുള്ളില്‍ത്തന്നെ കൊച്ചി അടക്കമുള്ള നഗരങ്ങള്‍ കടല്‍കയറ്റത്തിന്റെ തീവ്രത അനുഭവിക്കാന്‍ പോകുകയാണെന്നാണ് മുന്നറിയിപ്പ്. ഇതര തീരദേശ സംസ്ഥാനങ്ങളില്‍ നിന്ന് ഭിന്നമായി വിശാലമായ കടല്‍ത്തീരമുണ്ടായിരുന്ന കേരളത്തില്‍ കഴിഞ്ഞ അരനൂറ്റാണ്ട് കാലമായെങ്കിലുമായി നാം നടത്തിവരുന്ന അശാസ്ത്രീയമായ വികസന പദ്ധതികളും തീരപരിപാലന നടപടികളും മൂലം നമ്മുടെ തീരമേഖല നാശത്തെ നേരിട്ടുകൊണ്ടിരിക്കുകയാണ്. തീരസ്ഥിരത നഷ്ടപ്പെട്ട കേരളത്തിന്റെ കടല്‍ത്തീരം അറബിക്കടലില്‍ സംഭവിക്കുന്ന ഏതുവിധത്തിലുള്ള കാലാവസ്ഥാ മാറ്റങ്ങളുടെയും ഏറ്റവും അടുത്ത ഇരകളായിരിക്കും. കേരളത്തിലെ ഒമ്പത് തീരദേശ ജില്ലകളില്‍ ഏറ്റവും ഉയര്‍ന്ന ജനസാന്ദ്രതയുള്ള ആലപ്പുഴ, തിരുവനന്തപുരം എന്നീ ജില്ലകള്‍ കൂടുതല്‍ വള്‍നറബ്ള്‍ ആയ അവസ്ഥയിലാണ്. ആയിരം ചതുരശ്ര കിലോമീറ്റര്‍ ചുറ്റളവുള്ള കുട്ടനാടിന്റെ മൂന്നിലൊന്ന് സമുദ്ര നിരപ്പിന് താഴെയാണുള്ളതെന്നത് കടല്‍ കയറ്റത്തിന്റെ ഗൗരവം വര്‍ദ്ധിപ്പിക്കുന്നു.

തീരമേഖലയൂടെ പാരിസ്ഥിതിക സുസ്ഥിരത കണക്കിലെടുക്കാതെയുള്ള നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ (തീരപരിപാലനം ഉദ്ദേശിച്ചുകൊണ്ടുള്ള പുലിമുട്ടുകളുടെ നിര്‍മ്മാണം അടക്കം) കേരളത്തിന്റെ തീരമേഖലയില്‍ ദീര്‍ഘകാല പ്രത്യാഘാതങ്ങള്‍ സൃഷ്ടിക്കാന്‍ പോകുന്നതേയുള്ളൂ. ഇന്ത്യയില്‍ത്തന്നെ ഏറ്റവും കൂടുതല്‍ മത്സ്യബന്ധനം നടക്കുന്ന കേരളത്തിന്റെ തീരപ്രദേശത്ത് സംഭവിക്കുന്ന മാറ്റങ്ങള്‍ മത്സ്യത്തൊഴിലാളി സമൂഹത്തിന്റെ ജീവനും ജീവനോപാധികള്‍ക്കും വലിയ പ്രതിസന്ധികള്‍ സൃഷ്ടിക്കും.

കാലിഫോര്‍ണിയയില്‍ കാട്ടുതീ റിപ്പോര്‍ട്ട് ചെയ്യപ്പെട്ടിരുന്നു, ആമസോണ്‍ നിന്നുകത്തുന്നതും കഴിഞ്ഞ വര്‍ഷം നാം കണ്ടു. പ്രകൃതി പലതരത്തിലാണ് നമ്മോട് പ്രതികരിക്കുന്നത്. ചില രാജ്യങ്ങള്‍ കനത്തമഴയില്‍ മുങ്ങുമ്പോള്‍ അവശേഷിക്കുന്ന കാടകങ്ങള്‍ കത്തുകയാണ്..

കാട്ടു തീ, ചുഴലിക്കൊടുങ്കാറ്റുകള്‍, അതിവൃഷ്ടി, മേഘവിസ്‌ഫോടനം, മഞ്ഞുപാളികളുടെ നാശം തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങളെയും അത്തരം അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങളിലേക്ക് നയിച്ച മനുഷ്യ ജന്യ കാരണങ്ങളെക്കുറിച്ചും ശാസ്ത്രലോകം മുന്നറിയിപ്പ് നല്‍കാന്‍ തുടങ്ങിയിട്ട് പതിറ്റാണ്ടുകള്‍ കഴിഞ്ഞു. പ്രകൃതിയുടെ മേലുള്ള മനുഷ്യന്റെ കൈകടത്തലുകള്‍ക്ക് പോകാന്‍ കഴിയുന്ന ദൂരം എത്തിക്കഴിഞ്ഞുവെന്നാണ് ഈ സൂചനകളില്‍ നിന്ന് മനസ്സിലാക്കേണ്ടത്. പ്രകൃതി നല്‍കുന്ന മുന്നറിയിപ്പുകളെ മനസ്സിലാക്കാതെ നിലവിലുള്ള കാലാവസ്ഥാ പ്രതിസന്ധികളെ സാങ്കേതികമായ പരിഹാരങ്ങളിലൂടെ മറികടക്കാം എന്ന തെറ്റുദ്ധാരണയാണ് ആഗോളതലത്തില്‍ തന്നെ രാഷ്ട്രീയ ഭരണകൂടങ്ങള്‍ സൂക്ഷിക്കുന്നത്. പ്രകൃതിയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങള്‍ ഒരു ജീവജാതി എന്ന നിലയില്‍ ഏറ്റവും കൂടുതല്‍ ബാധിക്കുക മനുഷ്യനെത്തന്നെയായിരിക്കും. കാരണം, പ്രകൃതിയുടെ സ്വാഭാവിക താളത്തില്‍ നിന്ന് ഭിന്നമായൊരു ജീവിതശൈലി കെട്ടിപ്പൊക്കിയെന്ന് നാം അവകാശപ്പെടുമ്പോഴും അടിസ്ഥാനപരമായി പ്രകൃതി വിഭവങ്ങളെയും ഭൂമിയിലെ കാലാവസ്ഥയെയും ആധാരമാക്കിയാണ് മനുഷ്യന്റെ നിലനില്‍പ് സാധ്യമാക്കുന്നത്. അതുകൊണ്ടുതന്നെ കാലാവസ്ഥയിലും പ്രകൃതി വിഭവങ്ങളുടെ ലഭ്യതയിലും സംഭവവിക്കുന്ന ഏറ്റക്കുറച്ചിലുകള്‍ മനുഷ്യന്റെ സാമൂഹ്യജീവിത സംഘാടനത്തെയും സമ്പദ്ഘടനയെയും പ്രതികൂലമായി ബാധിക്കും എന്ന കാര്യത്തില്‍ യാതൊരു സംശയവുമില്ല. പ്രകൃതി നല്‍കുന്ന മുന്നറിയിപ്പുകളെ കണക്കിലെടുത്തുകൊണ്ട് പ്രകൃതിയിന്മേലുള്ള മനുഷ്യ ഇടപെടലുകളില്‍ മാറ്റം വരുത്താതെ ഇനിയും മുന്നോട്ടുപോകാന്‍ കഴിയില്ലെന്ന് തന്നെയാണ് വിലയിരുത്തപ്പെടേണ്ടത്. പ്രകൃതിക്ക് നേരെ സഹസ്രാബ്ദങ്ങളായി നടത്തിപ്പോരുന്ന യുദ്ധത്തില്‍ ജയം കൈവരിക്കാന്‍ മനുഷ്യന് സാധിക്കില്ലെന്ന് ഇനിയെങ്കിലും നാം മനസ്സിലാക്കേണ്ടതുണ്ട്.

കഴിഞ്ഞ പത്തുവര്‍ഷത്തെ കണക്കുനോക്കിയാല്‍ പ്രളയവും ചൂടുമെല്ലാം കൂടുകയാണ്. പ്രളയം കേരളത്തിന് ഒരു ശീലമായി മാറിക്കൊണ്ടിരിക്കുകയാണ്. അടുത്ത പത്തുവര്‍ഷം കൂടി കഴിയുമ്പോള്‍ കേരളത്തിന്റെ അവസ്ഥ എന്തായിരിക്കും?

കേരളത്തിന്റെ മഴപ്പെയ്ത്തില്‍ വലിയ മാറ്റങ്ങള്‍ സംഭവിച്ചുവെന്നത് നേരത്തെ സൂചിപ്പിച്ച കാര്യമാണ്. ആന്ധ്രപ്രദേശ്, ഒഡീഷ, പശ്ചിമ ബംഗാള്‍ തുടങ്ങിയ കിഴക്കന്‍ തീരപ്രദേശത്തോട് ചേര്‍ന്ന് നില്‍ക്കുന്ന സംസ്ഥാനങ്ങളുടേത് പോലെ പ്രളയക്കെടുതികള്‍ വര്‍ഷാവര്‍ഷം അനുഭവിക്കാന്‍ വിധിക്കപ്പെട്ടവരായി കേരള സമൂഹവും മാറിക്കൊണ്ടിരിക്കുകയാണ്. ആഗോളതലത്തില്‍ തന്നെ ചുഴലിക്കൊടുങ്കാറ്റുകളുടെ എണ്ണത്തില്‍ 52ശതമാനം വര്‍ദ്ധനവ് രേഖപ്പെടുത്തപ്പെട്ടിട്ടുണ്ടെന്നതും ഈയൊരു പ്രവണത വര്‍ദ്ധിച്ചുകൊണ്ടിരിക്കുകയാണെന്നും ഉള്ള മുന്നറിയിപ്പും കേരളത്തെ കൂടുതല്‍ പ്രതിസന്ധികളിലേക്ക് എത്തിക്കും.

അതേസമയം, കാലാവസ്ഥാ മാറ്റത്തിന്റെ ദുരന്തഫലങ്ങള്‍ പ്രളയരൂപത്തില്‍ മാത്രമായിരിക്കില്ലെന്ന് കൂടി തിരിച്ചറിയേണ്ടതുണ്ട്. വരള്‍ച്ച, ജലക്ഷാമം തുടങ്ങിയ അവസ്ഥയെയും നമുക്ക് പ്രതീക്ഷിക്കേണ്ടതുണ്ട്. വരള്‍ച്ച കൂടിയ കാലങ്ങളില്‍ എല്‍ നിനോ പോലുള്ള പ്രതിഭാസങ്ങള്‍ സംഭവിക്കുകയാണെങ്കില്‍ തീവ്ര സ്വഭാവത്തിലേക്കുള്ള വരള്‍ച്ചയിലേക്ക് നയിക്കും. കൊടും ചൂട് മൂലമുണ്ടാകുന്ന ഉഷ്ണതരംഗങ്ങളും ഒക്കെ നമുക്ക് പ്രതീക്ഷിക്കേണ്ടതായി വരും. കാലാവസ്ഥയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളെ സമഗ്രമായി കണ്ടുകൊണ്ടുമാത്രമേ അവയെ നേരിടാനും ദുരന്തങ്ങള്‍ ലഘൂകരിക്കാനും ഉള്ള നടപടികള്‍ സ്വീകരിക്കാന്‍ പാടുള്ളൂ. താല്‍ക്കാലിക പരിഹാരങ്ങള്‍ കൂടുതല്‍ ഗുരുതരമായ പ്രതിസന്ധികളിലേക്ക് കൊണ്ടുചെന്നെത്തിക്കുന്നതിലേക്ക് നയിക്കുമെന്നതിന് പല ഉദാഹരണങ്ങളും നമ്മുടെ മുന്നിലുണ്ട്.

തീരദേശത്ത് കടലേറ്റം, ഹൈറേഞ്ചില്‍ മണ്ണിടിച്ചില്‍..വരും വര്‍ഷങ്ങളില്‍ കേരളം അഭിമുഖീകരിക്കുന്ന ഈ പ്രകൃതി ദുരന്തങ്ങള്‍ എത്രത്തോളം ശക്തമാകും. ഇവ മുന്നില്‍ കണ്ട് പ്രതിരോധിക്കാന്‍ എന്താണ് നമുക്ക് ചെയ്യാനാകുക.

പശ്ചിമഘട്ട മേഖലകളില്‍ ഉരുള്‍പൊട്ടല്‍ മുമ്പെ തന്നെ ഉണ്ടായിട്ടുണ്ടെങ്കിലും 2018ലെ മഴക്കാലത്ത് അത് വ്യാപകമായി സംഭവിച്ചു. ഏതാണ്ട് 250ഓളം പ്രദേശങ്ങളിലായി ആയിരക്കണക്കിന് ഉരുള്‍പൊട്ടലുകളാണ് ആ വര്‍ഷത്തില്‍ സംഭവിച്ചത്. വയനാട്, കോഴിക്കോട്, മലപ്പുറം, പാലക്കാട്, ഇടുക്കി, പത്തനംതിട്ട ജില്ലകളിലായിരുന്നു ഏറ്റവും കൂടുതല്‍ ഉരുള്‍പൊട്ടലുകള്‍ സംഭവിച്ചത്. ഇവ കൂടാതെ മണ്ണമരല്‍ (ലാന്റ് സബ്‌സിഡന്‍സ്), മണ്ണിടിച്ചില്‍ (ലാന്റ് ഫാള്‍) തുടങ്ങിയ പ്രതിഭാസങ്ങളും വലിയ തോതില്‍ സംഭവിച്ചു. മണ്ണിലെ ജൈവാംശത്തില്‍ സംഭവിക്കുന്ന ശോഷണം ജലം പിടിച്ചുവെക്കാനുള്ള മണ്ണിന്റെ ശേഷിയെ ദുര്‍ബലപ്പെടുത്തുന്നുവെന്നത് കൂടാതെ ചരിഞ്ഞ പ്രദേശങ്ങളിലെ നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങളും അനുയോജ്യമല്ലാത്ത കൃഷി രീതികളും ഒക്കെച്ചേര്‍ന്ന് ഉരുള്‍പൊട്ടല്‍ സാധ്യകള്‍ വര്‍ദ്ധിപ്പിക്കുന്നുണ്ട്.

പശ്ചിമഘട്ട മേഖലയിലെ ഉരുള്‍പൊട്ടല്‍ സാധ്യതാ പ്രദേശങ്ങളുടെ ഭൂപടം ദുരന്ത കൈകാര്യകര്‍തൃ സമിതി തയ്യാറാക്കിയിട്ടുണ്ടെങ്കിലും ഉരുള്‍പൊട്ടല്‍ മേഖലകളിലെ നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ക്ക് തടയിടുന്നതിനോ, ഉരുള്‍പൊട്ടല്‍ മേഖലകളില്‍ നിന്ന് ജനങ്ങളെ പുരധിവസിപ്പിക്കാനോ, അത്തരം പ്രദേശങ്ങളില്‍ മണ്ണൊലിപ്പ് തടയുന്നതിനും മറ്റും ആവശ്യമായ നടപടികള്‍ സ്വീകരിക്കാനോ അധികൃതര്‍ തയ്യാറായിട്ടില്ല. നമ്മുടെ ദുരന്ത കൈകാര്യകര്‍തൃ നയം ദുരന്തങ്ങള്‍ സംഭവിച്ചതിന് ശേഷം നേരിടുന്നതിന് വേണ്ടി തയ്യാറാക്കപ്പെട്ട ഒന്നാണെന്ന് കാണാം. ദുരന്തങ്ങള്‍ തടയാനോ ലഘൂകരിക്കാനോ ഉള്ള ദുരന്തപൂര്‍വ്വഘട്ടത്തെ (പ്രീ ഡിസാസ്റ്റര്‍ ഫേസ്)ക്കുറിച്ച് നാം കാര്യമായി ആലോചിക്കാറില്ല എന്നതാണ് യാഥാര്‍ത്ഥ്യം. ഉരുള്‍പൊട്ടലിന് ഇടയാക്കുന്ന കാരണങ്ങളെക്കുറിച്ച് വ്യക്തമായ ധാരണ ഉണ്ടാക്കിയെടുക്കുകയും ആ മേഖലയിലെ പരിസ്ഥിതി പുനരുജ്ജീവനത്തിനുള്ള നടപടികള്‍ സ്വീകരിക്കുകയോ ചെയ്യുന്നതില്‍ നാം ഇപ്പോഴും വിമുഖരാണ്. പ്രളയം വരുമ്പോഴും മണ്ണിടിച്ചില്‍ ഉണ്ടാകുമ്പോഴും മാത്രം അവയെക്കുറിച്ച് ചിന്തിക്കുകയും പദ്ധതികള്‍ പ്രഖ്യാപിക്കുകയും ചെയ്യുന്നത്രയും ദീര്‍ഘ വീക്ഷണമേ നമ്മുടെ ആസൂത്രണ വിദഗ്ദ്ധന്മാര്‍ക്ക് ഉള്ളൂ എന്ന് പറയേണ്ടതുണ്ട്.

മണ്ണൊലിപ്പും ഉരുള്‍പൊട്ടലും പോലുള്ള പ്രാദേശിക പരിസ്ഥിതി പ്രശ്‌നങ്ങളെ നേരിടാന്‍ നമുക്ക് സാധിക്കേണ്ടതാണ്. ചരിഞ്ഞ പ്രദേശങ്ങളിലെ വനനാശം തടയുക. ഭൂമിയുടെ കിടപ്പ് മനസ്സിലാക്കാതെയുള്ള നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ നിയന്ത്രിക്കുക, സ്വാഭാവിക ജല നിര്‍ഗ്ഗമന മാര്‍ഗ്ഗങ്ങള്‍ സംരക്ഷിക്കുക, ഉരുള്‍പൊട്ടല്‍ സാധ്യതയുള്ള മേഖലകളില്‍ താങ്ങ് ഭിത്തികള്‍ (റീട്ടെയ്ന്‍ വാള്‍) നിര്‍മ്മിക്കുക, ഭൂമിയുടെ ഹരിത മേലാപ്പ് (ഗ്രീന്‍ കവര്‍) സംരക്ഷിക്കുക, ആഴത്തില്‍ വേരുകള്‍ ഉള്ള മരങ്ങള്‍ ഇത്തരം പ്രദേശങ്ങളില്‍ വെച്ചുപിടിപ്പിക്കുക തുടങ്ങിയ നിരവധി പ്രവര്‍ത്തനങ്ങളിലൂടെ ഉരുള്‍പൊട്ടല്‍ മണ്ണൊലിപ്പ് തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങള്‍ക്ക് തടയിടാനാകും.

കേരളം വികസനത്തിന്റെ പാതയിലാണ്. മെട്രോ വന്നു, സില്‍വര്‍ ലൈന്‍ വരുന്നു ഇത്തരം വികസനങ്ങള്‍ കേരളത്തിന്റെ ഭൂപ്രകൃതിക്ക് താങ്ങാനാകുമോ? വീട്, കിണര്‍ തുടങ്ങിയവ ഇടിഞ്ഞുതാഴുന്ന പ്രതിഭാസങ്ങള്‍ കേരളത്തിന്റെ ഭൂപ്രകൃതി മനസ്സിലാക്കാതെയുളള വികസന പ്രവര്‍ത്തനങ്ങളുടെ ഉപോല്പനങ്ങളാണോ?

വികസനത്തെ സംബന്ധിച്ച തെറ്റായ ബോധ്യങ്ങളില്‍ നിന്നാണ് ഇക്കാണുന്ന പാരിസ്ഥിതിക ദുരന്തങ്ങളിലേക്ക് നാം വഴിവെട്ടിയിരിക്കുന്നത്. നൂറ്റാണ്ടുകള്‍ക്കിടയില്‍ സംഭവിക്കുന്ന പ്രകൃതി ദുരന്തങ്ങളില്‍ നിന്ന് അവയൊക്കെ വാര്‍ഷിക പ്രതിഭാസങ്ങളായി മാറ്റുന്നതിന് മനുഷ്യ ഇടപെടല്‍ കൊണ്ട് സാധിച്ചു. ഇത് കേരളത്തിന്റെ മാത്രം കാര്യമല്ല. കാലാവസ്ഥാ വ്യതിയാനങ്ങള്‍ക്ക് പിന്നിലെ മനുഷ്യജന്യ ഘടകങ്ങളെ (ആന്ത്രപോജെനിക് ഫാക്ടര്‍)ക്കുറിച്ച് ഇന്ന് പൊതുവില്‍ ചര്‍ച്ച ചെയ്യുന്നുണ്ട്. എങ്കില്‍ കൂടിയും നമ്മുടെ വികസന ബോദ്ധ്യങ്ങളില്‍ മാറ്റം വരുത്താന്‍ ഭരണകൂടങ്ങള്‍ തയ്യാറായിട്ടില്ലെന്നത് നിരാശാജനകമാണ്.

കേരളത്തിന്റെ പശ്ചിമഘട്ട മേഖലകളില്‍ സ്വാഭാവിക വന മേഖലകള്‍ വെട്ടിമാറ്റി, അക്കേഷ്യ, യൂക്കാലിപ്റ്റ്‌സ് തുടങ്ങിയ മരങ്ങള്‍ സാമൂഹ്യവനവല്‍ക്കരണത്തിന്റെ ഭാഗമായി വെച്ചുപിടിപ്പിക്കുന്നതിനെതിരെ 80കളുടെ അവസാനത്തില്‍ പരിസ്ഥിതി പ്രവര്‍ത്തകരും ജനകീയ ശാസ്ത്രജ്ഞരും മുന്നറിയിപ്പ് നല്‍കുകയുണ്ടായി. എന്നാല്‍ അവരെയൊക്കെ വികസന വിരോധികളായും പരിസ്ഥിതി മൗലികവാദികളായും ചിത്രീകരിക്കുകയായിരുന്നു, അക്കേഷ്യ-യൂക്കാലിപ്റ്റ്‌സ് തോട്ടങ്ങള്‍ കേരളത്തിന്റെ ഭൂഗര്‍ഭ ജലനിരപ്പ് താഴ്ത്തുന്നതില്‍ മുഖ്യപങ്കുവഹിക്കുന്നുണ്ടെന്ന് കേരള ഇക്കണോമിക് റിവ്യൂ 2021ല്‍ തന്നെ തുറന്ന് സമ്മതിക്കുന്നു. ഈ തോട്ടങ്ങള്‍ ഘട്ടംഘട്ടമായി നീക്കം ചെയ്യുമെന്ന് കേരള സര്‍ക്കാര്‍ തന്നെ പ്രഖ്യാപിച്ചു കഴിഞ്ഞു. നാല് പതിറ്റാണ്ട് കാലം കഴിഞ്ഞു സര്‍ക്കാരിന് ബോധോദയമുണ്ടാകാന്‍! എന്നാല്‍ ആ കാലയളവില്‍ സാധ്യമായ എല്ലാ പാരിസ്ഥിതിക ദുരന്തങ്ങളും ഉണ്ടാക്കിയെടുക്കാന്‍ അവയ്ക്ക് സാധിച്ചു.

വികസനത്തെ സംബന്ധിച്ച ചോദ്യങ്ങള്‍ ഇന്ന് ആഗോളതലത്തില്‍ തന്നെ ശക്തമായി ഉയരുന്നുണ്ട്. സുസ്ഥിരതയും സമതയെയും അടിസ്ഥാനപ്പെടുത്തിയ ഒരു വികസന ബോദ്ധ്യത്തെക്കുറിച്ചാണ് ചര്‍ച്ചകള്‍ ഉയരുന്നത്. എന്നാല്‍ ഇവയൊന്നും കണ്ടില്ലെന്ന് നടിക്കാനും, ആവര്‍ത്തിച്ച് വരുന്ന പ്രകൃതി ദുരന്തങ്ങള്‍ക്കിടയില്‍ നിന്ന് പോലും 'ബിസിനസ് ആസ് യൂഷ്വല്‍' സമീപനം സ്വീകരിക്കാനുമാണ് അധികൃതര്‍ ശ്രമിക്കുന്നത്.

സില്‍വര്‍ പാതയും പശ്ചിമഘട്ടത്തിലെ തുരങ്കപ്പാതയും അടക്കം സംസ്ഥാനം ഏറ്റെടുക്കാന്‍ പോകുന്ന വികസന പദ്ധതികള്‍ പൊതുവെ ദുര്‍ബലമായിക്കഴിഞ്ഞിരിക്കുന്ന കേരള പരിസ്ഥിതിയില്‍ വലിയ പ്രത്യാഘാതങ്ങള്‍ സൃഷ്ടിക്കുമെന്ന കാര്യത്തില്‍ സംശയമൊന്നുമില്ല. ആഗോള കാലാവസ്ഥാ മാറ്റങ്ങള്‍ സംബന്ധിച്ച കാര്യങ്ങളില്‍ ദേശ രാഷ്ട്രങ്ങളുടെ കൂട്ടായ്മകള്‍ക്ക് മാത്രമേ എന്തെങ്കിലും തീരുമാനങ്ങള്‍ കൈക്കൊള്ളാന്‍ സാധിക്കുകയുള്ളൂ എന്നത് വാസ്തവമായിരിക്കുമ്പോഴും കാലാവസ്ഥാ മാറ്റങ്ങള്‍ മൂലമുണ്ടാകുന്ന പ്രാദേശിക പാരിസ്ഥിതിക തകര്‍ച്ചകളെയും ദുരന്തങ്ങളെയും ഒരളവുവരെ പ്രതിരോധിക്കാന്‍ പ്രാദേശിക സര്‍ക്കാരുകളുടെ ഇടപെടല്‍ കൊണ്ട് സാധിക്കും. അതിന് പാരിസ്ഥിതിക വിവേകത്തെ അടിസ്ഥാനപ്പെടുത്തിയ നയരൂപീകരണവും ദീര്‍ഘവീക്ഷണത്തോടു കൂടിയ ആസൂത്രണവും ആവശ്യമാണ്. നമ്മുടെ ഭരണാധികാരികള്‍ക്ക് ഇല്ലാതെ പോകുന്നതും അതാണ്.

Content Highlights: climate change a timely warning for Kerala

essay on climate change in malayalam

Share this Article

Related topics, remya harikumar, get daily updates from mathrubhumi.com, related stories.

rain

സംസ്ഥാനത്ത് ഇന്ന് പരക്കെ മഴയ്ക്ക് സാധ്യത; 9 ജില്ലകളില്‍ യെല്ലോ അലര്‍ട്ട്, 17 വരെ മഴ തുടരും

Heat

സംസ്ഥാനത്ത് ചൂട് നാലുഡിഗ്രിവരെ ഉയരും; ചൊവ്വാഴ്ച മുതൽ മഴയ്ക്ക് സാധ്യത

climate change (2)

Environment

കാലാവസ്ഥാ വ്യതിയാനം സാമ്പത്തിക മേഖലയിൽ വൻ നഷ്ടമുണ്ടാക്കുമെന്ന് റിപ്പോർട്ട്

heavy rain in UAE

വാഹനങ്ങളും മാളുകളും വെള്ളത്തില്‍; UAE-ല്‍ പെയ്തത് 75 വര്‍ഷത്തിനിടയിലെ ഏറ്റവും ശക്തമായ മഴ

വാര്‍ത്തകളോടു പ്രതികരിക്കുന്നവര്‍ അശ്ലീലവും അസഭ്യവും നിയമവിരുദ്ധവും അപകീര്‍ത്തികരവും സ്പര്‍ധ വളര്‍ത്തുന്നതുമായ പരാമര്‍ശങ്ങള്‍ ഒഴിവാക്കുക. വ്യക്തിപരമായ അധിക്ഷേപങ്ങള്‍ പാടില്ല. ഇത്തരം അഭിപ്രായങ്ങള്‍ സൈബര്‍ നിയമപ്രകാരം ശിക്ഷാര്‍ഹമാണ്. വായനക്കാരുടെ അഭിപ്രായങ്ങള്‍ വായനക്കാരുടേതു മാത്രമാണ്, മാതൃഭൂമിയുടേതല്ല. ദയവായി മലയാളത്തിലോ ഇംഗ്ലീഷിലോ മാത്രം അഭിപ്രായം എഴുതുക. മംഗ്ലീഷ് ഒഴിവാക്കുക..

IN CASE YOU MISSED IT

Droupadi Murmu

ദ്രൗപദി മുര്‍മു; മിഥ്യയും യാഥാര്‍ത്ഥ്യവും

vilayil faseela

'നമ്മെ ആവശ്യമുള്ളവര്‍ ഇപ്പോഴും വിളിക്കും'; VM കുട്ടിയില്ലെങ്കില്‍ ഞാനില്ലെന്നുപറഞ്ഞ ഫസീലയും ഇനിയില്ല

B. SANDHYA

എന്തുകൊണ്ട് പോലീസ് മേധാവി ആയില്ല? സമൂഹമാണ് മറുപടി പറയേണ്ടത്...! | ബി.സന്ധ്യയുമായി അഭിമുഖം

governer

തമിഴ്‌നാട് ഗവര്‍ണറുടെ നടപടി തെറ്റ്; പിന്‍വാങ്ങേണ്ടി വന്നത് ഭരണഘടനയുടെ കരുത്ത് മൂലം- പി.ഡി.ടി ആചാരി

More from this section.

MK Narayanan

'അന്ന് ഒബാമ പറഞ്ഞു, മിസ്റ്റർ മൻമോഹൻ താങ്കളാണ് എന്റെ ...

binoy viswam

മോദിയെ പരാജയപ്പെടുത്താൻ പറ്റും; രാഹുൽ മത്സരിക്കേണ്ടത് ...

P Prabhakar

ഗുജറാത്തല്ല കേരളമാണ് മാതൃക: പറക്കാല പ്രഭാകര്‍

സുധ മേനോന്‍

'നിശബ്ദത നമ്മുടെ ആർട്ട് ഓഫ് ലിവിങ് ആയി മാറിക്കഴിഞ്ഞു, ...

Most commented.

  • Mathrubhumi News
  • Media School

itunes

  • Privacy Policy
  • Terms of Use
  • Subscription
  • Classifieds

© Copyright Mathrubhumi 2024. All rights reserved.

  • Other Sports
  • News in Videos
  • Entertainment
  • One Minute Video
  • Stock Market
  • Mutual Fund
  • Personal Finance
  • Savings Center
  • Commodities
  • Products & Services
  • Pregnancy Calendar
  • Arogyamasika
  • Azhchappathippu
  • News & Views
  • Notification
  • Social issues
  • Social Media
  • Destination
  • Thiruvananthapuram
  • Pathanamthitta
  • News In Pics
  • Taste & Travel
  • Photos & Videos

Mathrubhumi

Click on ‘Get News Alerts’ to get the latest news alerts from

Mathrubhumi

HindiVyakran

  • नर्सरी निबंध
  • सूक्तिपरक निबंध
  • सामान्य निबंध
  • दीर्घ निबंध
  • संस्कृत निबंध
  • संस्कृत पत्र
  • संस्कृत व्याकरण
  • संस्कृत कविता
  • संस्कृत कहानियाँ
  • संस्कृत शब्दावली
  • पत्र लेखन
  • संवाद लेखन
  • जीवन परिचय
  • डायरी लेखन
  • वृत्तांत लेखन
  • सूचना लेखन
  • रिपोर्ट लेखन
  • विज्ञापन

Header$type=social_icons

  • commentsSystem

Global warming / Climate change Essay in Malayalam Language

Global warming / Climate change Essay in Malayalam Language / ആഗോളതാപനം ഉപന്യാസം: അന്തരീക്ഷത്തിൽ ഓക്സിജന്റെ അളവുകുറയുകയും കാർബൺ ഡൈ ഓക്സൈഡിന്റെ അളവുകൂടുകയും ചെയ്യുന്നതുകൊണ്ടാണ് ആഗോളതാപനം ഉണ്ടാകുന്നത്. ലോകവിപത്തായി മാറിയിരിക്കുന്ന ഈ വിഷയത്തെപ്പറ്റി പലരാജ്യങ്ങളിലും ചർച്ചനടക്കുന്നുണ്ട്. നമ്മുടെ ഹരിതസുന്ദരമായ ഭൂമി മരുഭൂമിയായി മാറിക്കൊണ്ടിരിക്കു കയാണ്. ഭൗമോപരിതലത്തിലെ ചൂട് ക്രമാതീതമായി വർദ്ധിച്ചുവരിക യാണ്. ഈ അവസ്ഥ നമ്മെ കൊണ്ടെത്തിക്കുന്നത് ആഗോളതാപനം എന്ന പ്രശ്നത്തിലേക്കാണ്.

Global warming / Climate change Essay in Malayalam Language

ninte thantha

100+ Social Counters$type=social_counter

  • fixedSidebar
  • showMoreText

/gi-clock-o/ WEEK TRENDING$type=list

  • गम् धातु के रूप संस्कृत में – Gam Dhatu Roop In Sanskrit गम् धातु के रूप संस्कृत में – Gam Dhatu Roop In Sanskrit यहां पढ़ें गम् धातु रूप के पांचो लकार संस्कृत भाषा में। गम् धातु का अर्थ होता है जा...

' border=

  • दो मित्रों के बीच परीक्षा को लेकर संवाद - Do Mitro ke Beech Pariksha Ko Lekar Samvad Lekhan दो मित्रों के बीच परीक्षा को लेकर संवाद लेखन : In This article, We are providing दो मित्रों के बीच परीक्षा को लेकर संवाद , परीक्षा की तैयार...

RECENT WITH THUMBS$type=blogging$m=0$cate=0$sn=0$rm=0$c=4$va=0

  • 10 line essay
  • 10 Lines in Gujarati
  • Aapka Bunty
  • Aarti Sangrah
  • Akbar Birbal
  • anuched lekhan
  • asprishyata
  • Bahu ki Vida
  • Bengali Essays
  • Bengali Letters
  • bengali stories
  • best hindi poem
  • Bhagat ki Gat
  • Bhagwati Charan Varma
  • Bhishma Shahni
  • Bhor ka Tara
  • Boodhi Kaki
  • Chandradhar Sharma Guleri
  • charitra chitran
  • Chief ki Daawat
  • Chini Feriwala
  • chitralekha
  • Chota jadugar
  • Claim Kahani
  • Dairy Lekhan
  • Daroga Amichand
  • deshbhkati poem
  • Dharmaveer Bharti
  • Dharmveer Bharti
  • Diary Lekhan
  • Do Bailon ki Katha
  • Dushyant Kumar
  • Eidgah Kahani
  • Essay on Animals
  • festival poems
  • French Essays
  • funny hindi poem
  • funny hindi story
  • German essays
  • Gujarati Nibandh
  • gujarati patra
  • Guliki Banno
  • Gulli Danda Kahani
  • Haar ki Jeet
  • Harishankar Parsai
  • hindi grammar
  • hindi motivational story
  • hindi poem for kids
  • hindi poems
  • hindi rhyms
  • hindi short poems
  • hindi stories with moral
  • Information
  • Jagdish Chandra Mathur
  • Jahirat Lekhan
  • jainendra Kumar
  • jatak story
  • Jayshankar Prasad
  • Jeep par Sawar Illian
  • jivan parichay
  • Kashinath Singh
  • kavita in hindi
  • Kedarnath Agrawal
  • Khoyi Hui Dishayen
  • Kya Pooja Kya Archan Re Kavita
  • Madhur madhur mere deepak jal
  • Mahadevi Varma
  • Mahanagar Ki Maithili
  • Main Haar Gayi
  • Maithilisharan Gupt
  • Majboori Kahani
  • malayalam essay
  • malayalam letter
  • malayalam speech
  • malayalam words
  • Mannu Bhandari
  • Marathi Kathapurti Lekhan
  • Marathi Nibandh
  • Marathi Patra
  • Marathi Samvad
  • marathi vritant lekhan
  • Mohan Rakesh
  • Mohandas Naimishrai
  • MOTHERS DAY POEM
  • Narendra Sharma
  • Nasha Kahani
  • Neeli Jheel
  • nursery rhymes
  • odia letters
  • Panch Parmeshwar
  • panchtantra
  • Parinde Kahani
  • Paryayvachi Shabd
  • Poos ki Raat
  • Portuguese Essays
  • Punjabi Essays
  • Punjabi Letters
  • Punjabi Poems
  • Raja Nirbansiya
  • Rajendra yadav
  • Rakh Kahani
  • Ramesh Bakshi
  • Ramvriksh Benipuri
  • Rani Ma ka Chabutra
  • Russian Essays
  • Sadgati Kahani
  • samvad lekhan
  • Samvad yojna
  • Samvidhanvad
  • Sandesh Lekhan
  • sanskrit biography
  • Sanskrit Dialogue Writing
  • sanskrit essay
  • sanskrit grammar
  • sanskrit patra
  • Sanskrit Poem
  • sanskrit story
  • Sanskrit words
  • Sara Akash Upanyas
  • Savitri Number 2
  • Shankar Puntambekar
  • Sharad Joshi
  • Shatranj Ke Khiladi
  • short essay
  • spanish essays
  • Striling-Pulling
  • Subhadra Kumari Chauhan
  • Subhan Khan
  • Suchana Lekhan
  • Sudha Arora
  • Sukh Kahani
  • suktiparak nibandh
  • Suryakant Tripathi Nirala
  • Swarg aur Prithvi
  • Tasveer Kahani
  • Telugu Stories
  • UPSC Essays
  • Usne Kaha Tha
  • Vinod Rastogi
  • Vrutant lekhan
  • Wahi ki Wahi Baat
  • Yahi Sach Hai kahani
  • Yoddha Kahani
  • Zaheer Qureshi
  • कहानी लेखन
  • कहानी सारांश
  • तेनालीराम
  • मेरी माँ
  • लोककथा
  • शिकायती पत्र
  • हजारी प्रसाद द्विवेदी जी
  • हिंदी कहानी

RECENT$type=list-tab$date=0$au=0$c=5

Replies$type=list-tab$com=0$c=4$src=recent-comments, random$type=list-tab$date=0$au=0$c=5$src=random-posts, /gi-fire/ year popular$type=one.

  • अध्यापक और छात्र के बीच संवाद लेखन - Adhyapak aur Chatra ke Bich Samvad Lekhan अध्यापक और छात्र के बीच संवाद लेखन : In This article, We are providing अध्यापक और विद्यार्थी के बीच संवाद लेखन and Adhyapak aur Chatra ke ...

' border=

Join with us

Footer Logo

Footer Social$type=social_icons

  • loadMorePosts

essay on climate change in malayalam

Climate Change

Climate crisis in kerala: an integrated approach is needed to mitigate impact.

The state has been experiencing an onslaught of heavy rains, floods, landslides and droughts over the last few years

essay on climate change in malayalam

By Pradeep Balan, Jessy M.D

Published: tuesday 04 january 2022.

essay on climate change in malayalam

Kerala has been experiencing an onslaught of heavy rains, floods, landslides and droughts over the last few years. The state has received heavy rainfall in 1924, 1961, 2018 and 2021.

The carbon emitted by humans into the atmosphere since the Industrial Revolution is one of the major causes of the current climate crisis . But human interactions have accelerated the impacts of climate change.

In a densely populated (859 per square kilometres) and geographically small state like Kerala (38,863 sq km), it is very important to take appropriate measures to prevent the impact of natural disasters such as floods and landslides.

Climate change in Kerala is likely due to the combined effect of geography, land-use change, urbanisation, development activities and population density of the state.

The maximum distance between the eastern and western parts of Kerala is only 120 km (in some places it is only 35 km). Within this 120 km, there are places above 2,695 metres (Anamudi, Idukki district) and places up to 2 metres below sea level (Alappuzha and Kottayam districts).

One has to travel hardly 120 km to reach sea level, from a height of about 2,695 metres. Therefore, in case of heavy rainfall, water should flow smoothly from the eastern hills of Kerala to the west coast. When this is interrupted, the effects of impacts are likely to increase.

The water of 41 rivers flowing westwards in Kerala has to fall into the sea across 120 km. It is estimated that there are about 58 dams in Kerala. Although dams are a part of development, there are related factors that impede the natural flow of rivers.

Though dams can control flooding, the flow of water through rivers and their tributaries decreases only after the dams have been constructed. When the water recedes, people use the river banks for agricultural and household purposes.

Those living along the river banks are most affected when the dams are opened during the rainy season.

People have migrated to the foothills of the Western Ghats for agriculture and housing. The origin of many rivers in Kerala starts from these portions of the Western Ghats. Buildings, roads, agriculture and construction activities obstruct the natural flow of rainwater.

The total length of roads in Kerala is about 331,904 kilometres. Its total area is around 165,952 hectares if we arbitrarily assume the average width of a road is 5 metres.

Similarly, the total number of households in Kerala is 7.8 million. If we presume the average area of a house is around ​​5 cents, it covers an area of ​​about 157,827 ha of concrete buildings, all of which are permanent blockages. This prevents the infiltration rate of rainwater from reaching the ground.

The myth that plantation crops in Kerala’s Western Ghats are affected by landslides may be widespread, but extreme rainfall in an area can lead to landslides when the water saturation capacity of soils exceeds. It is highly likely to trigger landslides even in forested areas.

Landslides are triggered by the slope of an area, rainfall intensity, soil saturation capacity, soil depth and geological structure of a location. Plantation agriculture doesn’t disturb soils. 

This reduces the risk of a landslide. Science-based practices are crucial to minimise natural disasters. Plantation agriculture such as the rubber sector has issued advisories for rubber plantations grown in landslide-prone areas.

Quarrying, mining and large-scale construction activities, which affect the ecological stability of the landscape, could be the major factors causing these landslides. There are an estimated 5,924 quarries in Kerala.

The low-lying areas in the western part of Kerala are prone to flash floods. If the construction is done in areas with drainages, the natural flow of water can be obstructed. It is then highly likely that water will flow into areas where it can flow.

It can sometimes be through cities or even places where houses are located. Floods at Kochi International Airport in 2018 were an example of this. The airport is located in a low-lying area close to the watersheds / rivers, which is prone to flash floods. It is, therefore, vital to prepare flood risk zones at the micro level to identify, locate and manage the regions most vulnerable to floods.

While Kerala receives an annual average rainfall of 3,000 mm, the possibility of drought also looms large. The state, for example, experienced drought in 2017. The southern parts of the state (Kollam), central Kerala (Palakkad) and North Kerala (Kannur and Kasaragod districts) generally experience summer droughts (February to May).

Although geography and soil characteristics play an important role in drought , the major amount of rainfall received in Kerala falls into the sea in a short time because of the state's sloping terrain.

If more rainwater is infiltrated into the soil, it will enhance the amount of groundwater recharge. Rainwater harvesting and protection of watersheds can help alleviate drought to some extent.

It is essential to regulate climate disasters and create awareness in a densely populated state like Kerala. An integrated approach is needed to manage climate change impacts.

Views expressed are the authors’ own and don't necessarily reflect those of  Down To Earth

essay on climate change in malayalam

We are a voice to you; you have been a support to us. Together we build journalism that is independent, credible and fearless. You can further help us by making a donation. This will mean a lot for our ability to bring you news, perspectives and analysis from the ground so that we can make change together.

Comments are moderated and will be published only after the site moderator’s approval. Please use a genuine email ID and provide your name. Selected comments may also be used in the ‘Letters’ section of the Down To Earth print edition.

rss

Advertisement

Advertisement

The 2018 Kerala floods: a climate change perspective

  • Open access
  • Published: 18 January 2020
  • Volume 54 , pages 2433–2446, ( 2020 )

Cite this article

You have full access to this open access article

essay on climate change in malayalam

  • Kieran M. R. Hunt   ORCID: orcid.org/0000-0003-1480-3755 1 &
  • Arathy Menon 1  

36k Accesses

123 Citations

35 Altmetric

Explore all metrics

In August 2018, the Indian state of Kerala received an extended period of very heavy rainfall as a result of a low-pressure system near the beginning of the month being followed several days later by a monsoon depression. The resulting floods killed over 400 people and displaced a million more. Here, a high resolution setup (4 km) of the Weather Research and Forecasting (WRF) model is used in conjunction with a hydrological model (WRF-Hydro, run at 125 m resolution) to explore the circumstances that caused the floods. In addition to a control experiment, two additional experiments are performed by perturbing the boundary conditions to simulate the event in pre-industrial and RCP8.5 background climates. Modelled rainfall closely matched observations over the study period, and it is found that this would this would have been about 18% heavier in the pre-industrial due to recent weakening of monsoon low-pressure systems, but would be 36% heavier in an RCP8.5 climate due to moistening of the tropical troposphere. Modelled river streamflow responds accordingly: it is shown the six major reservoirs that serve the state would have needed to have 34% more capacity to handle the heavy rainfall, and 43% had the deluge been amplified by an RCP8.5 climate. It is further shown that this future climate would have significantly extended the southern boundary of the flooding. Thus it is concluded that while climate change to date may well have mitigated the impacts of the flooding, future climate change would likely exacerbate them.

Similar content being viewed by others

Investigation of the mechanisms leading to the 2017 montreal flood.

essay on climate change in malayalam

Hydroclimatological Perspective of the Kerala Flood of 2018

essay on climate change in malayalam

Climate change impact to Mackenzie river Basin projected by a regional climate model

Avoid common mistakes on your manuscript.

1 Introduction

About 80% of the annual rainfall in India falls during the monsoon season (Parthasarathy et al. 1994 ) and the Indian population depends on this water for agriculture, hydration, and industry. Any variability in timing, duration and intensity of the monsoon rains have a significant impact on the lives of the people in India. In recent years, several parts of India have experienced devastating flooding events. For example, on 26 July 2005, Mumbai experienced the worst flooding in recorded history when the city received 942 mm of rainfall on a single day (Prasad and Singh 2005 ). Similarly, on 17 June 2013, the state of Uttarakhand received more than 340 mm of rainfall resulting in disastrous flood and landslides that lead to unparalleled damage to life and property (Dube et al. 2014 ; Martha et al. 2015 ). The November 2015 Chennai floods, which resulted in over 500 deaths when Chennai experienced three times the usual rainfall, is another such example (Ray et al. 2019 ). Each year, flooding in India from extreme rains results in a loss of around $3 billion, which constitutes about 10% of global economic losses (Roxy et al. 2017 ).

In August 2018, the state of Kerala experienced its worst flooding since 1924. The devastating flood and associated landslides affected 5.4 million people and claimed over 400 lives. The post-disaster assessment commissioned by the Government of Kerala estimated the economic loss to be more than $3.8 million. Footnote 1 These floods, as well as many like the ones listed earlier, occurred during the passage of a monsoon depression. Though depressions are not directly responsible for more than a few percent of the monsoon rainfall over Kerala (Hunt and Fletcher 2019 ), could their broad scale modulate the westerly moisture flux that is responsible?

Kerala is bounded by Arabian Sea to its west and the Western Ghat mountain range to its east. Around 44 rivers flow through Kerala and there are about 50 major dams distributed mostly across the Western Ghats (Ramasamy et al. 2019 ) which provide water for agriculture and hydroelectric power generation. Second to the northeastern states, Kerala receives the most monsoon rainfall in India: the average annual rainfall is around 300 cm spread over 6 months, the highest amounts being received in June and July. Between 1 and 19 August 2018, Kerala received 164% more rainfall than normal, most of which fell during the two torrential rainfall episodes of 8–10 August (contemporaneous with a low-pressure area, see Fig.  1 ) and 14–19 August (contemporaneous with a monsoon depression). During 14–19 August, the Keralan district of Idukki received the most rainfall ( \(\sim 700\)  mm)—about twice the normal amount. According to Mishra et al. ( 2018a ), the one- and two-day extreme precipitation values that occurred in Kerala on 15–16 August had return periods of 75 and 200 years respectively when compared to a long term record from 1901–2017. Periyar basin, one of the most affected areas, received a 145-year return period rainfall amount (Sudheer et al. 2019 ).

The first of these two episodes of rain resulted in flooding along the banks of some of the rivers and water was released from only a few dams as the rain fell mostly over their catchment areas. After the first episode of heavy rain, most of the reservoirs in the state were near their Full Reservoir Level (FRL) and most of the soil in the region became saturated. Thus, when the second episode started several days later, the authorities had to open the shutters of almost all the major dams in Kerala. A combination of these torrential rains and opening of the dam shutters resulted in severe flooding in 13 out of the 14 districts in Kerala (Mishra et al. 2018b ; CWC 2018 ). Given the volume of precipitation that fell during this period, could the dams possibly have prevented the floods that followed?

Sudheer et al. ( 2019 ) used a hydrological model to explore the role of dams in the Periyar river basin in the 2018 floods. They suggested that emptying the reservoirs in advance would not have avoided the flood as a large bulk of the surface runoff was caused by intermediate catchments which do not have controlled reservoir operations. They found that, in the Periyar river basin, improved reservoir management would have only attenuated the flood by 16–21%. Furthermore, they highlighted that the probability of getting extreme rainfall events in the Periyar river basin in August is only 0.6% and hence a reliable extreme rainfall event forecast coupled with a reservoir inflow forecast is needed to plan mitigation. Mishra et al. ( 2018b ) found that the extreme precipitation and subsequent flooding of the 2018 event was unprecedented over a 66-year record. They suggested that while mean monsoon precipitation has decreased and mean temperature has increased over that period, one- and two-day extreme precipitation and extreme runoff conditions in in August 2018 exceeded the 95th percentile of the long-term mean from 1951–2017.

According to the recent Intergovernmental Panel for Climate Change (IPCC) report (Solomon et al. 2007 ), wet extremes are projected to become more severe in many areas where mean precipitation is projected to increase, as is flooding in the Asian monsoon region and other tropical areas. Several studies suggest that rainfall extreme events will increase in India under global warming (Goswami et al. 2006a ; Rajeevan et al. 2008 ; Guhathakurta et al. 2011a ; Menon et al. 2013 ; Roxy et al. 2017 ). Most extreme events over central India are associated with monsoon depressions (Dhar and Nandargi 1995 ), hence intensification of extreme rainfall events could be related to the change in dynamics of the monsoon depressions (Pfahl et al. 2017 ). However, due to the coarse resolution of global climate models, it is unknown if the extreme rainfall events in these models are caused by monsoon depressions (Turner and Annamalai 2012 ). Several observational studies, however suggest that the frequency of monsoon depressions has decreased and the frequency of low-pressure systems has increased in the recent past (Dash et al. 2004 ; Ajayamohan et al. 2010 ), implying a weakening trend in monsoon synoptic activity. So, how did climate change affect the 2018 floods, and to what extent would they differ under future climate change?

In this study, we will use high-resolution WRF and the WRF-Hydro simulations to explore the major factors behind the Kerala floods of August 2018. We also simulate the floods under pre-industrial and RCP8.5 background states to determine the effects of past and future climate change. Section  2 explains the model setup, data and methods used in this study. Section  3 deals with the major results from the precipitation and hydrology analysis. Results are concluded and discussed in Sect.  4 .

figure 1

Coverage of the two WRF domains (red), overlaid on an topographic map of India. The tracks of the monsoon low pressure area and monsoon depression occurring during August 2018 are marked in grey, with markers showing their 00UTC positions for each day

2 Data and methodology

2.1 era-interim.

For the initial and lateral boundary conditions in our regional model setup, we use the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-I; Dee et al. 2011 ). The surface fields, as well as soil temperature and moisture at selected depths are used only for initial conditions; atmospheric variables, which include wind, temperature and moisture defined over pressure levels are used to construct both initial and boundary conditions. All fields are available at 6-h intervals with a horizontal resolution of T255 ( \(\sim 78\)  km at the equator), with the three-dimensional fields further distributed over 37 vertical levels spanning from the surface to 1 hPa. Data are assimilated into the forecasting system from a variety of sources, including satellites, ships, buoys, radiosondes, aircraft, and scatterometers. Fields deriving purely from the model (i.e. not analysed), for example precipitation and cloud cover, are not used in this study.

2.2 Precipitation data

We need a relatively high-resolution observational rainfall dataset with which to compare our model output. Arguably the most suitable such dataset is the NCMRWF merged product (Mitra et al. 2009 , 2013 ), which combines automatic gauge data from the India Meteorological Department with satellite data from the TRMM multisatellite precipitation analysis (Huffman et al. 2007 ). This provides a rainfall dataset covering India and surrounding oceans at daily frequency and \(0.25^\circ\) horizontal resolution.

For this study, we use the 32 freely-accessible CMIP5 models (Taylor et al. 2012 ) for which monthly pressure level data were available. Where possible, the r1p1i1 ensemble member was chosen as the representative of each model, so as not to unfairly weight the results towards any particular model. The exception was EC-EARTH, for which, due to data availability reasons, member r9p1i1 was used. In this study, we use data from three of the CMIP5 experiments: historical, pre-industrial, and RCP8.5. The historical experiments of all models used here are forced with observed natural and anthropogenic contributions, usually from over the period 1850–2005, from which we take a representative period of 1980–2005, against which all perturbations are computed. The pre-industrial experiment comprises longer simulations with no anthropogenic forcings; these have varying baseline periods depending on the model, so we take the representative period as being the last 25 years of the run. The future scenario used here, RCP8.5, corresponds to an effective net change in radiative forcing in 2100 of \(8.5\,\hbox {W}\,\hbox {m}^{-2}\) , equivalent to roughly 1370 ppm \(\hbox {CO}_2\) (Van Vuuren et al. 2011 ). We again choose the final 25 years (2075–2100) as the representative period for the experiment.

Throughout this study we will make use of version 4.0 of the Advanced Research Weather Research and Forecasting (WRF) model (Skamarock et al. 2008 ). Two domains (see Fig.  1 ) were employed for this study: the \(61\times 61\) outer domain had a resolution of 36 km, whereas the \(100\times 181\) inner domain had a resolution of 4 km. We note that though this nesting ratio seems high, previous authors (e.g. Liu et al. 2012 ; Mohan and Sati 2016 ) have found that results are insignificant to the ratio, so long as it is an odd number. The inner domain was chosen to encapsulate the entire state of Kerala, as well as the Western Ghats and an area of the Arabian Sea to the west, allowing us to capture offshore convective development as well as the orographic features that play an important role in monsoon rainfall in the state. The larger domain, which covers most of India, was chosen to include the monsoon depression that was contemporaneous with the flooding.

Convection was parameterised in the outer domain, but explicit in the inner—this and the other physics schemes used are outlined in Table  1 . Here, we use the combination recommended by NCAR and specified in the WRF User’s Guide for convection-permitting simulations of tropical cyclones; it is very similar to that used by previous authors simulating orographic rainfall in South Asia (e.g. Patil and Kumar 2016 ; Norris et al. 2017 ), as well as monsoons in general (e.g. Srinivas et al. 2013 ; Dominguez et al. 2016 ). We use 35 eta levels in the vertical with a model lid at 50 hPa. Lateral boundary conditions were supplied at every 6-h timestep from ERA-Interim reanalysis data, as were initial conditions for the first timestep.

2.5 WRF-Hydro

In this study, we use the WRF-Hydro hydrological model (Gochis et al. 2014 ), coupled to the Noah-MP land surface model (LSM; Gochis and Chen 2003 ; Niu et al. 2011 ; Yang et al. 2011 ). In our configuration, both overland (steepest descent) and channel routing (differential wave gridded) were activated, with the hydrological model running at a resolution of 125 m (timestep: 10 s) and the land surface model running at 4 km (timestep: 1 h). The LSM takes as input hourly output from the WRF model, distributing surface precipitation among its four soil layers (set at 7, 28, 100, and 289 cm to match ERA-Interim) and the surface; WRF-Hydro then channels this moisture accordingly at the higher resolution. The high-resolution input files, containing important geospatial information (e.g.  slope direction, river channel mask) were created using the WRF-Hydro GIS preprocessing toolkit and the satellite-derived HydroSHEDS hydrographic dataset (Lehner et al. 2008 ; Lehner and Grill 2013 ). These modelled rivers and their basins are shown in Fig.  2 .

Because of a lack of relevant reservoir and lake data for the state of Kerala, these features were not implemented in the hydrological model; one major implication of this was that the surface water output from WRF-Hydro was inaccurate (while the natural lakes were correctly represented, the artificial reservoirs were not). Given that some of the reservoirs are substantial (the largest, created by the Idukki dam, is about \(60\,\hbox {km}^2\)  in area), we chose to run the LSM and WRF-Hydro offline (i.e. coupled to each other but not to WRF) in order to mitigate incorrect feedbacks caused by mislocated surface water.

Furthermore, the long spin-up time necessary for the hydrological model meant that a cold start in the summer of 2018 would have been inappropriate. As such, we ran WRF with the control experiment parameters from 1 June 2017 to 1 July 2018 (the start date of all experiments), using the output to force WRF-Hydro so that warm restart files were available for the study period.

2.6 Climate perturbation and experimental setup

One of the key foci of this study will be to explore how the 2018 floods would have differed in the absence of anthropogenic climate change and how it would differ in a projected future climate. To this end we use a technique commonly referred to as pseudo-global warming (PGW, e.g. Kimura and Kitoh 2007 ; Prein et al. 2017 ; Hunt et al. 2019 ). Taking an example of modifying 01-08-2018 00Z boundary conditions to reflect RCP8.5 conditions, we describe the methodology below:

For a given prognostic variable, say, temperature, compute the CMIP5 multi-model August mean for the historical experiment over the period 1980–2005. Call this \(T_0\) .

Compute the multi-model August mean for the RCP8.5 experiment over the period 2075–2100. Call this \(T_p\) .

Take the difference field, \(T_d=T_p - T_0\) , then slice and interpolate it to match the dimensions of the boundary condition. Add \(T_d\) to the boundary condition, and repeat for all boundaries for T at this time step.

Repeat for all variables (and all time steps) on both lateral and lower boundaries.

In this way, we can keep the important high-magnitude, high-frequency weather information, but see how the impacts adjust when perturbed by a low-magnitude, low-frequency climate signal.

2.7 Storage calibration

Much of this study focuses on reservoirs, and since the hydrological model used can only compute the river discharge (or reservoir inflow) for a given point, we need to be able to convert this to storage, so that it can be compared appropriately with observations. To this end, we propose a simple model to compute the storage, S , at some time \(t_1\) , given its value at \(t_0\) , the inflow rate as a function of time, \(\phi (t)\) , the evacuation rate, \(\eta\) , and some shape parameter, \(\alpha\) :

The evacuation rate represents the sum of all contributions to drainage from the reservoir—comprising artificial sinks (sluices, spillways) and natural sinks (seepage, evaporation). Strictly speaking, this should be a function of time; however, that information is not freely available for the dams studied in this work and fitting a time dependent variable using model output would be a highly underconstrained problem. Therefore, we make a simplification—separating the contributions into a constant (following the notion that reservoir output is generally intended to be kept constant), \(\eta\) and a factor proportional to the accumulated storage as a function of time (assuming that, e.g., groundwater seepage is proportional to storage, Footnote 2 ) \(\beta\) . For readability, we define \(\alpha = 1-\beta\) and call that the shape factor because it also includes the effects of having a more complex, partitioned reservoir system.

figure 2

Locations of important hydrological features in the state of Kerala, with state boundaries given in black. Major river catchment boundaries are given in green, with selected rivers labelled accordingly. Plotted river width is a function of Strahler stream order

3.1 Precipitation

figure 3

Mean precipitation [ \(\hbox {mm h}^{-1}\) ] over the inner domain for the period August 6 to August 18 inclusive. From left: the NCMRWF merged product; the control experiment; the difference between the control and pre-industrial experiments; and the difference between the RCP8.5 and control experiments. State boundaries are marked in black, with black crosses representing the major dams shown in Fig.  2

We start our analysis by looking at the primary cause of all floods: precipitation. Figure  3 shows different aspects of the rainfall occurring during and immediately before the floods, covering the period August 6 to August 18 inclusive. The leftmost panel shows the mean rainfall for this period according to the NCMRWF merged precipitation product (see Sect.  2.2 ). Rainfall is concentrated mostly along the peaks of the Western Ghats, thus the hydrological stress that triggered the flooding came about from an (approximate) amplification of the mean monsoon pattern rather than through rainfall falling in unusual locations. This pattern is in agreement with the assessment of Mishra and Shah ( 2018 ) who investigated IMD rainfall data Footnote 3 for the period. Most of the rainfall falls over land as opposed to ocean indicating the extended presence of a so-called coastal convective phase, as described by Fletcher et al. ( 2018 ). Coastal phases stand in contrast to offshore phases, and usually develop under conditions of anomalously strong and moist westerlies—in this case provided by the low pressure systems passing over the peninsula.

Second from left in Fig.  3 is the mean rainfall for our WRF control experiment for the same period (06/08–18/08), showing a broad structure very similar to observations for the period shown in the first panel. Footnote 4 Again, the rainfall is predominantly onshore, concentrated over the orography. At this resolution, though it was suggested by the observational data, we can see that the mean rainfall for this period is heaviest over—or slightly upstream of—the major dams. Upstream of Idamalayar and Parambikulam the mean rate for some areas reached more than \(15\,\hbox {mm}\,\hbox {h}^{-1}\) , amounting to an accumulation exceeding 4.5 m for period. This is in accordance with data released by the Central Water Commission, Footnote 5 as is the spatial distribution.

The remaining two panels, on the right hand side of Fig.  3 , compare the control experiment mean rainfall with that of the two perturbation experiments. We recall from the methodology that these experiments are—like the control—hindcasts, with their boundary conditions adjusted to simulate how the events leading to the flood may differ if occurring under pre-industrial or RCP8.5 climates. The first of these (second from right) shows the difference in mean rainfall for the period between the control and pre-industrial experiments. It is almost universally drier in the pre-industrial experiment—averaging a mean reduction over the inner domain of about 18% compared to the control. Let us start to unpick this by noting that historical rainfall trends show that the monsoon is drying and that that pattern is amplified over Kerala and the Western Ghats due to weakening monsoon westerlies (Krishnan et al. 2016 ). This picture is complicated somewhat by previous studies showing that extreme rainfall events embedded within the monsoon have seemingly worsened (e.g. Goswami et al. 2006b ), though spatial maps of such trends (Guhathakurta et al. 2011b ) suggest that they are very slight along the southwest coast. We will resolve this in the next section by looking at the changes from a moisture flux perspective. Finally, we compare the control and RCP8.5 experiments, as shown in the rightmost panel of Fig.  3 . The RCP8.5 perturbed scenario is almost universally wetter than the control over the inner domain (by about 36%), particularly over the southern Keralan Ghats, where the control rainfall is highest and where the major dams are situated. This is in contrast to the pre-industrial experiment which exhibited the most drying over the north of the state with a more mixed signal around the major dams. This non-linearity could indicate that different processes are responsible for the respective changes.

figure 4

Vertically-integrated moisture flux for the period 2018-08-15 00Z to 2018-08-19 00Z over the outer domain (with Kerala indicated in black). The left panels shows the mean vector field and its magnitude for the pre-industrial and control experiments respectively. The middle panels show the changes to those fields in the control and RCP8.5 experiments respectively considering only changes to specific humidity. The right panels are as the middle panels but for changes to the wind field. The right and middle panels are coloured by the effect their presence has on the total magnitude, note that the colours scales differ between the two pairs of experiments

The moisture flux that impinges upon the Western Ghats is responsible for the vast majority of the monsoon rainfall that falls over Kerala, subject to localised dynamics dependent also on the land-sea contrast (Fletcher et al. 2018 ). To first order, changes in this moisture flux can be thought of as a sum of contributions from changes to humidity and changes to the wind field, i.e.:

where q and \({\mathbf {u}}\) are the quantities in the perturbation experiment, \({\bar{q}}\) and \(\bar{{\mathbf {u}}}\) are the values in the control experiment, and \(q'\) and \({\mathbf {u}}'\) are the differences between them.

Considering the period when the monsoon depression was most active: Aug 15 to Aug 18 inclusive, we compare these terms between the control experiment and two perturbation experiments in Fig.  4 . The first of the two groups, Fig.  4 a treats the pre-industrial experiment as the base, with the control experiment acting as the perturbation. The leftmost panel, indicating mean moisture flux for the period, shows clearly the impact of the depression. It dominates the organisation of moisture over the peninsula, with high values of vertically integrated flux and flux convergence both slightly to the south of its centre and over Kerala. The middle panel shows how this pattern would change in the present day considering differences to humidity alone. As the tropical atmosphere has not moistened drastically since the pre-industrial, these changes are slight when compared to the absolute values, adding only a very small positive contribution—amounting to a few percent—to the flux magnitude over Kerala. The right-hand panel is as the middle panel, but instead looking at the contribution from the wind field alone. Immediately, one can see that the depression is surrounded by a significantly weaker circulation causing a reduction in moisture flux over almost all of India, except for a small region near the depression centre caused by track translation. This is expected: previous studies have shown that monsoon low-pressure systems become weaker and less numerous as the climate warms (Prajeesh et al. 2013 ; Cohen and Boos 2014 ; Sandeep et al. 2018 ) as low-level vorticity associated with the monsoon decreases. Despite this, the reduction in flux over Kerala is comparatively weak, though easily more than enough to override the contribution from \(q'\) . This is largely in agreement with Sørland et al. ( 2016 ) who found that, for an ensemble of ten individual storms, uniform atmospheric temperature increases of 2 K and 4 K yielded mean precipitation increases of 22% and 53% respectively.

The second set of panels, Fig.  4 b, shows the contributions to the difference in moisture flux between the control and RCP8.5 experiments. The mean vertically integrated moisture flux for the control experiment appears quite similar to that of the pre-industrial experiment, which we expect from the preceding analysis. The humidity change (middle panel) increases the moisture flux incident on Kerala by over 20% from the control experiment to the RCP8.5 experiment, as well as a universally positive contribution over the whole subcontinent. The expected further weakening of the depression (right-hand panel) is much weaker than in the pre-industrial to control case before, and nowhere near strong enough to counter the large moisture-drive contribution.

In summary, in the control (present-day) experiment, there was marginally less moisture flux over Kerala than in the pre-industrial experiment due to a marked weakening of the monsoon depression; in contrast, there is significantly increased flux over Kerala in the RCP8.5 experiment in spite of slight weakening of the depression, due to a large rise in tropospheric humidity.

3.2 Hydrology

figure 5

Modelled river discharge ( \(\hbox {m}^3\hbox {s}^{-1}\) ) for 13–18 August 2018 inclusively as: a the control experiment mean; b the ratio of the control experiment and pre-industrial experiment means; and c the ratio of the RCP8.5 experiment and control experiment means. The seven major dams shown in Fig.  2 are given here by black crosses

Precipitation is only one part of the complex hydrological cascade that leads to flooding. To work towards a more complete picture, we now use the WRF hydrological model (see Sect.  2.5 ) to explore the response of rivers to the heavy precipitation analysed in the previous section.

Figure  5 shows the mean modelled discharge over from 13-08-2018 00Z to 19-08-2018 00Z for the control experiment and how it compares to the two perturbation experiments. The control mean (Fig.  5 a) splits the discharge into decades, with green hues representing the largest rivers (flow rates exceeding \(100\,\hbox {m}^3\,\hbox {s}^{-1}\) ), red hues representing the smallest rivers (flow rates below \(10\,\hbox {m}^3\,\hbox {s}^{-1}\) ), and yellow covering those in between. All seven of the important dams (and their eponymous reservoirs) lie on major rivers or significant tributaries thereof. Given the complicated partitioning of river basins over Kerala (Fig.  2 ), these maps provide a useful overview of their response to heavy rainfall during August 2018 and how that response changes when the rainfall responds to the different climates of the pre-industrial and RCP8.5 perturbation experiments.

Figure  5 b shows the difference between the mean control discharge and that of the pre-industrial experiment. As the rainfall is generally less in the latter during this period, we see the expected pattern of almost completely reduced streamflow over the domain; the exact reduction varies considerably depending on location (and is indeed an increase in some areas) but averages 16% over the domain. In contrast, Fig.  5 c shows that streamflow almost universally increases over the domain in the RCP8.5 experiment when compared to the control. In some places, the change is quite drastic: the mean increase over the domain is 33%, the upper quartile is 77%, and the ninetieth percentile is 97%. In other words, one in ten river points in the domain would have experienced twice the discharge were this event to have happened in an RCP8.5 climate. The domain-averaged changes of −16% and 33% for pre-industrial and RCP8.5 are in strong agreement with the domain-averaged rainfall changes of −18% and 36% respectively.

figure 6

Idukki reservoir: modelled inflow (blue, grey, red lines for control, pre-industrial, RCP8.5 experiments respectively), modelled storage (orange solid, dotted, dashed lines respectively), and observed storage (black crosses). Nominal reservoir maximum capacity is marked by the dashed grey line towards the right of the figure

The story would be incomplete without some focus on the reservoir/dam system that failed in the lead up to the floods. While a complete treatment of that topic is beyond the scope of this work, we will endeavour to give a thorough analysis with the available data. We start by using the largest reservoir in the state, Idukki, as a case study. Figure  6 shows the modelled inflow and storage for all three experiments, as well as the observed storage from India-WRIS and the nominal capacity of the reservoir. As discussed in Sect.  2.7 , to convert modelled inflow to a representative storage we must integrate it over time and include both a sluicing rate and a shape factor. These are reservoir-specific unknowns that we need to fit for using a standard least-squares method. Leveraging part of the long spin up period required by the hydrological model, we calibrated using observational and (control experiment) model data from January to June 2018 inclusive; the low rainfall during the pre-monsoon being particularly useful to establish the correct sluicing rate.

The inflow rates from all three experiments are in line with what we expect from Fig.  5 : overall the control experiment is the driest, with slightly more inflow in the pre-industrial experiment and significantly more in the RCP8.5 experiment. The control experiment inflow very closely matches that given in the CWC report (see their Fig.  4 ). These project accordingly onto the modelled storages, all three of which closely follow the observations until the first LPS (Aug 6 to Aug 10). At that point, the reservoir hit capacity—denoted in Fig.  6 by the dashed horizontal grey line, and the floodgates had to be opened. Our model is not party to that information and continues to assume the constant sluicing rate from the pre- and early monsoon periods, resulting in a divergence between the three model storages and observations. The control experiment provides a useful estimate of how much additional storage would have been required: the nominal maximum capacity is \(1.45\times 10^9\,\hbox {m}^{3}\) , the control experiment modelled storage peaked at \(2.04\times 10^9\,\hbox {m}^{3}\) (41% higher), and the RCP8.5 experiment reached a storage of \(2.30\times 10^9\,\hbox {m}^{3}\) (59% higher than maximum capacity, 13% higher than the control). Making the naïve assumption that when modelled storage values exceed the maximum capacity, the difference is converted into floodwater, the control experiment yields a total excess of \(5.89\times 10^8\,\hbox {m}^{3}\) between breaching on August 11th and remission ten days later; the RCP8.5 experiment (breaching one day earlier) yields \(8.52\times 10^8\,\hbox {m}^{3}\) , an increase of 45%. It is clear, therefore, that using the dams to mitigate downstream flooding would have been largely impossible; furthermore, were such an event to happen again in an end-of-century RCP8.5 climate, it would be significantly more catastrophic.

figure 7

Comparison of modelled (orange) and observed storage rates for 2018 with the 2001–2017 climatology (mean in black, with grey swath denoting extrema) for six major reservoirs. Storage at maximum capacity for each is given by the dotted grey line. The three modelled storage values are given by solid, dashed, and dotted lines for the control, pre-industrial, and RCP8.5 experiments respectively

We now generalise this analysis to the major Keralan reservoirs. This is only possible for the six whose storage data are released by India-WRIS, without which we cannot calibrate using Eq.  1 . Observed and modelled storages, along with climatological information, are given for these six (Idamalayar, Idukki, Kakki, Kallada, Malampuzha, and Periyar Footnote 6 ) in Fig.  7 . There are two brief caveats to make before we move into the analysis. Firstly, we have assumed that the reservoir outflow is the sum of a constant sluicing rate and some additional contribution proportional to the inflow; this is a very good approximation for the larger reservoirs (which the reader is invited to verify by inspection of the CWC report) but can be poor in smaller reservoirs where the supply and demand is comparably much more variable. Secondly, as discussed in the previous section, our model has no information on floodgates, so continues to add to the storage of a reservoir even after the maximum capacity (FRL) has been passed. In each case this manifests as a large divergence between modelled and observed storage starting in mid August.

Figure  7 compares these storages for the reservoirs in question. In all cases except Periyar (and to a lesser extent, Kallada), the modelled storage from the control experiment closely follows the observed storage; in all but Kallada, the 2018 observed storage reached its FRL; and in all cases, at some point in July or August, the storage reaches its highest value since records began in 2001. Two reservoirs, Idamalayar and Malampuzha, exhibit seemingly counter-intuitive behaviour: by the end of August, the largest storage values come from the pre-industrial experiment and the smallest from RCP8.5. Inspection of Fig.  3 reveals that although nearly everywhere in the domain receives more rainfall in the RCP8.5 experiment (compared to the control), both these dams are situated downstream of small regions where the reverse is true, seemingly in part due to the absence of some rainfall-triggering event in mid July. Thus, in these unusual cases, it is possible that future climate may mitigate hydrological stress on these reservoirs. The remaining four have storage patterns that more closely reflect the general results presented earlier in this study: the highest storage values are reached in RCP8.5, followed by pre-industrial, with control at the bottom. Averaged over these four reservoirs, the peak storage in the control experiment is 34% higher than the nominal maximum capacity, rising to 43% in pre-industrial conditions and 54% in RCP8.5 conditions. Including the two anomalous reservoirs, these become 37%, 50% and 44% respectively.

figure 8

Sum of model inflow to all reservoirs (see Fig.  2 ) separated by river basin. Basins are organised by latitude, with the northernmost being shown at the left hand side. Solid, dashed, and dotted lines represent the control, pre-industrial, and RCP8.5 experiments respectively

Finally, we look at the general impact on the 62 dams/reservoirs shown in Fig.  2 , whose inflows are grouped by river basin in Fig.  8 ; for each basin, the inflow is computed as the sum of inflow to all reservoirs therein. Noting that the basins are arranged by latitude, several important contrasts emerge. Firstly, the relative impact of the first LPS (triggering the peaks between Aug 8 and Aug 10) is less among the more southerly basins; likely because as a weaker system, it would have a smaller region of influence, and thus less impact on the bulk monsoon flow. Secondly, the impact of switching to an RCP8.5 climate becomes drastically more significant in basins situated further south. Over the period Aug 14 to Aug 19 inclusive, the three smaller basins towards the north (Kuttiyadi, Bharatapuzha, and Karuvannur) have mean control inflow of \(26.2\,\hbox {m}^3\,\hbox {s}^{-1}\) , rising 25% to \(32.7\,\hbox {m}^3\,\hbox {s}^{-1}\) in the RCP8.5 experiment. For the middle three basins (Chalakkudy, Periyar, and Muvattupuzha), the mean inflow increases 32% from \(563\,\hbox {m}^3\,\hbox {s}^{-1}\) in the control to \(745\,\hbox {m}^3\,\hbox {s}^{-1}\) in RCP8.5. For the southernmost three (Meenachal, Pamba, and Kallada), this changes drastically: rising 98% from \(152\,\hbox {m}^3\,\hbox {s}^{-1}\) to \(302\,\hbox {m}^3\,\hbox {s}^{-1}\) . Revisiting Figs.  3 and  4 b, we can see why: this area has the largest fractional increase of rainfall in the RCP8.5 experiment (this can be confirmed directly by looking at a ratio map, which we do not show here). This in turn is at least partially caused by a significant increase in moisture flux and moisture flux convergence over the southernmost part of the peninsula, a pattern that is echoed in CMIP5 projections (Sharmila et al. 2015 ). This has a profound implication: the southern part of Kerala did not flood in 2018 (Mishra and Shah 2018 ), but the results here suggest that it almost certainly would do were such an event to happen again in an end-of-century RCP8.5 climate.

4 Discussion

During mid-August 2018, unprecedented and widespread flooding resulted in the deaths of over 400 people and the displacement of over a million more in the Indian state of Kerala. The flooding was preceded by several weeks of heavy rainfall over the state, caused mostly due a monsoon depression (13–17 Aug) that immediately followed a monsoon low-pressure system (6–9 Aug). In this manuscript, we explored the underlying causes and hydrological responses, as well as how they would differ under alternative climate scenarios. To achieve this, we used a two-domain setup in the Weather Research and Forecasting Model (WRF) with the outer domain (20 km resolution) covering most of the Indian peninsula and the nested inner domain (4 km resolution, explicit convection) covering its southwest, including the entire state of Kerala and a significant portion of the Arabian Sea. Alongside this, we used the companion hydrological model (WRF-Hydro) at 125 m resolution to simulate river channel response to the varying precipitation forcings. The ‘alternative’ climates (pre-industrial and RCP8.5) were simulated by perturbing the model initial and lateral boundary conditions by their projected difference from the present day, computed using CMIP5 multi-model output.

We found that the simulated rainfall from the control experiment, concentrated over the Western Ghats, closely matched observations for that period. The rainfall over this period was higher in both the perturbation experiments: by about 36% over the inner domain in the RCP8.5 experiment and by about 18% in the pre-industrial. We attributed these changes to two trends that previous studies have established as effects of climate change: the weakening of synoptic activity within the Indian monsoon and the moistening of the tropical troposphere. We found that the former was the dominant driver of moisture flux change between the pre-industrial and the present day (hence lower rainfall in the control than in the pre-industrial experiment), whereas the latter was the strongest driver of change between the present-day and RCP8.5. Given this trade-off between competing factors, we cannot safely infer how the rainfall associated with this event would change in other future climates (e.g. RCP4.5, RCP6.0), and so we leave this task for future work.

Using a high-resolution setup of WRF-Hydro, we showed that the change in domain mean rainfall projected onto approximately equivalent changes in mean river streamflow, though as expected there was substantial spatial and temporal variance: for example, the 90th percentile streamflow over the domain increased by 97% in the RCP8.5 experiment compared to the control. Because the India Water Resource Information Service (India-WRIS) only make certain data publically available (only storage data, and only for six of the largest reservoirs), we used a simple model to convert modelled inflow into reservoir storage to verify our hydrological model. For four of the six reservoirs, before reaching their full reservoir level (FRL), the Pearson correlation coefficient between the observed and modelled storage exceeded 0.99 with the remaining two both exceeding 0.9. Furthermore, inflow values for several reservoirs in the days preceding the flood published in a report by the Central Water Commission agree closely with the model output, confirming the efficacy of the hydrological model.

By comparing the modelled storage, which is not affected by FRL, with the observed storage, which is, we were able to calculate the surplus water for each of the six main reservoirs. On average, over the four reservoirs that most closely represented the rainfall trends, 34% more capacity would have been required to handle all the excess precipitation that fell during August 2018; rising to 43% in the pre-industrial and 54% in RCP8.5. It is clear, therefore, that no matter what approach was taken to opening the dams, the catastrophe was inevitable; furthermore the results presented here suggest that they would be significantly more devastating in an end-of-century RCP8.5 climate. Analysis of river streamflow at all 62 dams in the state showed that climate change would have the strongest impact in the south of the state: mean inflow for Aug 14 to Aug 19 increased 25% between the control and RCP8.5 experiments in the three northernmost river basins, rising to 98% in the three southernmost basins.

https://www.undp.org/content/dam/undp/library/Climate%20and%20Disaster%20Resilience/PDNA/PDNA_Kerala_India.pdf

This is only strictly true if reservoir cross-sectional area is constant with height. Of course it isn’t; but for the sake of simplicity, we make this approximation.

Note that the NCMRWF dataset used here is in part derived from IMD rainfall data, so a high pattern correlation is expected.

For a fairer comparison, the model output should be regridded to the resolution of the NCMRWF dataset. However we intend this particular comparison to be qualitative, not quantitative- and have thus retained the higher resolution.

Summarised in https://reliefweb.int/sites/reliefweb.int/files/resources/Rev-0.pdf

Note that in some literature, this is referred to Mullaperiyar.

Ajayamohan RS, Merryfield WJ, Kharin VV (2010) Increasing trend of synoptic activity and its relationship with extreme rain events over central india. J Clim 23(4):1004–1013

Google Scholar  

Cohen NY, Boos WR (2014) Has the number of Indian summer monsoon depressions decreased over the last 30 years? Geophys Res Lett 41:7846–7853. https://doi.org/10.1002/2014GL061895

Article   Google Scholar  

CWC (2018) Kerala floods of August 2018. Central Water Commission, New Delhi https://reliefweb.int/sites/reliefweb.int/files/resources/Rev-0.pdf

Dash SK, Kumar JR, Shekhar MS (2004) On the decreasing frequency of monsoon depressions over the Indian region. Curr Sci Bangalore 86(10):1404–1410

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteor Soc 137(656):553–597. https://doi.org/10.1002/qj.828

Dhar O, Nandargi S (1995) On some characteristics of severe rainstorms of India. Theor Appl Climatol 50(3–4):205–212

Dominguez F, Miguez-Macho G, Hu H (2016) WRF with water vapor tracers: a study of moisture sources for the North American monsoon. J Hydrometeorol 17(7):1915–1927

Dube A, Ashrit R, Ashish A, Sharma K, Iyengar G, Rajagopal E, Basu S (2014) Forecasting the heavy rainfall during Himalayan flooding—June 2013. Weather Clim Extrem 4:22–34

Fletcher JK, Parker DJ, Turner AG, Menon A, Martin GM, Birch CE, Mitra AK, Mrudula G, Hunt KMR, Taylor CM, et al (2018) The dynamic and thermodynamic structure of the monsoon over southern India: New observations from the INCOMPASS IOP. Q J R Meteorol Soc

Gochis DJ, Chen F (2003) Hydrological enhancements to the community Noah land surface model. Tech. rep., NCAR

Gochis DJ, Yu W, Yates DN (2014) The WRF-Hydro model technical description and user’s guide, version 2.0. Tech. rep., NCAR

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006a) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006b) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

Guhathakurta P, Sreejith O, Menon P (2011a) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359

Guhathakurta P, Sreejith O, Menon P (2011b) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359

Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac J Atmos Sci 42(2):129–151

Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. https://doi.org/10.1175/JHM560.1

Hunt KMR, Fletcher JK (2019) The relationship between Indian monsoon rainfall and low-pressure systems. Clim Dyn pp 1–13

Hunt KMR, Turner AG, Parker DE (2016) The spatiotemporal structure of precipitation in Indian monsoon depressions. Q J R Meteor Soc 142(701):3195–3210. https://doi.org/10.1002/qj.2901

Hunt KMR, Turner AG, Shaffrey LC (2019) The impacts of climate change on the winter water cycle of the western Himalaya. Clim Dyn Prep

Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res Atmos 113(D13):

Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140(3):898–918

Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

Kimura F, Kitoh A (2007) Downscaling by pseudo-global-warming method. Final Rep ICCAP RIHN Proj 1–1:43–46

Krishnan R, Sabin TP, Vellore R, Mujumdar M, Sanjay J, Goswami BN, Hourdin F, Dufresne JL, Terray P (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47(3–4):1007–1027

Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Processes 27(15):2171–2186

Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos Trans Am Geophys Union 89(10):93–94

Liu J, Bray M, Han D (2012) Sensitivity of the weather research and forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation. Hydrol Process 26(20):3012–3031

Martha TR, Roy P, Govindharaj KB, Kumar KV, Diwakar P, Dadhwal V (2015) Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, india. Landslides 12(1):135–146

Menon A, Levermann A, Schewe J (2013) Enhanced future variability during India’s rainy season. Geophys Res Lett 40(12):3242–3247

Mishra V, Shah HL (2018) Hydroclimatological perspective of the Kerala flood of 2018. J Geol Soc India 92(5):645–650

Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018a) The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrol Earth Syst Sci Discuss pp 1–13

Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018b) The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrol Earth Syst Sci Discuss pp 1–13

Mitra AK, Bohra AK, Rajeevan MN, Krishnamurti TN (2009) Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J Meteorol Soc Japan Ser II 87:265–279

Mitra AK, Momin IM, Rajagopal EN, Basu S, Rajeevan MN, Krishnamurti TN (2013) Gridded daily Indian monsoon rainfall for 14 seasons: merged TRMM and IMD gauge analyzed values. J Earth Syst Sci 122(5):1173–1182

Mohan M, Sati AP (2016) WRF model performance analysis for a suite of simulation design. Atmos Res 169:280–291

Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116(D12)

Norris J, Carvalho LMV, Jones C, Cannon F, Bookhagen B, Palazzi E, Tahir AA (2017) The spatiotemporal variability of precipitation over the himalaya: evaluation of one-year wrf model simulation. Clim Dyn 49(5–6):2179–2204

Parthasarathy B, Munot AA, Kothawale D (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49(4):217–224

Patil R, Kumar PP (2016) WRF model sensitivity for simulating intense western disturbances over North West India. Model Earth Syst Environ 2(2):1–15

Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Change 7(6):423

Prajeesh AG, Ashok K, Bhaskar Rao DV (2013) Falling monsoon depression frequency: a Gray-Sikka conditions perspective. Sci Rep 3:1–8. https://doi.org/10.1038/srep02989

Prasad AK, Singh RP (2005) Extreme rainfall event of July 25–27, 2005 over Mumbai, west coast, India. J Indian Soc Remote Sens 33(3):365–370

Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48

Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35(18):

Ramasamy S, Gunasekaran S, Rajagopal N, Saravanavel J, Kumanan C (2019) Flood 2018 and the status of reservoir-induced seismicity in Kerala, India. Nat Haz pp 1–13

Ray K, Pandey P, Pandey C, Dimri AP, Kishore K (2019) On the recent floods in india. Curr Sci 117(2):204–218

Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):708

Sandeep S, Ajayamohan RS, Boos WR, Sabin TP, Praveen V (2018) Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc Natl Acad Sci (USA) 115(11):2681–2686

Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical note -475+str

Solomon S, Qin D, Manning M, Averyt K, Marquis M (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

Sørland SL, Sorteberg A, Liu C, Rasmussen R (2016) Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase. J Geophys Res Atmos 121(11):6258–6272

Srinivas C, Hariprasad D, Rao DVB, Anjaneyulu Y, Baskaran R, Venkatraman B (2013) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int J Climatol 33(5):1195–1210

Sudheer K, Bhallamudi SM, Narasimhan B, Thomas J, Bindhu V, Vema V, Kurian C (2019) Role of dams on the floods of august 2018 in Periyar River Basin, kerala. Curr Sci (00113891) 116(5)

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, American Meteorological Society Seattle, WA, vol 1115

Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2(8):587

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5

Yang ZL, Niu GY, Mitchell KE, Chen F, Ek MB, Barlage M, Longuevergne L, Manning K, Niyogi D, Tewari M, et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J Geophys Res Atmos 116(D12)

Download references

Acknowledgements

KMRH is funded through the Weather and Climate Science for Service Partnership (WCSSP) India, a collaborative initiative between the Met Office, supported by the UK Government’s Newton Fund, and the Indian Ministry of Earth Sciences (MoES). AM is funded by the INCOMPASS project (NERC Grant numbers NE/L01386X/1 and NE/P003117/1), a joint initiative between the UK-Natural Environment Research Council and the Indian Ministry of Earth Sciences.

Author information

Authors and affiliations.

Department of Meteorology, University of Reading, Reading, UK

Kieran M. R. Hunt & Arathy Menon

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kieran M. R. Hunt .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Hunt, K.M.R., Menon, A. The 2018 Kerala floods: a climate change perspective. Clim Dyn 54 , 2433–2446 (2020). https://doi.org/10.1007/s00382-020-05123-7

Download citation

Received : 02 September 2019

Accepted : 07 January 2020

Published : 18 January 2020

Issue Date : February 2020

DOI : https://doi.org/10.1007/s00382-020-05123-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Get involved

‘Why is the climate changing like this?’

Coffee and pepper farmers in Wayanad, Kerala, are reeling under losses caused by a rise in temperatures and erratic rainfall in a district whose residents once boasted of its ‘air-conditioned climate’ 

Vishaka George/PARI

“By 4 p.m. we had to light a fire to stay warm here,” says Augustine Vadakil on his struggling farm in Kerala’s hilly Wayanad district. “But that was 30 years ago. Wayanad is no longer the cold, misty place it once was.” From a maximum of 25 degrees Celsius by early March, temperatures here now easily cross 30 degrees by that time of the year.

And the number of warmer days has more than doubled in Vadakil’s lifetime. In 1960, the year he was born, “the Wayanad area could expect about 29 days per year to reach at least 32 degrees [Celsius]” says a calculation from an interactive tool on climate and global warming posted online by the New York Times  this July. “Today the Wayanad area can expect 59 days at or above 32 degrees per year, on average.”

The changing weather patterns, Vadakil says, hurt heat-sensitive and vulnerable crops like pepper and orange trees that were once abundant in this district in the Western Ghats at the southern tip of the Deccan Plateau.

Vadakil and his wife Valsa own a four-acre farm in Cherukottur village in Mananthavady taluk . His family left Kottayam for Wayanad around 80 years ago to try their luck in the booming cash crop economy here. That was a period of heavy migration which saw thousands of small and marginal farmers from central Kerala settle in this district in the north-east of the state.

But over time, the boom seems to have gone bust.  “If the rains prove to be erratic, like they have been in the last year, then the [organic Robusta] coffee we grow is doomed,” says Vadakil. “Coffee is profitable, but the weather is the biggest problem in its growth. Heat and erratic rainfall ruin it,” adds Valsa. The ideal temperature to grow [Robusta] coffee is between 23-28 degrees Celsius, say those working in the sector.

Top row: The coffee crop in Wayanad needs its first rain by late February or early March and it starts to flower a week later. (Photos, left to right: Vishaka George/PARI; Noel Benno/PARI). Bottom row: Either dry spells or untimely rain can destroy the flower (left) that produces the Robusta coffee beans (right). (Photos: Noel Benno/PARI)

All of Wayanad’s coffee, which is of the stronger-in-body Robusta family (a tropical evergreen shrub), is cultivated between December and late March. The coffee plant needs its first rain by late February or early March – and starts to flower a week later. It is crucial that there are no rains for a week after the first shower as that destroys the delicate flowers. The second shower is needed a week after the first one for the coffee fruit or ‘cherries’ to start growing.’ Once the flowers bloom and fall off the tree, the cherries that contain the beans begin to mature.

“Timely rains guarantee you an 85 per cent yield,” says Vadakil. When we met in early March, he was hoping for this outcome, but anxious if it would happen. It did not.

By early March,  at the beginning of Kerala’s severe summer, temperatures had already gone up to 37 degrees. “The second shower (randamatha mazha) came too soon this year and everything was destroyed,” Vadakil told us at the end of March.

For Vadakil, who gives two acres to this crop, that translated to losses of Rs. 70,000 this year. The Wayanad Social Service Society (WSSS), a cooperative that purchases coffee from local farmers, gives them Rs. 88 for one kilogram of unprocessed organic coffee, while non-organic fetches Rs. 65. 

From 55,525 tons in 2017-2018, coffee production in Wayanad plummeted by 40 per cent this year, Father John Choorapuzhayil, a director at the WSSS, told me over the phone. There is no official figure out, yet. The WSSS is a cooperative that purchases coffee from local farmers. “This fall in production is largely because changes in climate have proved the biggest threat to coffee growing in Wayanad,” Fr. John says. Across the district, farmers we met spoke of the wild variations in yields from both excess rainfall – and sometimes the lack of it – in different years.  

Augustine Vadakil and his wife Valsa grow coffee as well as rubber, pepper, bananas, paddy and arecanut. (Photo: Vishaka George/PARI)

The growing heat, however, has begun to affect coffee and all the other crops too. (Photo: Noel Benno/PARI)

Fluctuating rainfall leaves the fields water-starved. “Only 10 per cent of Wayanad’s farmers,” estimates Fr. John, “can work around drought or erratic rainfall with irrigation facilities like borewells and pumps.”  

Vadakil isn’t among the lucky few. His irrigation pump was damaged during the floods that ravaged Wayanad and other parts of Kerala in August 2018. The Rs. 15,000 it would cost him to repair it is too large a sum in such trying times.

On his remaining two acres, Vadakil and Valsa grow rubber, pepper, bananas, paddy and arecanut. The growing heat, however, has begun to affect all these crops as well. “Fifteen years ago, pepper was all we needed to survive. But [since then] diseases like Dhruthavaattam [Quick Wilt] have destroyed acres of it across the district.”  Since pepper is a perennial crop, the farmers’ losses have been devastating.

“As time passes, it seems like the only reason to farm is if it is a hobby. I have all this land, but look at my situation,” Vadakil says. “All you can do in these times is grind some extra chilli because that’s about all you can afford to eat with rice,” he adds, laughing.

“It began 15 years ago,” he says. “Why is the kalavastha changing like this?” Interestingly, the Malayalam word  kalavastha means climate, not temperature or weather. We were asked this question many times by farmers across Wayanad. 

Sadly, a part of the answer lies in the cultivation patterns adopted by farmers over the decades. 

This coffee estate in Mananthawady, like other large estates, can afford to dig artificial ponds and install pumps when rainfall is low. . (Photo: Vishaka George/PARI)

But smaller farms such as Vadakil's have to entirely depend on the rain or inadequate wells. (Photo: Noel Benno/PARI)

“We say that it is healthy for multiple crops to be growing one each patch of farmland as opposed to the mono-cropping culture that now exists,” says Suma T. R.  She is a scientist at the M. S. Swaminathan Research Foundation, Wayanad, who has worked for over 10 years on land-use change issues. Mono-cropping drives the spread of pests and diseases, which are then treated with chemical pesticides and fertilisers. These make their way into groundwater or become airborne, causing contamination and pollution – and severe environmental damage over time.

It began, says Suma, with the deforestation unleashed by the British. “They cleared the forests for timber and converted many high elevation mountains into plantations.” The alteration in climate is also linked, she adds, to “how our landscape too changed with large-scale migration [into the district starting from the 1940s]. Prior to this, farmers in Wayanad primarily practised shifting cultivation.”

In those decades, the major crop here was wetland paddy, not coffee or pepper – even the word ‘ wayanad’ comes from ‘vayal nadu’ or land of paddy fields. Those fields were vital to this region’s – and Kerala’s – environment and ecological systems. But the area under paddy – around 40,000 hectares in 1960 – is down to barely 8,000 hectares today. That, according to government data for 2017-18, accounts for less than 5 per cent of the district’s gross cropped area.  And coffee plantations now cover nearly 68,000 hectares in Wayanad. That’s 79 per cent of the total coffee area in Kerala – and 36 per cent more than all Robusta acreage in the entire country in 1960, the year Vadakil was born.

“Farmers were cultivating crops like ragi on hillocks,” says Suma, instead of clearing the land for cash crops. Farmlands were able to sustain the ecosystem. But with growing migrations, she adds, cash crops took precedence over food crops. And with globalisation’s arrival in the 1990s, even more people started to depend completely on cash crops like pepper. 

‘The fall in production is because changes in climate have proved the biggest threat to coffee in Wayanad’ – across the district, farmers we met spoke of the wild variations.

“Today, farmers make Rs. 12 for one kilogram of paddy and Rs. 67 for coffee. Pepper, however, fetches them between Rs. 360 and Rs. 365 a kilo,” says E. J. Jose, a former project officer at WSSS, and an organic farmer in Mananthavady town. That huge price difference pushes even more farmers to abandon paddy and opt for pepper or coffee. “Everyone is now growing what is most profitable, not what is needed. [We are losing] paddy too, a crop that helps absorb water when it rains, and restores the water tables.”

Many paddy fields in the state have also been turned into prime real estate plots, reducing workdays for farmers skilled in cultivating that crop.

“All these changes have a continuing effect on Wayanad’s landscape,” says Suma. “The soil has been exploited through mono-cropping. A growing population [less than 100,000 till Census 1931 to 817,420 by Census 2011] and land fragmentation come with it, so it’s no wonder Wayanad is getting hotter.”

Jose too believes that these changing farming practices are closely tied to the rise in temperatures. “The change in agriculture patterns has influenced changes in rainfall,” he says.

In nearby Thavinhal panchayat , walking us around his 12-acre farm, 70-year-old M. J. George says, “These fields were once so full of pepper, it was hard for light to pass through the trees. We've lost tons of pepper in the past few years. Changing climatic conditions are causing diseases like Quick Wilt.”

Caused by the fungus phytophthora , Quick Wilt has eaten into the livelihoods of thousands across the district. It thrives in conditions of high humidity which have “significantly increased in Wayanad over the last 10 years,” says Jose. “The rains now are irregular. The increasing use of chemical fertilisers has also helped the disease to proliferate, steadily killing the good bacteria called trichoderma  that helped combat the fungus.” 

Top left: M. J. George says, ‘We were famous for our rainfall’. (Photo: Noel Benno George/PARI). Top right: ‘We had the least amount of coffee production this year’, says Subadhra Balakrishnan. (Photo: Vishaka George/PARI). Bottom left: It began, says Suma T. R., a scientist, with the deforestation unleashed by the British. Bottom right: ‘Everyone is now growing what is the most profitable, not what is needed’, says E. J. Jose. (Photos: Noel Benno/PARI)

“Earlier we had air-conditioned climate in Wayanad, but not anymore,” says George. “Rainfall, consistent throughout seasons earlier, has significantly decreased in the last 15 years. We were famous for our rainfall…”

The India Meteorological Department, Thiruvananthapuram, says rainfall in Wayanad between June 1 and July 28, 2019, was 54 per cent below the normal average for the period.

Normally a high rainfall region, parts of Wayanad receive over 4,000 milimeters in some years. But the district average has fluctuated wildly for a while. It was 3,260 mm in 2014, saw a steep fall the next two years to 2,283 mm and 1,328 mm. Then, in 2017, it was 2,125 mm and in 2018, the year of Kerala’s floods, was a high 3,832 mm.

“The inter-annual variability of rainfall has changed in recent decades, most conspicuously from the 1980s, and accelerating in the ’90s,” says Dr. Gopakumar Cholayil, scientific officer at the Academy of Climate Change Education and Research of the Kerala Agricultural University, Thrissur. “And the incidence of extreme rainfall events in both monsoon and post-monsoon periods has risen across Kerala. Wayanad is no exception to this trend.”

That, in fact, confirms the observations by Vadakil, George and other farmers. Even when they mourn the ‘decrease’ – and the long-term averages do suggest a decline – they mean the rain is much less on the days and seasons they need and expect it. That can happen in years of high as well as low rainfall. The number of days over which the rain is spread has fallen, while its intensity has risen. Wayanad could still have downpours in August-September, though July is the main month for the monsoon here. (And on July 29, the IMD issued an ‘orange alert’ warning of ‘heavy’ to ‘very heavy’ rainfall in this and a couple of other districts.)

Vadakil’s coconut and banana plantations in Wayanad are slowly going downhill due to the erratic weather. (Photos: Vishaka George/PARI)

“Changes in cropping patterns, erosion of forest cover, [changes in] forms of land use… all these, among other factors, have had a serious impact on the ecosystem,” says Dr. Cholayil.

“With last year’s floods, all my coffee crops were lost," says Subadhra 'Teacher' (as she is fondly called in Manathavady). The 75-year-old farmer (Subadhra Balakrishnan) adds, "We had the least amount of coffee production this year across Wayanad.”  She oversees cultivation on her family’s 24 acres in Edavaka panchayat  and grows coffee, paddy and coconut, among other crops. “Many Wayanad [coffee] farmers are now increasingly dependent on their cattle [for an income].” 

They may not use the term ‘climate change’, but all the cultivators we met are worried about its effects.

At our last stop – Aden Valley, an 80-acre plantation in Poothadi panchayat of Sulthan Bathery taluk   – we met Girijan Gopi, an agricultural labourer for the last 40 years, just as he was finishing half his shift. “It’s very cold at night and very hot in the day. Who knows what is happening here,” he said, before walking away to his lunch, muttering to himself: “Must be the gods. How else do we understand all this?”

Vishaka George is a Bengaluru-based reporter for PARI and our social media editor. She also works on the PARI for Schools project to teach school children about rural India through the stories published on PARI. 

The author would like to thank researcher Noel Benno for his time and generous help in doing this story.

PARI’s nationwide reporting project on climate change is part of a UNDP-supported initiative to capture that phenomenon through the voices and lived experience of ordinary people. These stories are simultaneously available on the PARI website: https://ruralindiaonline.org/

Want to republish this article? Please write to [email protected] with a cc to [email protected]

Movies & Music

  • kerala disaster

Ravages of climate change in Kerala

Mathrubhumi fact check desk, 03 november 2021, 09:31 am ist.

Despite being famed for its moderate tropical climate, the picturesque state of Kerala is now facing threats from extreme climate events. The intensity of climate change was realized by the common folks only when it knocked on their doorsteps in the form of disasters. Climate is not immune to changes. But the increase in the frequency and impact of climate events create panic. Kerala has been experiencing temperature rise, irregular monsoon and water scarcity for the past few years. But in recent times, these have become life-threatening in the form of extreme unforeseen disasters. Uninterrupted human activities have further enhanced the consequences of climate change.

With the onset of Cyclone Ockhi in 2017 unforeseen disasters had begun to haunt Kerala. Shortly afterwards, floods in 2018 and 19 devastated Kerala. Thousands of lives were lost. The time is not far off when natural disasters such as hurricanes, floods, landslides, floods, droughts and tsunamis will haunt us even more severely.

Were these tragedies unexpected?

disaster

Ockhi in 2017 was an unforeseen disaster which struck Kerala after the Tsunami. "Ockhi was an unprecedented cyclone and it quickly turned into a cyclone within 6 hours of low pressure. It was not possible to issue warnings according to the existing rules.” stated Amit Shah, Union Home Minister in Parliament. The catastrophic floods of 2018 and the subsequent floods and landslides from 2018 to 2021 gave Kerala unexpected misfortunes.

Each of these disasters due to climate change affects different regions each time. The disasters of 2019 did not occur where the landslides and floods of 2018 were terribly affected‌. There were landslides in Kerala in 2020 and 2021. They were also in different areas from previous years. There are probable chances that the next incident would happen somewhere else.

There was a special report by the IPCC in 2012 (Special Report on Extreme Events, IPCC 2012) that climate change would increase the number and magnitude of disasters and rainfall would be more intense. The changes we see in that sense are not unexpected, but the natural evolution of a changing climate.

According to the State Disaster Management Plan 2016, the presence of the Arabian Sea, the Western Ghats and the geographically slanting terrain makes Kerala a high risk area for climate change disasters. In connection with the disaster risks in Kerala, Dr. Murali Thummarukudy (Disaster Risk Reduction and Operations Manager, United Nations Environment Program (UNEP)) says: "Is the number of disasters increasing worldwide? Or is it because of the improvement in communication facilities that we are becoming more aware about the disasters? These are questions that baffle many. Disasters occur when forces that cause disasters (earthquakes, rain, wind, explosions in factories and roads) collide with objects that can cause damage (humans, animals, the environment, or immovables). All of them may not occur in the same way, for example, an earthquake is not caused by climate change. But others (the number of factories and road tankers) are increasing daily. The world's population is growing along with per capita wealth. Generally people have started to inhabit those places, where there were no settlements earlier. All this increases the risk of disaster. On top of all this, climate change is acting like a magnifying glass."

Kerala's high population density (860 people per sq km) increases the magnitude of natural disasters in the state. Rapid industrialization and accompanying urbanization are further expanding emission of greenhouse gases into the atmosphere. The illegal encroachments into environmentally sensitive areas, especially for industrial purposes, disrupt the ecological balances and escalate the impact of climate change in the State.

Studies and Observations

The Gadgil Report of 2011, which studied extensively about the environmental degradation happening in the Western Ghats, is one of the most important studies about the environment in Kerala. The report identifies certain areas in Western Ghats as Ecologically Sensitive Areas based on their biological characteristics, elevation, slope, climate, risk and historical significance. The report also pointed out that 64% of the area in Western Ghats constitutes an Ecologically Sensitive Area.

Gadgil had warned that many disasters would follow if the Western Ghats were not protected. Without acknowledging this, the Kasturirangan Committee was appointed to review the Gadgil report. According to the Kasturirangan report, only 37% of the Western Ghats is considered an Ecologically Sensitive Area.

Global warming and climate change affect each region in different ways. The Intergovernmental Panel on Climate Change (IPCC) was established internationally to provide scientific assessments on climate change, its implications and future risks, and to put forward mitigation measures. According to the report released by IPCC in 2021, the sea level will increase by 0.11m, and the sea will engulf shores. By 2130, many of the coastal places, including Kochi, will be submerged.

According to a study by the Indian Network of Climate Change, rainfall is expected to increase by about 6-8% in the Western Ghats and western coastal areas by 2030 when compared to the 1970s, and temperatures are expected to rise by 1-3 degrees Celsius. Ice melting and thermal expansion in the oceans (changes in shape, volume, and density caused by changes in the temperature of an object) will cause water levels to rise. In addition, global warming is causing atmospheric and sea temperatures to rise sharply. This causes more low pressure to form in the atmosphere. They are more likely to turn into hurricanes at any time in the future.

According to the Indian Meteorological Department (IMD), there was a 52% increase in development of cyclone movements in the Arabian Sea from 2001 to 2019 and an 8% increase in the Bay of Bengal. Four of the nine major depressions in 2020 were in the Arabian Sea. This is another central concern for Kerala.

Dangerous Coastline

disaster

The government studies indicate that 322 km of the 580 km long coastline of Kerala is prone to sea turbulence and coastal erosion. If the sea level rises by another one meter, 169 sq km of land off the coast of Kochi will be submerged. According to a report published by the National Centre for Coastal Research (NCCR), 41% of Kerala's coastal land has been degraded and 21% expanded so far.

In the future, the sea level will rise even higher. The existing shores will be washed away by the sea and sedimentation of sand will happen in some parts. Such changes and the resulting disasters will damage the habitat of humans and other organisms.

Irregular Monsoon and Landslides

Low pressure in the ocean causes heavy rainfall over land. In addition, irregular monsoon is a problem faced in Kerala. And 14.5% of the state is prone to floods. In addition to these causes, mining, illegal quarrying, deforestation, land encroachment and changes in farming practices increase the risk of landslides and debris flow in the hilly areas of Kerala. Due to this unpredictable and rapid occurrence of climate events, many lives were lost in landslides in Kerala.

Drought and Wildfire

Search operation at Kavalappara

Kerala is as prone to drought as it is to floods. Water scarcity is another issue. Kerala has experienced severe drought in previous years. If the drought conditions intensify, there is a high risk of wildfires in the future. There are 1,719 fire points in Kerala where there are chances of fires.

The Directorate of Environment & Climate Change works at the state level to coordinate activities against climate change. The department's main objective is to implement the Kerala State Environment Policy, State Action Plan for Climate Change, National Environmental Policy 2016 and Green Protocol. The State Disaster Management Authority and the District Disaster Management Authority are responsible for mitigating and preventing potential disasters in the State. For the necessary training and awareness programs to improve disaster mitigation plans, the state has The Institute for Land and Disaster Management. In addition, there are institutions like the Indian Meteorological Department and the National Center for Earth Science Studies for weather forecasting and monitoring. The Institute of Climate Change Studies has been established in Kottayam for research and study of climate change in Kerala.

Climate change is not something that can be prevented. The state must prepare itself to become more climate resilient. However, the only way to survive such climate events is to minimise the impact of this phenomenon. How is Kerala adapting to climate change and its resulting disasters? How ready is Kerala for this? How should Kerala society change to prevent disasters? The climate change series of Mathrubhumi fact check explores all these relevant issues.

Share this Article

Related topics, kerala disaster, get daily updates from mathrubhumi.com, more from this section.

gopika

None to cheer glorious victory of Gopika killed by father just after SSLC ...

KSRTC

Couple fights in KSRTC; husband jumps out of the window and breaks his ...

Mohanlal, Mammootty

Happy Birthday, Dear Lal, Mammootty extends birthday greetings

  • Mathrubhumi News
  • Media School

itunes

  • Privacy Policy
  • Terms of Use
  • Subscription
  • Classifieds

© Copyright Mathrubhumi 2024. All rights reserved.

  • Shashi Tharoor
  • M G Radhakrishnan
  • SR Suryanarayan
  • Mini Krishnan
  • Movie Review
  • Sports News
  • Scholarships
  • Agriculture

Mathrubhumi

Click on ‘Get News Alerts’ to get the latest news alerts from

Mathrubhumi

Logo

Nine districts in Kerala most vulnerable to climate change impact: Report

Illustration | Soumyadip Sinha

THIRUVANANTHAPURAM: Nine districts in Kerala have been categorised as most vulnerable to impacts of global warming and climate change, according to the report of the State Action Plan on Climate Change 2023-2030 that was released on Wednesday.

Wayanad, Kozhikode, Kasaragod, Palakkad, Alappuzha, Idukki, Kannur, Malappuram and Kollam have been placed in this category due to high disease prevalence, a large vulnerable age group in the population and poor healthcare and relief facilities there.

essay on climate change in malayalam

The state first published the action plan in 2014. In the revised report, each district has been categorised as per its vulnerability profile (high, medium and low). Besides composite vulnerabilities, the report also classified districts for vulnerabilities in sectors such as agriculture, livestock, coastal fisheries, forest, health, tourism and water availability.

The report by the Department of Environment and Climate Change, published in the backdrop of various climatic changes that Kerala experienced, also said the region’s temperature was expected to rise between 1°C to 2°C.

It projected an increase in district-wise rainfall. Extreme rainfall events were projected to rise too with the report mentioning changes in the magnitude, frequency and timing of such events, all of which will have implications on natural resources like fisheries, forests and water as well as socio-economic systems such as agriculture and health and communities in various districts.

Chief Minister Pinarayi Vijayan, who released the report, said Kerala, which was most vulnerable to climate change-induced natural disasters, had taken the lead in mitigation efforts.

“We aim to be a 100% renewable energy-based state by 2040 and achieve net carbon neutrality by 2050. Mitigation is important as the marginalised and the most vulnerable are disproportionately affected by climate change,” he said.

He also spoke of making Kerala a hub of green hydrogen and devising an industrial policy that focuses on environmental, social and governance for industrial production.

Follow The New Indian Express channel on WhatsApp  

Download the TNIE app to stay with us and follow the latest

Related Stories

Climate Change Essay for Students and Children

500+ words climate change essay.

Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ecosystem and ecology. Due to these changes, a number of species of plants and animals have gone extinct.

essay on climate change in malayalam

When Did it Start?

The climate started changing a long time ago due to human activities but we came to know about it in the last century. During the last century, we started noticing the climatic change and its effect on human life. We started researching on climate change and came to know that the earth temperature is rising due to a phenomenon called the greenhouse effect. The warming up of earth surface causes many ozone depletion, affect our agriculture , water supply, transportation, and several other problems.

Reason Of Climate Change

Although there are hundreds of reason for the climatic change we are only going to discuss the natural and manmade (human) reasons.

Get the huge list of more than 500 Essay Topics and Ideas

Natural Reasons

These include volcanic eruption , solar radiation, tectonic plate movement, orbital variations. Due to these activities, the geographical condition of an area become quite harmful for life to survive. Also, these activities raise the temperature of the earth to a great extent causing an imbalance in nature.

Human Reasons

Man due to his need and greed has done many activities that not only harm the environment but himself too. Many plant and animal species go extinct due to human activity. Human activities that harm the climate include deforestation, using fossil fuel , industrial waste , a different type of pollution and many more. All these things damage the climate and ecosystem very badly. And many species of animals and birds got extinct or on a verge of extinction due to hunting.

Effects Of Climatic Change

These climatic changes have a negative impact on the environment. The ocean level is rising, glaciers are melting, CO2 in the air is increasing, forest and wildlife are declining, and water life is also getting disturbed due to climatic changes. Apart from that, it is calculated that if this change keeps on going then many species of plants and animals will get extinct. And there will be a heavy loss to the environment.

What will be Future?

If we do not do anything and things continue to go on like right now then a day in future will come when humans will become extinct from the surface of the earth. But instead of neglecting these problems we start acting on then we can save the earth and our future.

essay on climate change in malayalam

Although humans mistake has caused great damage to the climate and ecosystem. But, it is not late to start again and try to undo what we have done until now to damage the environment. And if every human start contributing to the environment then we can be sure of our existence in the future.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [ { “@type”: “Question”, “name”: “What is climate change and how it affects humans?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Climate change is a phenomenon that happens because of human and natural reasons. And it is one of the most serious problems that not only affect the environment but also human beings. It affects human in several ways but in simple language, we can say that it causes many diseases and disasters that destroy life on earth.” } }, { “@type”: “Question”, “name”: “Can we stop these climatic changes?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Yes, we can stop these climatic changes but for that, every one of us has to come forward and has to adapt ways that can reduce and control our bad habits that affect the environment. We have to the initiative and make everyone aware of the climatic changes.” } } ] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Advanced Admit Card
  • JEE Advanced Admit Card 2024
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • KCET Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Admit Card
  • TS ICET 2024 Hall Ticket
  • CMAT Result 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Admit Card 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET 2024 Exam Live
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Essay on Climate Change

Climate Change Essay - The globe is growing increasingly sensitive to climate change. It is currently a serious worldwide concern. The term "Climate Change" describes changes to the earth's climate. It explains the atmospheric changes that have occurred across time, spanning from decades to millions of years. Here are some sample essays on climate change.

100 Words Essay on Climate Change

200 words essay on climate change, 500 words essay on climate change.

Essay on Climate Change

The climatic conditions on Earth are changing due to climate change. Several internal and external variables, such as solar radiation, variations in the Earth's orbit, volcanic eruptions, plate tectonics, etc., are to blame for this.

There are strategies for climate change reduction. If not implemented, the weather might get worse, there might be water scarcity, there could be lower agricultural output, and it might affect people's ability to make a living. In order to breathe clean air and drink pure water, you must concentrate on limiting human activity. These are the simple measures that may be taken to safeguard the environment and its resources.

The climate of the Earth has changed significantly over time. While some of these changes were brought on by natural events like volcanic eruptions, floods, forest fires, etc., many of the changes were brought on by human activity. The burning of fossil fuels, domesticating livestock, and other human activities produce a significant quantity of greenhouse gases. This results in an increase of greenhouse effect and global warming which are the major causes for climate change.

Reasons of Climate Change

Some of the reasons of climate change are:

Deforestation

Excessive use of fossil fuels

Water and soil pollution

Plastic and other non biodegradable waste

Wildlife and nature extinction

Consequences of Climate Change

All kinds of life on earth will be affected by climate change if it continues to change at the same pace. The earth's temperature will increase, the monsoon patterns will shift, the sea level will rise, and there will be more frequent storms, volcano eruptions, and other natural calamities. The earth's biological and ecological equilibrium will be disturbed. Humans won't be able to access clean water or air to breathe when the environment becomes contaminated. The end of life on this earth is imminent. To reduce the issue of climate change, we need to bring social awareness along with strict measures to protect and preserve the natural environment.

A shift in the world's climatic pattern is referred to as climate change. Over the centuries, the climate pattern of our planet has undergone modifications. The amount of carbon dioxide in the atmosphere has significantly grown.

When Did Climate Change Begin

It is possible to see signs of climate change as early as the beginning of the industrial revolution. The pace at which the manufacturers produced things on a large scale required a significant amount of raw materials. Since the raw materials being transformed into finished products now have such huge potential for profit, these business models have spread quickly over the world. Hazardous substances and chemicals build up in the environment as a result of company emissions and waste disposal.

Although climate change is a natural occurrence, it is evident that human activity is turning into the primary cause of the current climate change situation. The major cause is the growing population. Natural resources are utilised more and more as a result of the population's fast growth placing a heavy burden on the available resources. Over time, as more and more products and services are created, pollution will eventually increase.

Causes of Climate Change

There are a number of factors that have contributed towards weather change in the past and continue to do so. Let us look at a few:

Solar Radiation |The climate of earth is determined by how quickly the sun's energy is absorbed and distributed throughout space. This energy is transmitted throughout the world by the winds, ocean currents etc which affects the climatic conditions of the world. Changes in solar intensity have an effect on the world's climate.

Deforestation | The atmosphere's carbon dioxide is stored by trees. As a result of their destruction, carbon dioxide builds up more quickly since there are no trees to absorb it. Additionally, trees release the carbon they stored when we burn them.

Agriculture | Many kinds of greenhouse gases are released into the atmosphere by growing crops and raising livestock. Animals, for instance, create methane, a greenhouse gas that is 30 times more potent than carbon dioxide. The nitrous oxide used in fertilisers is roughly 300 times more strong than carbon dioxide.

How to Prevent Climate Change

We need to look out for drastic steps to stop climate change since it is affecting the resources and life on our planet. We can stop climate change if the right solutions are put in place. Here are some strategies for reducing climate change:

Raising public awareness of climate change

Prohibiting tree-cutting and deforestation.

Ensure the surroundings are clean.

Refrain from using chemical fertilisers.

Water and other natural resource waste should be reduced.

Protect the animals and plants.

Purchase energy-efficient goods and equipment.

Increase the number of trees in the neighbourhood and its surroundings.

Follow the law and safeguard the environment's resources.

Reduce the amount of energy you use.

During the last few decades especially, climate change has grown to be of concern. Global concern has been raised over changes in the Earth's climatic pattern. The causes of climate change are numerous, as well as the effects of it and it is our responsibility as inhabitants of this planet to look after its well being and leave it in a better condition for future generations.

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

ALLEN Digital Scholarship Admission Test (ADSAT)

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

PW NEET Coaching

PW NEET Coaching

Enrol in PW Vidyapeeth center for NEET coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

Activate your premium subscription today.

  • MY SUBSCRIPTON
  • Change Password
  • Lok Sabha Election 2024
  • Latest News
  • Weather Updates

Today's Epaper

E-Paper

MANORAMA APP

Manorama Premium

Knowledge is power

essay on climate change in malayalam

Stay in the know about climate impacts and solutions. Subscribe to our weekly newsletter.

By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Yale Climate Connections

Yale Climate Connections

Climate change is affecting mental health literally everywhere

Avatar photo

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on X (Opens in new window)

three people hugging each other

Farmers who can’t sleep, worrying they’ll lose everything amid increasing drought. Youth struggling with depression over a future that feels hopeless. Indigenous people grief-stricken over devastated ecosystems. For all these people and more, climate change is taking a clear toll on mental health — in every part of the world.  

Experts shared these examples and others during a recent summit organized by the Connecting Climate Minds network that brought together hundreds of scientists, doctors, community leaders, and other experts from dozens of countries who have spent the past year studying how climate change is harming mental health in their regions. 

Although mental illnesses are often viewed as an individual problem, the experts made clear that climate change is contributing to mental health challenges everywhere. 

The Connecting Climate Minds youth ambassador from Borneo, Jhonatan Yuditya Pratama, said his Indigenous community views nature as a sacred extension of being. Seeing the devastation of climate change on ancestral lands has brought his community “a profound sense of grief and loss,” he said.

“For us, mental health isn’t just about individuals,” he said. “It’s about the collective well-being of our communities and the land itself. When nature suffers, so do we.”  

Extreme weather and air pollution are taking a toll 

In her keynote, Marina Romanello, executive director of the Lancet Countdown and a Connecting Climate Minds advisory board member, explained the key ways that climate change threatens mental health. 

  • Extreme heat is associated with increased self-harm and violence as well as more general feelings of negativity. It also leads to feelings of isolation when people feel trapped inside their relatively cooler homes.
  • Wildfire or extreme weather stokes anxiety leading up to an event — and afterward — that can lead to PTSD or depression for survivors who have seen cherished places or lives lost.
  • Farmers, fisherpeople, and others whose livelihoods are tied to the environment experience chronic stress, worry, and depression over things they can’t control, like extreme weather, habitat loss, and drought.
  • Water scarcity increases stress for people in charge of seeking and transporting household water. Water scarcity also makes it hard for people to stay clean, potentially leading to isolation, loneliness, and depression. 
  • Air pollution can keep kids out of school, leading to social isolation and, over time, a sense of hopelessness about the future. 

What’s more, people are experiencing the compounding effects of multiple disasters, said Emma Lawrance, who leads the Climate Cares Centre, a U.K.-based team that researches and supports mental health in the face of environmental crises: “With more frequent disasters, people can no longer recover psychologically from one before another occurs,” Lawrance said.  

And these escalating hazards are exacerbating social inequality, said Alaa Abelgawad, the Connecting Climate Minds youth ambassador representing northern Africa and western Asia. “[It’s] manifesting as anxiety, depression, and a profound sense of disempowerment among marginalized populations.”

Who is most vulnerable to climate change and mental health challenges? 

Many Indigenous communities have already been facing intergenerational trauma and a sense of deep disconnect from land and culture. Recurring climate devastation can intensify feelings of grief, stress, and disillusionment about the future, contributing to increased rates of addiction and suicide, participants said. 

Farmers, too, are among the most vulnerable. Changing seasonal norms, increasing drought, and a higher risk of severe weather are directly affecting their livelihoods. 

Sacha Wright, head of research at the youth-focused organization Force of Nature and part of Connecting Climate Minds’s “lived experience” working group, said that in Kenya, many small farmers are struggling with declining harvests and out of desperation have resorted to cutting down trees for charcoal. Though they felt they had no choice, some said cutting down the trees made the whole situation feel even worse. She spoke of high rates of depression, hopelessness, trauma, and a widespread feeling of “not knowing what to do.” 

For young people, climate change can also evoke a sense of hopelessness and powerlessness. In the Yucatan, one young person Wright interviewed said the only choices in life there are to migrate or enter the military. 

“When I see drought, I see my community leaving school and going to the military,” the person interviewed said. 

Mercy Njeru, a member of Connecting Climate Mind’s sub-Saharan Africa working group, said extreme heat is often leading to school closures across the region, setting youth up for failure and a sense of hopelessness. 

“When it’s so hot and you’re so anxious you can’t work, you can’t do anything because you’re feeling anxious or you’re feeling so sad from all the heat around you,” she said. 

In addition to environmental impacts, generational inequity and a sense of moral distress also contribute to anxiety for many youth. Britt Wray, director of Stanford Medicine’s Special Initiative on Climate Change and Mental Health, said she hears from many young people that power holders aren’t taking sufficient action, instead depending entirely on their generation to solve climate change. 

“This offloading of responsibility — without adequate partnership from the elder and more powerful contingents among us — can make burdensome climate anxiety and distress much worse,” she said.

Read: What baby boomers can do about climate change, according to Bill McKibben

What can be done to protect mental health as the climate changes? 

To help address the rising tide of mental health challenges, governments and public health leaders need to know exactly what kinds of impacts people are experiencing in their own communities.

First step: looking at experiences in every region. 

“We will only be successful if we can continue to connect and engage people from very different sectors, from neighborhoods all the way to multilateral organizations,” said Pamela Collins, chair of the department of mental health at the Johns Hopkins Bloomberg School of Public Health. 

Other examples of ways forward include everything from expanding health insurance to include climate-related mental health impacts to ensuring government policy supports people whose work has been affected by climate change to improve their job prospects. Several participants also spoke of the importance of returning to the wisdom of ancestral knowledge to address climate change in general, including mental health impacts. 

Other specific solutions offered by Connecting Climate Minds participants include:

  • More public green space. Collins, the Hopkins professor, cited a study highlighting the need for more accessible green space in cities, a move that could have multiple positive outcomes, including on mental health. Forest bathing , AKA spending dedicated time in nature, reduces stress and anxiety, increases serotonin production, and improves mood regulation and overall mental health — all while being low-intensity and low-cost, said Niaya Harper Igarashi, part of Connecting Climate Mind’s eastern and southeastern Asia working group. 
  • Focusing on reducing inequity. Making sure everyone has access to nutritious food, clean air and water, and sustainable energy sources is good for the climate and community. 
  • Talking helps. In many communities, mental health is a taboo topic. By talking more openly about it on a personal level, in social or spiritual settings, at the dinner table, or in your doctor’s office, individuals can combat stigma and contribute to a growing understanding of these issues. 
  • Meeting people where they are. From using vocabulary that makes sense for different communities to meeting people’s basic needs, solutions are most effective when they’re tailored for what real people are actually going through. For example, Wray, the Stanford expert, said meeting kids where they are includes screening for climate distress where many of them are every day: at school.

Lawrance, the Climate Cares lead who helped organize the summit, said it was heartening to see solutions being advanced around the world. 

“The dialogue showed this really strongly: that many solutions do already exist,” she said. “And it’s by learning from each other’s ways of knowing and doing that we can best find the ones that work for our context, and ensure people experiencing the worst climate impacts have a future where they cannot just survive, but thrive.”

We help millions of people understand climate change and what to do about it. Help us reach even more people like you.

more like this

Allergy symptoms got you down? Blame pollen AND air pollution.

Allergy symptoms got you down? Blame pollen AND air pollution.

A third of U.S. adults are interested in cutting back on meat, report finds

A third of U.S. adults are interested in cutting back on meat, report finds

Climate change played a role in killing tens of thousands of people in 2023

Climate change played a role in killing tens of thousands of people in 2023

Daisy simmons.

Daisy Simmons, assistant editor at Yale Climate Connections, is a creative, research-driven storyteller with 25 years of professional editorial experience. With a purposeful focus on covering solutions... More by Daisy Simmons

essay on climate change in malayalam

The Macroeconomic Impact of Climate Change: Global vs. Local Temperature

This paper estimates that the macroeconomic damages from climate change are six times larger than previously thought. We exploit natural variability in global temperature and rely on time-series variation. A 1°C increase in global temperature leads to a 12% decline in world GDP. Global temperature shocks correlate much more strongly with extreme climatic events than the country-level temperature shocks commonly used in the panel literature, explaining why our estimate is substantially larger. We use our reduced-form evidence to estimate structural damage functions in a standard neoclassical growth model. Our results imply a Social Cost of Carbon of $1,056 per ton of carbon dioxide. A business-as-usual warming scenario leads to a present value welfare loss of 31%. Both are multiple orders of magnitude above previous estimates and imply that unilateral decarbonization policy is cost-effective for large countries such as the United States.

Adrien Bilal gratefully acknowledges support from the Chae Family Economics Research Fund at Harvard University. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

Mentioned in the News

More from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

What the Tundra’s Average Temperature Tells Us about One of Earth’s Coolest Biomes

This essay about the tundra biome emphasizes its defining feature: the average temperature, which influences its ecological dynamics profoundly. It describes how the tundra, found mainly in high northern latitudes and alpine regions, experiences extreme temperature fluctuations between harsh winters and brief, mild summers. These conditions dictate the survival strategies of local flora and fauna, which have adapted to thrive in such an inhospitable climate. The essay also explores the impacts of climate change, like permafrost thaw and the introduction of non-native species, which threaten this delicate balance. Additionally, it considers human activities such as mining and tourism that further stress this fragile ecosystem. Insights from indigenous communities on sustainable practices provide a hopeful perspective on preserving the tundra. Overall, the essay presents the tundra as a dynamic ecosystem that offers valuable lessons on resilience and adaptability in the face of environmental changes.

How it works

When you think of the tundra, you might picture a stark, endless stretch of cold and emptiness, a place where only the hardiest of life forms dare to make a home. This unique biome, defined by its frosty climate, limited vegetation, and brief summers, is an ecological marvel that has much to teach us about resilience and adaptation.

Located primarily in the northern reaches of Canada, Russia, and Scandinavia, tundras also make appearances in Antarctica’s icy expanses and even on high mountains where trees can’t grow.

The common thread across these diverse locations is the temperature: consistently low with a range that can surprise those not familiar with its extremes.

  • 1 A Season of Extremes
  • 2 Warming Up to Change
  • 3 Humans in the Mix

A Season of Extremes

The average winter temperature in the tundra hovers around a brisk -30 degrees Fahrenheit (-34 degrees Celsius), but it can drop much lower, challenging even the most adapted wildlife to endure. Summer, on the other hand, offers a brief respite with temperatures that can peak at a mild 50 degrees Fahrenheit (10 degrees Celsius). This might not sound like shorts weather, but for the tundra, it’s practically a heatwave, sparking a flurry of life activity.

Plants in the tundra keep a low profile—literally. Most of them grow huddled close to the ground, forming tight communities that help resist the chilling winds. This strategy is also adopted by the tundra’s fauna, such as the caribou and arctic foxes, whose survival tactics include growing thick coats and finding food in a landscape that is unforgiving for most of the year.

Warming Up to Change

While the average temperature of the tundra provides a snapshot of life adapted to the extreme, it also highlights the fragility of this balance as global temperatures shift. The tundra’s permafrost, once reliably solid, is thawing, releasing ancient gases back into the atmosphere and unsettling the biome’s carbon balance. This thawing not only disrupts the rooted rhythms of plant life but also the entire ecosystem that has been built around it.

New species, venturing into these once too-cold areas, bring with them new challenges for the native populations. The caribou and the arctic fox now find themselves facing competitors and predators unaccustomed to their home turf, reshuffling the ecological deck.

Humans in the Mix

Beyond the natural shifts are human influences—exploration for oil and gas, mining operations, and a growing interest in polar tourism are reshaping the tundra in profound ways. These activities can deeply affect the fragile permafrost and contribute to the warming climate that threatens the tundra’s delicate equilibrium.

Yet, it’s not all a tale of doom. Indigenous communities, with their deep-rooted connections to these lands, have been navigating the complexities of the tundra for millennia. Their insights into sustainable practices offer a beacon of hope and a guide for integrating modern life into these ancient rhythms without tipping the scales too drastically.

The average temperature of the tundra is more than just a number. It’s a gateway to understanding a dynamic ecosystem that is an integral part of our planet’s environmental health. As we look toward the future, the tundra teaches us about adaptability and the urgent need for conscious interaction with our world. A deeper understanding of this cold, beautiful biome can help us navigate the challenges of a warming planet, ensuring that these icy wildernesses continue to thrive and amaze future generations.

owl

Cite this page

What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes. (2024, May 21). Retrieved from https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/

"What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes." PapersOwl.com , 21 May 2024, https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/

PapersOwl.com. (2024). What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes . [Online]. Available at: https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/ [Accessed: 21 May. 2024]

"What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes." PapersOwl.com, May 21, 2024. Accessed May 21, 2024. https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/

"What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes," PapersOwl.com , 21-May-2024. [Online]. Available: https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/. [Accessed: 21-May-2024]

PapersOwl.com. (2024). What the Tundra's Average Temperature Tells Us About One of Earth’s Coolest Biomes . [Online]. Available at: https://papersowl.com/examples/what-the-tundras-average-temperature-tells-us-about-one-of-earths-coolest-biomes/ [Accessed: 21-May-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.

owl

Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

Back Home

  • Search Search Search …
  • Search Search …

What Does the European Court of Human Rights’ First Climate Change Decision Mean for Climate Policy?

essay on climate change in malayalam

On 9 April the European Court of Human Rights (ECtHR) issued its first ever comprehensive  decision  in a climate litigation case. The judges of the Court’s Grand Chamber found that Switzerland was in breach of its positive obligations to protect the health, well-being and quality of life of Swiss citizens from the impacts of climate change. This violation was attributed to the Swiss government’s failure to implement the robust regulatory framework necessary for fulfilling its commitment to reduce emissions as set out in the Paris Agreement.

As the dust begins to settle on this case, the critical question in the minds of many is what implication the judgment will have for how Switzerland and the  45 other signatories  of the European Convention on Human Rights (ECHR) now address climate change.

Could this ruling catalyse the rapid cross-cutting action that is urgently needed to combat climate change?

Firstly, this is a question of  compliance : will Switzerland and the other ECHR signatories find the judgment a compelling reason to amend their climate laws in line with the guidance given by the court? Most commentators have focused on this element. While there appears to be a general consensus that the ruling will be “ transformative ”, some have treated it  more cautiously . In particular, while the case is expected to have “ knock-on ” effects on law and policymaking at the domestic and international levels, the extent of these impacts will take time to crystallise. Some researchers argue that, with its ruling, the ECtHR has merely set a “ minimum standard ” and thus they  question  whether it will lead to ECHR signatories significantly tightening their climate laws.

But importantly, this is also about  effectiveness : can the type of regulatory framework envisioned by the ECtHR drive countries to meet their legislative climate commitments? We focus our analysis below on this aspect, seeking to assess how effective the type of regulatory framework envisioned by the Court can be in accelerating credible climate action.

A domestic regulatory framework aligned with human rights obligations

In its judgment, the ECtHR set out a series of minimum requirements that a domestic climate change regulatory framework must meet to align with human rights obligations. These are firmly grounded in the architecture of the Paris Agreement, reflecting global practices in climate governance and  strong scientific foundations .

Climate framework laws  have emerged as a prominent tool to drive domestic climate action, including establishing regulatory frameworks. To date,  59 countries , including 25 ECHR signatories, have enacted climate framework laws. These laws set the  strategic direction for national climate policies,  and also often include long-term climate objectives: for example,  17 countries’ laws  contain net zero or climate neutrality targets.

The  scope  of climate framework laws varies significantly, however. Some countries, like  Nigeria , set up inter-ministerial coordination bodies to prepare national climate action plans designed to meet targets, whereas others like  Canada  mandate interim targets or carbon budgets based on the advice of independent expert advisory bodies. In some cases, like  Japan , legislation separately addresses mitigation and adaptation efforts. At times, countries also establish domestic governance processes across multiple laws, executive policies or through informal processes.

Unfortunately, when it comes to understanding the impact of such climate framework laws, empirical evidence remains limited, particularly regarding how impacts might vary across different socioeconomic and political contexts. However, research conducted by the Grantham Research Institute into the impacts of climate framework laws in the  UK , and most recently in  Germany, Ireland and New Zealand , has uncovered varied impacts across five key areas (see Figure 1). These findings indicate that the most significant impacts of climate framework laws are observed in the areas of governance and political debate.

Figure 1. Impacts of climate framework laws

essay on climate change in malayalam

Source:  Averchenkova et al. (2024 )

Mapping the Court’s minimum requirements against the building blocks of effective climate laws

The ECtHR’s specified set of minimum requirements for a State’s regulatory framework on climate change (paragraph 550 of the judgment) align closely with what  our research identifies  as the core building blocks of effective climate framework laws – see Table 1 below. Not only do these elements of climate laws have the most direct influence, they also lead to the most significant impacts. Our research shows that these building blocks directly contribute to the robustness of regulatory frameworks, ensuring that climate action is both ambitious and grounded in scientific evidence.

Table 1. The ECtHR’s minimum requirements mapped against our identified building blocks for effective climate framework laws

essay on climate change in malayalam

The similarities between the ECtHR’s stipulated requirements for climate regulatory frameworks and the building blocks that make climate framework laws most effective suggest that the approach required by the Court could have significant positive impacts.

However, while the identified components are crucial, they may not be sufficient on their own to catalyse rapid and enduring change. For example, although many climate framework laws mandate public consultation, the specifics of these processes are often imprecisely defined, leaving uncertainty about how public participation, stakeholder engagement and deliberative processes are to be continuously or formally integrated into an institutional framework. This integration is vital for ensuring public acceptance of climate policies.

The ECtHR addressed this need in paragraph 554 of its judgment, underscoring the importance of public participation and access to information in developing climate policies. The extent to which this aspect of the judgment will influence future legislative practices and improve the inclusivity and effectiveness of climate governance remains an open question.

Helpful guidance from the Court – but ultimately it comes down to political will

Our research also highlights that there are significant challenges to implementing climate framework laws: in particular, without sustained political will, enforcement becomes very difficult. Another recurring issue is the absence of stringent penalties for non-compliance, which undermines the credibility of these laws and poses risks to democratic accountability. Litigation, while a last resort, can strengthen both administrative and political accountability for fulfilling climate commitments. The  KlimaSeniorinnen  ruling highlighted significant gaps in Switzerland’s regulatory framework and its failure to meet previous emissions targets, underscoring the judiciary’s role in holding states accountable for their climate obligations.

The ECtHR has set out clear directions for member states to follow to align their climate policies with human rights obligations. Domestic legislators across Europe must give these requirements serious consideration to ensure their climate laws not only meet these minimum standards but also effectively contribute to global climate goals. This is imperative for both environmental sustainability and the protection of fundamental human rights that climate change is affecting.

This is a picture of Isabela.

Isabela Keuschnigg

Isabela Keuschnigg is a Legal Officer at Opportunity Green and a Research Assistant at the LSE Grantham Research Institute on Climate Change and the Environment.

This is an image of Catherine Highman.

Catherine Higham

Catherine Higham is a Policy Fellow and Coordinator of the Climate Change Laws of the World project at the LSE Grantham Research Institute on Climate Change and the Environment.

This is an image of Joana

Joana Setzer

Joana Setzer is an Associate Professor at the LSE Grantham Research Institute on Climate Change and the Environment.

This is an image of Tiffanie

Tiffanie Chan

Tiffanie Chan is a Policy Analyst at the LSE Grantham Research Institute on Climate Change and the Environment.

You may also like

August 2018 Updates to the Climate Case Charts

August 2018 Updates to the Climate Case Charts

Each month, Arnold & Porter and the Sabin Center for Climate Change Law collect and summarize developments in climate-related litigation, which we […]

essay on climate change in malayalam

Farmers Insurance Withdraws Class Action Alleging Failure to Adapt to Climate Change

By Hunter Book, Summer Legal Intern On June 3, 2013, a group of lawsuits that generated significant interest among environmental lawyers were abruptly […]

essay on climate change in malayalam

Our Children’s Trust Suit Against US Government Surmounts Litigation Hurdle

by Michael Gerrard, Faculty Director Yesterday Magistrate Judge Thomas Coffin of the U.S. District Court of Oregon recommended denial of motions to […]

essay on climate change in malayalam

Just Transition Litigation in Latin America: Sabin Center launches new report

Just transition litigation is a novel and under-researched field. Today, the Sabin Center’s launches a new report that analyzes 20 just transition […]

Governor should sign bill to protect trees and protect ourselves

An aerial view of the Amazon rainforest in Brazil’s Rondonia...

An aerial view of the Amazon rainforest in Brazil’s Rondonia state. Credit: Getty Images/Bloomberg Creative

This guest essay reflects the views of Robert Sweeney, a Lindenhurst resident and board member of Environmental Advocates NY who served in the Assembly for 27 years, the last seven as chairman of the Committee on Environmental Conservation.

As the effects of climate change and deforestation ravage the planet, New York has the chance to play a key role in creating clean air, filtering water, sustaining wildlife, and regulating agricultural cycles that we depend on for stability and health.

How? By enacting the TREES Act. The bill, which recently passed both the State Senate and the Assembly, expands the focus beyond planting new trees to protecting existing ones from being cut down, optimizing the irreplaceable benefits that old-growth forests, particularly tropical ones, provide for biodiversity and carbon sequestration everywhere.

Even better, these measures come at no cost to New York families. We can save the rainforest and create opportunities for local businesses, and it won’t cost consumers a dime. That’s a win-win-win.

During her State of the State address in January, Gov. Kathy Hochul promised to plant 25 million trees by 2033 to help mitigate the risks of climate change. It's a notable step but falls short of New York's broader climate strategy, which suggests a goal of 680 million trees by 2040 to keep rising emissions in check. This stark difference in numbers raises an important question: Are we doing enough?

If we look at the numbers globally, likely not. Millions of acres of tropical forests, vital carbon sinks and biodiversity hot spots are lost annually, often cleared for agriculture by multinational corporations. The TREES Act would ensure that New York State is no longer part of this problem by purchasing only forest-safe products and rewarding companies that employ sustainable forest practices, which most New York-based agricultural businesses largely do already.

From our Editorial Board, get inside the local, city and state political scenes.

By clicking Sign up, you agree to our privacy policy .

The TREES Act mimics measures already enacted by the European Union. Since New York would be the first state to employ these standards, New York businesses would have a leg up on meeting requirements for access to EU markets. This is a critical part of proactive and protective regulation. Implementing these standards would prevent the disconnect that often arises across government stakeholders, creating mixed market signals, delaying crucial progress, and inflating the costs of action in avoidable ways.

Aligning all branches of New York’s government in this environmental endeavor is critical. Global meat giant JBS was recently caught lying to New York consumers about cutting its carbon footprint while actually increasing it. While Attorney General Letitia James’ litigation revealed these bad-faith actors and actions, the TREES Act could have helped prevent it.

In addition, the push by State Comptroller Tom DiNapoli and New York City Comptroller Brad Lander for shareholder resolutions to adopt and enforce stronger deforestation policies demonstrates that New York political leaders understand that it is far more costly to destroy global forests as natural barriers to runaway climate change than to preserve them.

Last year, a different version of the TREES Act passed both houses with strong bipartisan majorities and overwhelming support from a wide range of public stakeholders. Hochul vetoed it, concerned about the burden on businesses. The updated bill responds to Hochul’s concerns, giving state vendors a longer ramp-up, ensuring they have clear guidance about how to comply, and providing short-term exemptions.

It’s time to sign the TREES Act. New Yorkers deserve the chance to help shape the global economy, to be a leader in mitigating climate change and protecting biodiversity. Gov. Hochul can lead that charge.

Unlimited Digital Access Only 25¢ for 5 months

  • Share full article

Advertisement

Supported by

Guest Essay

It’s Not Your Imagination. Your Allergies Are Getting Worse.

A photograph of a cloud of pollen being released from the cones of a pine tree.

By Margaret Renkl

Ms. Renkl is a contributing Opinion writer who covers flora, fauna, politics and culture in the American South.

It’s spring, and I love spring more than I love almost anything else about the natural world, but I don’t love the pollen. My eyes itch. My nose is stopped up. First thing in the morning I sneeze. Last thing at night I sneeze. My husband turns away from me to sleep because the pollen grains clinging to my hair make him sneeze, too.

I was never prone to seasonal allergies before I moved to Middle Tennessee, which is not even one of the 10 most challenging places for allergy sufferers in this country. I am now up to three over-the-counter medications a day, and I have developed a tiny dependence on Fisherman’s Friend lozenges, which work a bit like the Vicks VapoRub of my childhood memories. Vicks is still around — the comedian Wanda Sykes has a wonderful bit about it — but Fisherman’s Friend doesn’t announce my presence in advance the way Vicks would.

I also drink gallons of an herbal tea labeled “congestion relief,” though I no longer believe that relief is possible. The hill of spring allergies, which in Middle Tennessee used to be on the downslope by now, has become an all-year mountain, with tree pollen and grass pollen and ragweed pollen rolling together in great clouds from late February right up till Thanksgiving.

But it’s worse in spring. I can stand at my back door and watch a white pine like this one sending out waves of pollen that remind me of the crop-duster scene in “North by Northwest.” In spring, my glasses are coated with pollen outside and in. In spring, my little red Nissan Leaf looks like a little orange Leaf, and the gray boards of our back deck look as though they’ve grown a coating of new moss.

The only relief for any of it is a good soaking rain, but the reprieve of rain is only temporary. Increased rainfall prolongs the blooming season of many trees, grasses and other plants. (Most wildflowers are pollinated by insects and therefore aren’t prime allergy-inducers, but some, like ragweed, are wind-pollinated, which means they literally throw their pollen to the winds — and into human faces.) A prolonged blooming season in turn allows plants to produce more pollen.

Seasonal allergies are nothing new, but they’ve been worsening as the climate grows warmer. The growing season starts earlier now — in North America an average of 20 days earlier — and lasts longer, too, extending the length of time when plants are pumping pollen into the air. And the resulting misery arises not just because there’s more pollen to breathe in or because it’s around for increasingly longer seasons . At least one study has indicated that the more carbon there is in the air, the more potent the pollen itself is .

Hay fever kicks in when the immune system isn’t able to distinguish between a genuine threat (like a virus) and particles like pollen that are harmless. That’s why adults can develop seasonal allergies when they move to a new region and encounter pollens their immune system doesn’t recognize. Now, thanks to climate change, you don’t even need to move: The warmer climate is shifting growing zones northward, allowing plants to extend their natural range .

In human beings, this all adds up to seasonal allergies that are more widespread and more severe , and it’s only going to get worse: One study predicts a 200 percent increase in pollen production by the end of this century. “In 2018, 7.7 percent of American adults experienced ‘hay fever,’” noted the science journalist Yasmin Tayag in The Atlantic last year. “By 2021, that proportion had risen to about a quarter.” The article is titled “ There Is No Stopping the Allergy Apocalypse .”

Weighed against true climate calamities like deadly heat waves and inundated coastal communities, hay fever may seem like little more than an inconvenience. What’s a few weeks — even months — of itchy eyes and runny noses compared with the global population migrations that are coming? But allergies aren’t mere irritants.

Someone who is suffering from seasonal allergies may be less able to exercise, more vulnerable to infection, less productive at work (if not actually absent), more likely to require treatment in an emergency room. Seasonal allergies have been linked to an increase in both the prevalence and severity of asthma, which is particularly worrisome for children .

None of this is surprising to anyone who’s paying attention to the way the changing climate affects everything nowadays. Wherever you live, even if you aren’t evacuating to avoid a hurricane, or keeping a go bag by the door in case of a wildfire, or wondering if it’s time to move to higher ground, climate change is now affecting your daily life. It’s making wine taste different , sleep more fitful , air travel more turbulent . It’s making the very air harder to breathe .

Meanwhile, the planet will continue to warm, and plants will continue to produce more pollen, and in more concentrated doses, for a longer period of time each year. People who suffer from seasonal allergies will feel worse, and people who aren’t currently troubled by allergy symptoms may yet find themselves sneezing and rubbing their eyes. As Ms. Tayag points out in her Atlantic article, “At this point, not much can be done to stop it.”

That’s true, but a lot can be done to keep it from getting incomprehensibly worse. In the doom versus optimism debate about the climate, much of the optimism lies in the way technology, shored up by policy and legislation, is rising to the challenge faster and more effectively than we ever imagined it could. “Stunning, record-breaking gains in wind and solar power around the world,” David Geddes of The Times writes, means that “a full 30 percent of global electricity was generated by renewables last year.” The time we have left to change our climate’s devastating trajectory is dwindling, but we are finally beginning to take the steps necessary to change it.

But we are only beginning, and beginnings can be snuffed out. At his Mar-a-Lago resort last month, Donald Trump told a group of oil executives and lobbyists that they should donate $1 billion to his campaign because he plans to reverse Joe Biden’s clean energy policies, among other environmental protections opposed by Big Oil, if he is returned to the White House.

Margaret Renkl, a contributing Opinion writer, is the author of the books “ The Comfort of Crows: A Backyard Year, ” “ Graceland, at Last ” and “ Late Migrations .”

The Times is committed to publishing a diversity of letters to the editor. We’d like to hear what you think about this or any of our articles. Here are some tips . And here’s our email: [email protected] .

Follow the New York Times Opinion section on Facebook , Instagram , TikTok , WhatsApp , X and Threads .

IMAGES

  1. Malayalam essay about world environment day

    essay on climate change in malayalam

  2. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    essay on climate change in malayalam

  3. Climate Change Essay

    essay on climate change in malayalam

  4. ≫ Climate Change and Global Warming Issue Free Essay Sample on Samploon.com

    essay on climate change in malayalam

  5. ≫ How Climate Change Impacts the Economy Free Essay Sample on Samploon.com

    essay on climate change in malayalam

  6. ≫ Global Climate Change Free Essay Sample on Samploon.com

    essay on climate change in malayalam

VIDEO

  1. കണ്ടറിയണം, അടുത്ത 10 വർഷം കേരളത്തിന് നിർണായകം

  2. Lecture : 10 Global warming & Climate Change (English Essay)

  3. Calicut University 3rd sem BA BSC മലയാലസാഹിത്യം Short essay and essay questions

  4. Write 10 lines on Climate change

  5. Rain ഏറ്റവും പുതിയ കാലാവസ്ഥ പ്രവചനം!

  6. കേരളത്തിൽ വരും ദിവസങ്ങളിൽ മഴ കനക്കും എന്ന് കേന്ദ്ര കാലാവസ്ഥ വകുപ്പിൻ്റെ മുന്നറിയിപ്പ്

COMMENTS

  1. കാലാവസ്ഥാവ്യതിയാനം

    Climate Change on In Our Time at the BBC. ക്ലൈമറ്റ് ചേഞ്ച് പെർഫോമൻസ് ഇൻഡെക്സ് 2010 Archived 2017-05-06 at the Wayback Machine. ക്ലൈമറ്റ് ലൈബ്രറി Archived 2014-09-02 at the Wayback Machine. അറ്റ് സെന്റർ ഫോർ ഓഷ്യ ...

  2. കാലാവസ്ഥാ വ്യതിയാനവും ആരോഗ്യവും,കാലാവസ്ഥാ വ്യതിയാനം ഒരു ആഗോള ആരോഗ്യ

    Intergovernmental Panel on Climate Change (IPCC)-ന്റെ ആറാം വിലയിരുത്തൽ റിപ്പോർട്ട് കാലാവസ്ഥാ വ്യതിയാനം ലോകജനതയുടെ ആരോഗ്യത്തെ എത്രത്തോളം ഗുരുതരമായി ...

  3. താപനം: നമ്മെ തുറിച്ചുനോക്കുന്നത് എന്ത്?

    താപനം: നമ്മെ തുറിച്ചുനോക്കുന്നത് എന്ത്? അന്തരീക്ഷ താപവര് ...

  4. കാലാവസ്ഥാ വ്യതിയാനം: അന്തിമ പരിഹാരം

    The Intergovernmental Panel on Climate Change's 'Synthesis' report strengthens the line that human actions are pushing the world closer to irreversible cataclysms

  5. മഴയുണ്ടായിട്ടെന്താ,കേരളം പൊള്ളുന്നു

    പത്തനംതിട്ട ∙ കനത്ത മഴ പെയ്യുമ്പോഴും പകൽച്ചൂടും ഉഷ്ണവും ...

  6. ആഗോളതാപനം

    Some effects of climate change, clockwise from top left: Wildfire intensified by heat and drought, bleaching of coral caused by ocean acidification and heating, and worsening droughts compromising water supplies.

  7. കാലാവസ്ഥ വ്യതിയാനം

    കാലാവസ്ഥ വ്യതിയാനം. നമുക്ക് വേനല്‍ക്കാലത്ത് ചൂടും ...

  8. എന്താണ് ഹരിതഗൃഹപ്രഭാവം?

    ഇരുപതാം നൂറ്റാണ്ടി െൻറ രണ്ടാം പാതിയിൽ ഭൂമിയുടെ ശരാശരി താപ നില 0.8ഡിഗ്രി C ...

  9. ഭൂമിക്ക് മരണഗന്ധം; വരുന്നത് അതിതീവ്ര മഴ, അസഹ്യ ചൂട്, കാട്ടുതീ

    ഭൂമി ആസന്നപ്രതിസന്ധിയുടെ തുരങ്കത്തിലേക്കു ...

  10. 'കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട്

    നാളിതുവരെ കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ ...

  11. മടങ്ങണം, കാലാവസ്ഥാമാറ്റം സൃഷ്ടിക്കുന്ന പ്രശ്നങ്ങളെ പ്രതിരോധിക്കുന്ന

    കാലവർഷമെത്താത്ത ജൂൺ മാസങ്ങൾ, വെള്ളപ്പൊക്കമോ പ്രളയമോ ...

  12. CLIMATE CHANGE

    The Kerala State Action Plan on Climate Change was drafted by the Directorate of Environment and Climate Change (DoECC) with relevant departments, agencies and institutes providing inputs. This was endorsed by the Government of India in 2014. Being an important vision document of the State, SAPCC places the climate change concerns at the ...

  13. Global warming / Climate change Essay in Malayalam Language

    Global warming Essay in Malayalam Language: In this article, we are providing ആഗോളതാപനം ഉപന്യാസം. Essay on climate change in Malayalam. Global warming / Climate change Essay in Malayalam Language

  14. Climate crisis in Kerala: An integrated approach is needed to mitigate

    Climate change in Kerala is likely due to the combined effect of geography, land-use change, urbanisation, development activities and population density of the state. The maximum distance between the eastern and western parts of Kerala is only 120 km (in some places it is only 35 km). Within this 120 km, there are places above 2,695 metres ...

  15. The 2018 Kerala floods: a climate change perspective

    In August 2018, the Indian state of Kerala received an extended period of very heavy rainfall as a result of a low-pressure system near the beginning of the month being followed several days later by a monsoon depression. The resulting floods killed over 400 people and displaced a million more. Here, a high resolution setup (4 km) of the Weather Research and Forecasting (WRF) model is used in ...

  16. Climate Change

    Climate Change News: Read Latest Breaking News, Top Headlines and Daily News Coverage, on Climate Change along with Photos, Videos at Malayalam Indian Express.

  17. 'Why is the climate changing like this?'

    Vishaka George/PARI. "By 4 p.m. we had to light a fire to stay warm here," says Augustine Vadakil on his struggling farm in Kerala's hilly Wayanad district. "But that was 30 years ago. Wayanad is no longer the cold, misty place it once was.". From a maximum of 25 degrees Celsius by early March, temperatures here now easily cross 30 ...

  18. Ravages of climate change in Kerala, Kerala Disaster

    If the sea level rises by another one meter, 169 sq km of land off the coast of Kochi will be submerged. According to a report published by the National Centre for Coastal Research (NCCR), 41% of Kerala's coastal land has been degraded and 21% expanded so far. In the future, the sea level will rise even higher.

  19. Nine districts in Kerala most vulnerable to climate change impact: Report

    2 min read. THIRUVANANTHAPURAM: Nine districts in Kerala have been categorised as most vulnerable to impacts of global warming and climate change, according to the report of the State Action Plan ...

  20. Kerala floods: The climate factor

    Dr Abhilash S. At Kalikavu in Palakkad district on August 14. E xtreme events such as droughts, floods, heat waves, cold waves, devastating thunder clouds, cloudbursts and intense cyclonic storms have been occurring frequently over the globe in recent decades. Climate change is realised all over the world and is significantly altering the ...

  21. Climate Change Essay for Students and Children

    Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ...

  22. Climate Change Essay

    200 Words Essay on Climate Change. The climate of the Earth has changed significantly over time. While some of these changes were brought on by natural events like volcanic eruptions, floods, forest fires, etc., many of the changes were brought on by human activity. The burning of fossil fuels, domesticating livestock, and other human ...

  23. Global Warming News in Malayalam

    Articles on Environment protection. Global Warming News in Malayalam. Climate Change Monitoring. Global Warming Causes Effects. Consequences of.Global Warming, Environment, Manorama Online

  24. Climate change is affecting mental health literally everywhere

    For young people, climate change can also evoke a sense of hopelessness and powerlessness. In the Yucatan, one young person Wright interviewed said the only choices in life there are to migrate or enter the military. "When I see drought, I see my community leaving school and going to the military," the person interviewed said. ...

  25. The Macroeconomic Impact of Climate Change: Global vs. Local

    Issue Date May 2024. This paper estimates that the macroeconomic damages from climate change are six times larger than previously thought. We exploit natural variability in global temperature and rely on time-series variation. A 1°C increase in global temperature leads to a 12% decline in world GDP. Global temperature shocks correlate much ...

  26. Drops in the Ocean: The Hidden Power of Rights-Based Climate Change

    The courts increasingly rely upon the science of climate change institutions and the arguments and doctrines developed by foreign courts and international tribunals, including new doctrines for rejecting typical "drop in the ocean" causation and justiciability arguments traditionally relied upon to dismiss climate change cases.

  27. What the Tundra's Average Temperature Tells Us About One of Earth's

    The essay also explores the impacts of climate change, like permafrost thaw and the introduction of non-native species, which threaten this delicate balance. Additionally, it considers human activities such as mining and tourism that further stress this fragile ecosystem.

  28. What Does the European Court of Human Rights' First Climate Change

    On 9 April the European Court of Human Rights (ECtHR) issued its first ever comprehensive decision in a climate litigation case. The judges of the Court's Grand Chamber found that Switzerland was in breach of its positive obligations to protect the health, well-being and quality of life of Swiss citizens from the impacts of climate change. This […]

  29. Governor should sign bill to protect trees and protect ourselves

    That's a win-win-win. During her State of the State address in January, Gov. Kathy Hochul promised to plant 25 million trees by 2033 to help mitigate the risks of climate change. It's a notable ...

  30. Climate Change Is Making Allergies Worse

    Now, thanks to climate change, you don't even need to move: The warmer climate is shifting growing zones northward, allowing plants to extend their natural range. In human beings, this all adds ...